Computer Vision: Image Alignment

Raquel Urtasun

TTI Chicago

Jan 24, 2013

Readings

- Chapter 2.1, 3.6, 4.3 and 6.1 of Szeliski's book
- Chapter 1 of Forsyth \& Ponce

What did we see in class last week?

What is the geometric relationship between these images?

[Source: N. Snavely]

What is the geometric relationship between these images?

Very important for creating mosaics!
[Source: N. Snavely]

Image Warping

- Image filtering: change range of image

$$
g(x)=h(f(x))
$$

- Image warping: change domain of image

$$
g(x)=f(h(x))
$$

[Source: R. Szeliski]

Parametric (global) warping

$p=(x, y)$

$p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

- Transformation T is a coordinate-changing machine:

$$
p^{\prime}=T(p)
$$

- What does it mean that T is global?
- Is the same for any point p
- Can be described by just a few numbers (parameters)
[Source: N. Snavely]

Forward and Inverse Warping

- Forward Warping: Send each pixel $f(x)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in $g\left(x^{\prime}, y^{\prime}\right)$
procedure forwardWarp $(f, \boldsymbol{h}$, out $g)$:
For every pixel x in $f(x)$

1. Compute the destination location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$.
2. Copy the pixel $f(\boldsymbol{x})$ to $g\left(\boldsymbol{x}^{\prime}\right)$.

- Inverse Warping: Each pixel at the destination is sampled from the original image
procedure inverseWarp $(f, \boldsymbol{h}$, out $g)$:
For every pixel \boldsymbol{x}^{\prime} in $g\left(\boldsymbol{x}^{\prime}\right)$

1. Compute the source location $x=\hat{h}\left(x^{\prime}\right)$
2. Resample $f(\boldsymbol{x})$ at location \boldsymbol{x} and copy to $g\left(\boldsymbol{x}^{\prime}\right)$

All 2D Linear Transformations

Linear transformations are combinations of

- Scale,
- Rotation
- Shear
- Mirror

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

[Source: N. Snavely]

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What about the translation?

[Source: N. Snavely]

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What about the translation?
[Source: N. Snavely]

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
[Source: N. Snavely]

Projective Transformations

- Affine transformations and Projective warps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
[Source: N. Snavely]

2D Image Tranformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	

- These transformations are a nested set of groups
- Closed under composition and inverse is a member

Computing transformations

Given a set of matches between images A and B

- How can we compute the transform T from A to B ?
- Find transform T that best agrees with the matches

[Source: N. Snavely]

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
r_{x_{i}}\left(x_{t}\right) & =x_{i}+x_{t}-x_{i}^{\prime} \\
r_{y_{i}}\left(y_{t}\right) & =y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
x_{i}+x_{t} & =x_{i}^{\prime} \\
y_{i}+y_{t} & =y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
x_{i}+x_{t} & =x_{i}^{\prime} \\
y_{i}+y_{t} & =y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
r_{x_{i}}\left(x_{t}\right) & =x_{i}+x_{t}-x_{i}^{\prime} \\
r_{y_{i}}\left(y_{t}\right) & =y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
x_{i}+x_{t} & =x_{i}^{\prime} \\
y_{i}+y_{t} & =y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement
[Source: N. Snavely]

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
x_{i}+x_{t} & =x_{i}^{\prime} \\
y_{i}+y_{t} & =y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement
[Source: N. Snavely]

Matrix Formulation

- We can also write as a matrix equation

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime}-x_{1} \\
y_{1}^{\prime}-y_{1} \\
x_{2}^{\prime}-x_{2} \\
y_{2}^{\prime}-y_{2} \\
\vdots \\
x_{n}^{\prime}-x_{n} \\
y_{n}^{\prime}-y_{n}
\end{array}\right]} \\
\underset{2 n \times 2}{\mathbf{A}} \\
\underset{2 \times 1}{\mathbf{t}}=\underset{2 n \times 1}{\mathbf{0}}
\end{gathered}
$$

- Solve for \mathbf{t} by looking at the fixed-point equation

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?
- Why to use more?
[Source: N. Snavely]

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?
- Why to use more?
[Source: N. Snavely]

Affine Transformation Cost Function

- We can write the residuals as

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function

$$
C(a, b, c, d, e, f)=\sum_{i=1}^{N}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

