#### Computer Vision: Image Alignment

Raquel Urtasun

TTI Chicago

Jan 24, 2013

- Chapter 2.1, 3.6, 4.3 and 6.1 of Szeliski's book
- Chapter 1 of Forsyth & Ponce

#### What did we see in class last week?

## What is the geometric relationship between these images?



# What is the geometric relationship between these images?



Very important for creating mosaics!

# Image Warping

• Image filtering: change range of image

$$g(x)=h(f(x))$$



• Image warping: change domain of image

$$g(x)=f(h(x))$$



[Source: R. Szeliski]

# Parametric (global) warping



**p** = (x,y)

**p'** = (x',y')

• Transformation T is a coordinate-changing machine:

$$p'=T(p)$$

- What does it mean that T is global?
  - Is the same for any point p
  - Can be described by just a few numbers (parameters)

#### Forward and Inverse Warping

• Forward Warping: Send each pixel f(x) to its corresponding location (x', y') = T(x, y) in g(x', y')

procedure forwardWarp(f, h, out g):

```
For every pixel x in f(x)
```

- 1. Compute the destination location x' = h(x).
- 2. Copy the pixel f(x) to g(x').
- Inverse Warping: Each pixel at the destination is sampled from the original image

```
procedure inverseWarp(f, h, out g):
```

```
For every pixel x' in g(x')
```

- 1. Compute the source location  $x = \hat{h}(x')$
- 2. Resample f(x) at location x and copy to g(x')

Linear transformations are combinations of

- Scale,
- Rotation
- Shear
- Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Origin maps to origin
- Lines map to lines

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} e & f\\ g & h \end{bmatrix} \begin{bmatrix} i & j\\ k & l \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

What about the translation?

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} e & f\\ g & h \end{bmatrix} \begin{bmatrix} i & j\\ k & l \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

What about the translation?

## Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$\begin{bmatrix} x'\\ y'\\ w \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

#### **Projective Transformations**

Affine transformations and Projective warps

$$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition

#### 2D Image Tranformations



| Transformation    | Matrix                                                                 | # DoF | Preserves      | Icon           |
|-------------------|------------------------------------------------------------------------|-------|----------------|----------------|
| translation       | $\left[ egin{array}{c c} I & t \end{array}  ight]_{2 	imes 3}$         | 2     | orientation    |                |
| rigid (Euclidean) | $\left[ egin{array}{c c} R & t \end{array}  ight]_{2 	imes 3}$         | 3     | lengths        | $\diamondsuit$ |
| similarity        | $\left[ \begin{array}{c} s R \mid t \end{array} \right]_{2 	imes 3}$   | 4     | angles         | $\diamondsuit$ |
| affine            | $\left[ egin{array}{c} egin{array}{c} A \end{array}  ight]_{2	imes 3}$ | 6     | parallelism    | $\square$      |
| projective        | $\left[ egin{array}{c} 	ilde{H} \end{array}  ight]_{3	imes 3}$         | 8     | straight lines |                |

- These transformations are a nested set of groups
- Closed under composition and inverse is a member

## Computing transformations

Given a set of matches between images A and B

- How can we compute the transform T from A to B?
- Find transform T that best agrees with the matches



• For each point  $(x_i, y_i)$  we have

$$\begin{array}{rcl} x_i + x_t &=& x'_i \\ y_i + y_t &=& y'_i \end{array}$$

• We define the residuals as

$$egin{array}{rl} r_{x_i}(x_t) &=& x_i + x_t - x'_i \ r_{y_i}(y_t) &=& y_i + y_t - y'_i \end{array}$$

• For each point  $(x_i, y_i)$  we have

$$\begin{array}{rcl} x_i + x_t &=& x'_i \\ y_i + y_t &=& y'_i \end{array}$$

• We define the residuals as

$$r_{x_i}(x_t) = x_i + x_t - x'_i$$
  
 $r_{y_i}(y_t) = y_i + y_t - y'_i$ 

• Goal: minimize sum of squared residuals

$$C(x_t, y_t) = \sum_{i=1}^{n} (r_{x_i}(x_t)^2 + r_{y_i}(y_t)^2)$$

• For each point  $(x_i, y_i)$  we have

$$\begin{array}{rcl} x_i + x_t &=& x'_i \\ y_i + y_t &=& y'_i \end{array}$$

• We define the residuals as

$$r_{x_i}(x_t) = x_i + x_t - x'_i$$
  
 $r_{y_i}(y_t) = y_i + y_t - y'_i$ 

• Goal: minimize sum of squared residuals

$$C(x_t, y_t) = \sum_{i=1}^{n} (r_{x_i}(x_t)^2 + r_{y_i}(y_t)^2)$$

• The solution is called the least squares solution

• For each point  $(x_i, y_i)$  we have

$$\begin{array}{rcl} x_i + x_t &=& x_i' \\ y_i + y_t &=& y_i' \end{array}$$

• We define the residuals as

$$egin{array}{rl} r_{x_i}(x_t) &=& x_i + x_t - x'_i \ r_{y_i}(y_t) &=& y_i + y_t - y'_i \end{array}$$