Affine Transformation Cost Function

- We can write the residuals as

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function

$$
C(a, b, c, d, e, f)=\sum_{i=1}^{N}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

- And in matrix form ...
[Source: N. Snavely]

Affine Transformation Cost Function

- We can write the residuals as

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function

$$
C(a, b, c, d, e, f)=\sum_{i=1}^{N}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

- And in matrix form ...
[Source: N. Snavely]

Matrix form

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & \vdots & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]
$$

[Source: N. Snavely]

General Formulation

- Let $x^{\prime}=f(x ; p)$ be a parametric transformation
- In the case of translation, similarity and affine, there is a linear relationship between the amount of motion $\Delta x=x^{\prime}-x$ and the unknown parameters

$$
\Delta x=x^{\prime}-x=J(x) p
$$

with $\mathbf{J}=\frac{\partial f}{\partial p}$ is the Jacobian of the transformation \mathbf{f} with respect to the motion parameters \mathbf{p}

General Formulation

- Let $x^{\prime}=f(x ; p)$ be a parametric transformation
- In the case of translation, similarity and affine, there is a linear relationship between the amount of motion $\Delta x=x^{\prime}-x$ and the unknown parameters

$$
\Delta x=x^{\prime}-x=\mathbf{J}(x) \mathbf{p}
$$

with $\mathbf{J}=\frac{\partial f}{\partial p}$ is the Jacobian of the transformation \mathbf{f} with respect to the motion parameters \mathbf{p}

General Formulation

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Euclidean	$\left[\begin{array}{ccc}c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, \theta\right)$	$\left[\begin{array}{ccc}1 & 0 & -s_{\theta} x-c_{\theta} y \\ 0 & 1 & c_{\theta} x-s_{\theta} y\end{array}\right]$
similarity	$\left[\begin{array}{ccc}1+a & -b & t_{x} \\ b & 1+a & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a, b\right)$	$\left[\begin{array}{cccc}1 & 0 & x & -y \\ 0 & 1 & y & x\end{array}\right]$
affine	$\left[\begin{array}{ccc}1+a_{00} & a_{01} & t_{x} \\ a_{10} & 1+a_{11} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a_{00}, a_{01}, a_{10}, a_{11}\right)$	$\left[\begin{array}{llllll}1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y\end{array}\right]$

- Let's do a couple on the board!

General Formulation

- The sum of square residuals is then

$$
\begin{aligned}
E_{L L S} & =\sum_{i}\left\|\mathbf{J}\left(\mathbf{x}_{i}\right) \mathbf{p}-\Delta \mathbf{x}_{i}\right\|_{2}^{2} \\
& \left.=\mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \mathbf{J}\left(\mathbf{x}_{i}\right)\right] \mathbf{p}-2 \mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \Delta \mathbf{x}_{i}\right)\right]+\sum_{i}\left\|\Delta \mathbf{x}_{i}\right\|_{2}
\end{aligned}
$$

General Formulation

- The sum of square residuals is then

$$
\begin{aligned}
E_{L L S} & =\sum_{i}\left\|\mathbf{J}\left(\mathbf{x}_{i}\right) \mathbf{p}-\Delta \mathbf{x}_{i}\right\|_{2}^{2} \\
& \left.=\mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \mathbf{J}\left(\mathbf{x}_{i}\right)\right] \mathbf{p}-2 \mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \Delta \mathbf{x}_{i}\right)\right]+\sum_{i}\left\|\Delta \mathbf{x}_{i}\right\|_{2} \\
& =\mathbf{p}^{T} \mathbf{A} \mathbf{p}-2 \mathbf{p}^{T} \mathbf{b}+c
\end{aligned}
$$

General Formulation

- The sum of square residuals is then

$$
\begin{aligned}
E_{L L S} & =\sum_{i}\left\|\mathbf{J}\left(\mathbf{x}_{i}\right) \mathbf{p}-\Delta \mathbf{x}_{i}\right\|_{2}^{2} \\
& \left.=\mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \mathbf{J}\left(\mathbf{x}_{i}\right)\right] \mathbf{p}-2 \mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \Delta \mathbf{x}_{i}\right)\right]+\sum_{i}\left\|\Delta \mathbf{x}_{i}\right\|_{2} \\
& =\mathbf{p}^{T} \mathbf{A p}-2 \mathbf{p}^{T} \mathbf{b}+c
\end{aligned}
$$