• Goal: minimize sum of squared residuals

$$C(x_t, y_t) = \sum_{i=1}^n (r_{x_i}(x_t)^2 + r_{y_i}(y_t)^2)$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement

• For each point  $(x_i, y_i)$  we have

$$\begin{array}{rcl} x_i + x_t &=& x_i' \\ y_i + y_t &=& y_i' \end{array}$$

• We define the residuals as

$$r_{x_i}(x_t) = x_i + x_t - x'_i$$
  
 $r_{y_i}(y_t) = y_i + y_t - y'_i$ 

• Goal: minimize sum of squared residuals

$$C(x_t, y_t) = \sum_{i=1}^{n} (r_{x_i}(x_t)^2 + r_{y_i}(y_t)^2)$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement

• For each point  $(x_i, y_i)$  we have

$$\begin{array}{rcl} x_i + x_t &=& x_i' \\ y_i + y_t &=& y_i' \end{array}$$

• We define the residuals as

$$r_{x_i}(x_t) = x_i + x_t - x'_i$$
  
 $r_{y_i}(y_t) = y_i + y_t - y'_i$ 

• Goal: minimize sum of squared residuals

$$C(x_t, y_t) = \sum_{i=1}^{n} (r_{x_i}(x_t)^2 + r_{y_i}(y_t)^2)$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement

#### Matrix Formulation

We can also write as a matrix equation



• Solve for t by looking at the fixed-point equation

$$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

• How many unknowns?

$$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

#### • How many unknowns?

• How many equations per match?

$$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

$$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?
- Why to use more?

$$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?
- Why to use more?

#### Affine Transformation Cost Function

• We can write the residuals as

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function

$$C(a, b, c, d, e, f) = \sum_{i=1}^{N} (r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2)$$

#### Affine Transformation Cost Function

• We can write the residuals as

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

Cost function

$$C(a, b, c, d, e, f) = \sum_{i=1}^{N} (r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2)$$

• And in matrix form ...

• We can write the residuals as

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

Cost function

$$C(a, b, c, d, e, f) = \sum_{i=1}^{N} (r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2)$$

• And in matrix form ...

## Matrix form



#### • Let x' = f(x; p) be a parametric transformation

• In the case of translation, similarity and affine, there is a linear relationship between the amount of motion  $\Delta x = x' - x$  and the unknown parameters

$$\Delta x = x' - x = \mathbf{J}(x)\mathbf{p}$$

with  $J = \frac{\partial f}{\partial p}$  is the **Jacobian** of the transformation **f** with respect to the motion parameters **p**
- Let x' = f(x; p) be a parametric transformation
- In the case of translation, similarity and affine, there is a linear relationship between the amount of motion  $\Delta x = x' x$  and the unknown parameters

$$\Delta x = x' - x = \mathbf{J}(x)\mathbf{p}$$

with  $J=\frac{\partial f}{\partial p}$  is the Jacobian of the transformation f with respect to the motion parameters p

| Transform   | Matrix                                                                                                        | Parameters p                                 | Jacobian J                                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| translation | $\left[\begin{array}{rrrr} 1 & 0 & t_x \\ 0 & 1 & t_y \end{array}\right]$                                     | $(t_x,t_y)$                                  | $\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$                                                                  |
| Euclidean   | $\left[\begin{array}{ccc} c_{\theta} & -s_{\theta} & t_x \\ s_{\theta} & c_{\theta} & t_y \end{array}\right]$ | $(t_x,t_y,\theta)$                           | $\left[\begin{array}{rrr} 1 & 0 & -s_{\theta}x - c_{\theta}y \\ 0 & 1 & c_{\theta}x - s_{\theta}y \end{array}\right]$ |
| similarity  | $\left[\begin{array}{rrrr}1+a&-b&t_x\\b&1+a&t_y\end{array}\right]$                                            | $(t_x,t_y,a,b)$                              | $\left[\begin{array}{rrrr}1&0&x&-y\\0&1&y&x\end{array}\right]$                                                        |
| affine      | $\left[\begin{array}{ccc} 1 + a_{00} & a_{01} & t_x \\ a_{10} & 1 + a_{11} & t_y \end{array}\right]$          | $(t_x, t_y, a_{00}, a_{01}, a_{10}, a_{11})$ | $\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                            |

#### • Let's do a couple on the board!

• The sum of square residuals is then

$$E_{LLS} = \sum_{i} ||\mathbf{J}(\mathbf{x}_{i})\mathbf{p} - \Delta \mathbf{x}_{i}||_{2}^{2}$$
  
=  $\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\mathbf{J}(\mathbf{x}_{i})]\mathbf{p} - 2\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\Delta \mathbf{x}_{i})] + \sum_{i} ||\Delta \mathbf{x}_{i}||_{2}$ 