- We can compute the solution by looking for a fixed point, yielding

$$
\mathrm{Ap}=\mathrm{b}
$$

with $\mathbf{A}=\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \mathbf{J}\left(\mathbf{x}_{i}\right)$ the Hessian and $\mathbf{b}=\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \Delta \mathbf{x}_{i}$

General Formulation

- The sum of square residuals is then

$$
\begin{aligned}
E_{L L S} & =\sum_{i}\left\|\mathbf{J}\left(\mathbf{x}_{i}\right) \mathbf{p}-\Delta \mathbf{x}_{i}\right\|_{2}^{2} \\
& \left.=\mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \mathbf{J}\left(\mathbf{x}_{i}\right)\right] \mathbf{p}-2 \mathbf{p}^{T}\left[\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \Delta \mathbf{x}_{i}\right)\right]+\sum_{i}\left\|\Delta \mathbf{x}_{i}\right\|_{2} \\
& =\mathbf{p}^{T} \mathbf{A p}-2 \mathbf{p}^{T} \mathbf{b}+c
\end{aligned}
$$

- We can compute the solution by looking for a fixed point, yielding

$$
\mathbf{A p}=\mathbf{b}
$$

with $\mathbf{A}=\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \mathbf{J}\left(\mathbf{x}_{i}\right)$ the Hessian and $\mathbf{b}=\sum_{i} \mathbf{J}^{T}\left(\mathbf{x}_{i}\right) \Delta \mathbf{x}_{i}$

Uncertainty Weighting

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ_{i}^{2} with each correspondence, we can minimize the weighted least squares problem

$$
E_{W L S}=\sum_{i} \sigma_{i}^{-2}\left\|r_{i}\right\|_{2}^{2}
$$

Uncertainty Weighting

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ_{i}^{2} with each correspondence, we can minimize the weighted least squares problem

$$
E_{W L S}=\sum_{i} \sigma_{i}^{-2}\left\|\mathbf{r}_{i}\right\|_{2}^{2}
$$

- If the σ_{i}^{2} are fixed, then the solution is simply

$$
\begin{aligned}
& \qquad \mathrm{p}=\left(\Sigma^{T} \mathbf{A}^{T} \mathbf{A} \Sigma\right)^{-1} \Sigma^{T} \mathbf{A} \mathrm{~b} \\
& \text { with } \Sigma \text {, the matrix containing for each observation the noise level }
\end{aligned}
$$

Uncertainty Weighting

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ_{i}^{2} with each correspondence, we can minimize the weighted least squares problem

$$
E_{W L S}=\sum_{i} \sigma_{i}^{-2}\left\|\mathbf{r}_{i}\right\|_{2}^{2}
$$

- If the σ_{i}^{2} are fixed, then the solution is simply

$$
\mathbf{p}=\left(\Sigma^{T} \mathbf{A}^{T} \mathbf{A} \Sigma\right)^{-1} \Sigma^{T} \mathbf{A} \mathbf{b}
$$

with Σ, the matrix containing for each observation the noise level

- What if we don't know Σ ?

Uncertainty Weighting

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ_{i}^{2} with each correspondence, we can minimize the weighted least squares problem

$$
E_{W L S}=\sum_{i} \sigma_{i}^{-2}\left\|\mathbf{r}_{i}\right\|_{2}^{2}
$$

- If the σ_{i}^{2} are fixed, then the solution is simply

$$
\mathbf{p}=\left(\Sigma^{T} \mathbf{A}^{T} \mathbf{A} \Sigma\right)^{-1} \Sigma^{T} \mathbf{A} \mathbf{b}
$$

with Σ, the matrix containing for each observation the noise level

- What if we don't know Σ ?
- Solve using iteratively reweighted least squares (IRLS)

Uncertainty Weighting

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ_{i}^{2} with each correspondence, we can minimize the weighted least squares problem

$$
E_{W L S}=\sum_{i} \sigma_{i}^{-2}\left\|\mathbf{r}_{i}\right\|_{2}^{2}
$$

- If the σ_{i}^{2} are fixed, then the solution is simply

$$
\mathbf{p}=\left(\Sigma^{T} \mathbf{A}^{T} \mathbf{A} \Sigma\right)^{-1} \Sigma^{T} \mathbf{A} \mathbf{b}
$$

with Σ, the matrix containing for each observation the noise level

- What if we don't know Σ ?
- Solve using iteratively reweighted least squares (IRLS)

Homographies

To unwarp (rectify) and image

- solve for homography H given p and p^{\prime}

Homographies

To unwarp (rectify) and image

- solve for homography H given p and p^{\prime}
- solve equations of the form: $w^{\prime}{ }^{\prime}=\mathrm{Hp}$

Homographies

To unwarp (rectify) and image

- solve for homography H given p and p^{\prime}
- solve equations of the form: $\mathbf{w p}^{\prime}=\mathbf{H p}$
- linear in unknowns: w and coefficients of \mathbf{H}

Homographies

To unwarp (rectify) and image

- solve for homography H given p and p^{\prime}
- solve equations of the form: $\mathbf{w p}^{\prime}=\mathbf{H p}$
- linear in unknowns: w and coefficients of \mathbf{H}
- H is defined up to an arbitrary scale factor

Homographies

To unwarp (rectify) and image

- solve for homography H given p and p^{\prime}
- solve equations of the form: $\mathbf{w p}^{\prime}=\mathbf{H p}$
- linear in unknowns: \mathbf{w} and coefficients of \mathbf{H}
- \mathbf{H} is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?
[Source: N. Snavely]

Homographies

To unwarp (rectify) and image

- solve for homography H given p and p^{\prime}
- solve equations of the form: $\mathbf{w p}^{\prime}=\mathbf{H p}$
- linear in unknowns: \mathbf{w} and coefficients of \mathbf{H}
- \mathbf{H} is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?
[Source: N. Snavely]

Solving for Homographies

$$
\left[\begin{array}{c}
a x_{i}^{\prime} \\
a y_{i}^{\prime} \\
a
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

- To get to non-homogenous coordinates

$$
\begin{aligned}
x_{i}^{\prime} & =\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime} & =\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{aligned}
$$

Solving for Homographies

$$
\left[\begin{array}{c}
a x_{i}^{\prime} \\
a y_{i}^{\prime} \\
a
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

- To get to non-homogenous coordinates

$$
\begin{aligned}
x_{i}^{\prime} & =\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime} & =\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{aligned}
$$

- Warning: This is non-linear!!!

Solving for Homographies

$$
\left[\begin{array}{c}
a x_{i}^{\prime} \\
a y_{i}^{\prime} \\
a
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

- To get to non-homogenous coordinates

$$
\begin{aligned}
x_{i}^{\prime} & =\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime} & =\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{aligned}
$$

- Warning: This is non-linear!!!
- But wait a minute!

$$
\begin{aligned}
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

Solving for Homographies

$$
\left[\begin{array}{c}
a x_{i}^{\prime} \\
a y_{i}^{\prime} \\
a
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

- To get to non-homogenous coordinates

$$
\begin{aligned}
x_{i}^{\prime} & =\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime} & =\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{aligned}
$$

- Warning: This is non-linear!!!
- But wait a minute!

$$
\begin{aligned}
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

Solving for homographies

$$
\begin{aligned}
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

- This is still linear in the unknowns

$$
\left[\begin{array}{ccccccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -y_{i}^{\prime} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solving for homographies

- Taking all the observations into account

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & \vdots & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n}^{\prime} \\
-y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{n}_{\mathbf{2 n \times 9}}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]\right.
$$

- Defines a least squares problem:

$$
\min _{h}\|A h\|_{2}^{2}
$$

Solving for homographies

- Taking all the observations into account

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
& & & & \vdots & \vdots & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

- Defines a least squares problem:

$$
\min _{\mathbf{h}}\|\mathbf{A h}\|_{2}^{2}
$$

- Since \mathbf{h} is only defined up to scale, solve for unit vector

Solving for homographies

- Taking all the observations into account

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n}^{\prime} \\
-y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

- Defines a least squares problem:

$$
\min _{\mathbf{h}}\|\mathbf{A h}\|_{2}^{2}
$$

- Since \mathbf{h} is only defined up to scale, solve for unit vector
- Solution: $\hat{\mathrm{h}}=$ eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue

Solving for homographies

- Taking all the observations into account

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n}^{\prime} \\
-y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

- Defines a least squares problem:

$$
\min _{\mathbf{h}}\|\mathbf{A h}\|_{2}^{2}
$$

- Since \mathbf{h} is only defined up to scale, solve for unit vector
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Solving for homographies

- Taking all the observations into account

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n}^{\prime} \\
-y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

- Defines a least squares problem:

$$
\min _{\mathbf{h}}\|\mathbf{A h}\|_{2}^{2}
$$

- Since \mathbf{h} is only defined up to scale, solve for unit vector
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Image Alignment Algorithm

Given images A and B
(1) Compute image features for A and B
(2) Match features between A and B
(3) Compute homography between A and B using least squares on set of matches

Is there a problem with this?
[Source: N. Snavely]

Image Alignment Algorithm

Given images A and B
(1) Compute image features for A and B
(2) Match features between A and B
(3) Compute homography between A and B using least squares on set of matches

Is there a problem with this?
[Source: N. Snavely]

Robustness

[Source: N. Snavely]

Simple case

- Lets consider a simpler example ... linear regression

Problem: Fit a line to these datapoints

Least squares fit

- How can we fix this?

Simple case

- Lets consider a simpler example ... linear regression

Problem: Fit a line to these datapoints

Least squares fit

- How can we fix this?
- We need a better cost function
[Source: N. Snavely]

Simple case

- Lets consider a simpler example ... linear regression

Problem: Fit a line to these datapoints

Least squares fit

- How can we fix this?
- We need a better cost function
[Source: N. Snavely]

More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust

More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function $\rho(\mathbf{r})$ to the residuals

$$
E_{R L S}(\Delta \mathbf{p})=\sum_{i} \rho\left(\left\|\mathbf{r}_{i}\right\|\right)
$$

instead of taking the square of the residual

More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function $\rho(\mathbf{r})$ to the residuals

$$
E_{R L S}(\Delta \mathbf{p})=\sum_{i} \rho\left(\left\|\mathbf{r}_{i}\right\|\right)
$$

instead of taking the square of the residual

- We can take the derivative with respect to p and set it to 0

where $\psi(\mathbf{r})=\rho^{\prime}(\mathbf{r})$ is the derivative, called influence function

More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function $\rho(\mathbf{r})$ to the residuals

$$
E_{R L S}(\Delta \mathbf{p})=\sum_{i} \rho\left(\left\|\mathbf{r}_{i}\right\|\right)
$$

instead of taking the square of the residual

- We can take the derivative with respect to \mathbf{p} and set it to 0

$$
\sum_{i} \psi\left(\left\|\mathbf{r}_{i}\right\|\right) \frac{\partial\left\|\mathbf{r}_{i}\right\|}{\partial \mathbf{p}}=\sum_{i} \frac{\psi\left(\left\|\mathbf{r}_{i}\right\|\right)}{\left\|\mathbf{r}_{i}\right\|} \mathbf{r}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{p}}=0
$$

where $\psi(\mathbf{r})=\rho^{\prime}(\mathbf{r})$ is the derivative, called influence function

- If we introduce a weight $w(r)=\psi(r) / r$, we observe that finding the stationary point is equivalent to minimizing the iteratively reweighted least squares (IRLS)

$$
E_{I R L S}=\sum_{i} w\left(\left\|\mathbf{r}_{i}\right\|\right)\left\|\mathbf{r}_{i}\right\|^{2}
$$

More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function $\rho(\mathbf{r})$ to the residuals

$$
E_{R L S}(\Delta \mathbf{p})=\sum_{i} \rho\left(\left\|\mathbf{r}_{i}\right\|\right)
$$

instead of taking the square of the residual

- We can take the derivative with respect to \mathbf{p} and set it to 0

$$
\sum_{i} \psi\left(\left\|\mathbf{r}_{i}\right\|\right) \frac{\partial\left\|\mathbf{r}_{i}\right\|}{\partial \mathbf{p}}=\sum_{i} \frac{\psi\left(\left\|\mathbf{r}_{i}\right\|\right)}{\left\|\mathbf{r}_{i}\right\|} \mathbf{r}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{p}}=0
$$

where $\psi(\mathbf{r})=\rho^{\prime}(\mathbf{r})$ is the derivative, called influence function

- If we introduce a weight $w(r)=\psi(r) / r$, we observe that finding the stationary point is equivalent to minimizing the iteratively reweighted least squares (IRLS)

$$
E_{I R L S}=\sum_{i} w\left(\left\|\mathbf{r}_{i}\right\|\right)\left\|\mathbf{r}_{i}\right\|^{2}
$$

Iterative reweighted least-squares

- We want to minimize

$$
E_{I R L S}=\sum_{i} w\left(\left\|\mathbf{r}_{i}\right\|\right)\left\|\mathbf{r}_{i}\right\|^{2}
$$

- A simple algorithm works by iterating between
(1) Solving for the parameters \mathbf{p}
(2) Solving for the weights w

Iterative reweighted least-squares

- We want to minimize

$$
E_{I R L S}=\sum_{i} w\left(\left\|\mathbf{r}_{i}\right\|\right)\left\|\mathbf{r}_{i}\right\|^{2}
$$

- A simple algorithm works by iterating between
(1) Solving for the parameters \mathbf{p}
(2) Solving for the weights w
- When the number of outliers is very high, IRLS does not work well (will not converge to the global optima)

Iterative reweighted least-squares

- We want to minimize

$$
E_{I R L S}=\sum_{i} w\left(\left\|\mathbf{r}_{i}\right\|\right)\left\|\mathbf{r}_{i}\right\|^{2}
$$

- A simple algorithm works by iterating between
(1) Solving for the parameters \mathbf{p}
(2) Solving for the weights w
- When the number of outliers is very high, IRLS does not work well (will not converge to the global optima)

Simple Idea

- Given a hypothesized line, count the number of points that agree with the line
- Agree $=$ within a small distance of the line i.e., the inliers to that line

Simple Idea

- Given a hypothesized line, count the number of points that agree with the line
- Agree $=$ within a small distance of the line i.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers
[Source: N. Snavely]

Simple Idea

- Given a hypothesized line, count the number of points that agree with the line
- Agree $=$ within a small distance of the line i.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers
[Source: N. Snavely]

Counting Inliers

Inliers: 3
[Source: N. Snavely]

Counting Inliers

Inliers: 20
[Source: N. Snavely]

Counting Inliers

Inliers: 20

What's the problem with this approach?

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

How do we find the best line?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

Translations

[Source: N. Snavely]

RAndom SAmple Consensus

[Source: N. Snavely]

RAndom SAmple Consensus

[Source: N. Snavely]

RAndom SAmple Consensus

[Source: N. Snavely]

RANSAC

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are $<50 \%$ outliers

RANSAC

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are $<50 \%$ outliers
- "All good matches are alike; every bad match is bad in its own way." [Tolstoy via Alyosha Efros]
[Source: N. Snavely]
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are $<50 \%$ outliers
- "All good matches are alike; every bad match is bad in its own way." [Tolstoy via Alyosha Efros]
[Source: N. Snavely]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(5) Repeat hypothesize and verify loop

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(5) Repeat hypothesize and verify loop

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(9) Select points consistent with model
(0) Repeat hypothesize and verify loop
© Choose model with largest set of inliers

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(0) Repeat hypothesize and verify loop
(0 Choose model with largest set of inliers

[Source: R. Raguram]

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?
- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

- The number of trials grows quickly with the number of sample points used.

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

- The number of trials grows quickly with the number of sample points used.
- Use the minimum number of sample points k possible for any given trial

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

- The number of trials grows quickly with the number of sample points used.
- Use the minimum number of sample points k possible for any given trial

How big is the number of samples?

- For alignment, depends on the motion model
- Each sample is a correspondence (pair of matching points)

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling
[Source: N. Snavely]

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling
[Source: N. Snavely]

RANSAC as Voting

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

RANSAC as Voting

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes, e.g., Hough transforms
[Source: N. Snavely]

RANSAC as Voting

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes, e.g., Hough transforms
[Source: N. Snavely]

Next class ... more on cameras and projection