• The sum of square residuals is then

$$E_{LLS} = \sum_{i} ||\mathbf{J}(\mathbf{x}_{i})\mathbf{p} - \Delta \mathbf{x}_{i}||_{2}^{2}$$
  
=  $\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\mathbf{J}(\mathbf{x}_{i})]\mathbf{p} - 2\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\Delta \mathbf{x}_{i})] + \sum_{i} ||\Delta \mathbf{x}_{i}||_{2}$   
=  $\mathbf{p}^{T} \mathbf{A} \mathbf{p} - 2\mathbf{p}^{T} \mathbf{b} + c$ 

• The sum of square residuals is then

$$E_{LLS} = \sum_{i} ||\mathbf{J}(\mathbf{x}_{i})\mathbf{p} - \Delta \mathbf{x}_{i}||_{2}^{2}$$
  
=  $\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\mathbf{J}(\mathbf{x}_{i})]\mathbf{p} - 2\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\Delta \mathbf{x}_{i}] + \sum_{i} ||\Delta \mathbf{x}_{i}||_{2}$   
=  $\mathbf{p}^{T} \mathbf{A} \mathbf{p} - 2\mathbf{p}^{T} \mathbf{b} + c$ 

• We can compute the solution by looking for a fixed point, yielding

$$Ap = b$$

with  $\mathbf{A} = \sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i}) \mathbf{J}(\mathbf{x}_{i})$  the **Hessian** and  $\mathbf{b} = \sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i}) \Delta \mathbf{x}_{i}$ 

• The sum of square residuals is then

$$E_{LLS} = \sum_{i} ||\mathbf{J}(\mathbf{x}_{i})\mathbf{p} - \Delta \mathbf{x}_{i}||_{2}^{2}$$
  
=  $\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\mathbf{J}(\mathbf{x}_{i})]\mathbf{p} - 2\mathbf{p}^{T} [\sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\Delta \mathbf{x}_{i}]] + \sum_{i} ||\Delta \mathbf{x}_{i}||_{2}$   
=  $\mathbf{p}^{T} \mathbf{A} \mathbf{p} - 2\mathbf{p}^{T} \mathbf{b} + c$ 

• We can compute the solution by looking for a fixed point, yielding

$$Ap = b$$

with  $\mathbf{A} = \sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i}) \mathbf{J}(\mathbf{x}_{i})$  the **Hessian** and  $\mathbf{b} = \sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i}) \Delta \mathbf{x}_{i}$ 

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ<sup>2</sup><sub>i</sub> with each correspondence, we can minimize the weighted least squares problem

$$E_{WLS} = \sum_{i} \sigma_i^{-2} ||\mathbf{r}_i||_2^2$$

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ<sup>2</sup><sub>i</sub> with each correspondence, we can minimize the weighted least squares problem

$$E_{WLS} = \sum_{i} \sigma_i^{-2} ||\mathbf{r}_i||_2^2$$

• If the  $\sigma_i^2$  are fixed, then the solution is simply

$$\mathbf{p} = (\boldsymbol{\Sigma}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \boldsymbol{\Sigma})^{-1} \boldsymbol{\Sigma}^{\mathsf{T}} \mathbf{A} \mathbf{b}$$

with  $\Sigma$ , the matrix containing for each observation the noise level

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ<sup>2</sup><sub>i</sub> with each correspondence, we can minimize the weighted least squares problem

$$E_{WLS} = \sum_{i} \sigma_i^{-2} ||\mathbf{r}_i||_2^2$$

• If the  $\sigma_i^2$  are fixed, then the solution is simply

$$\mathbf{p} = (\boldsymbol{\Sigma}^{\mathcal{T}} \mathbf{A}^{\mathcal{T}} \mathbf{A} \boldsymbol{\Sigma})^{-1} \boldsymbol{\Sigma}^{\mathcal{T}} \mathbf{A} \mathbf{b}$$

with  $\Sigma$ , the matrix containing for each observation the noise level • What if we don't know  $\Sigma$ ?

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ<sup>2</sup><sub>i</sub> with each correspondence, we can minimize the weighted least squares problem

$$E_{WLS} = \sum_{i} \sigma_i^{-2} ||\mathbf{r}_i||_2^2$$

• If the  $\sigma_i^2$  are fixed, then the solution is simply

$$\mathbf{p} = (\boldsymbol{\Sigma}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \boldsymbol{\Sigma})^{-1} \boldsymbol{\Sigma}^{\mathsf{T}} \mathbf{A} \mathbf{b}$$

with  $\boldsymbol{\Sigma},$  the matrix containing for each observation the noise level

- What if we don't know Σ?
- Solve using iteratively reweighted least squares (IRLS)

- The above solution assumes that all feature points are matched with same accuracy.
- If we associate a scalar variance σ<sup>2</sup><sub>i</sub> with each correspondence, we can minimize the weighted least squares problem

$$E_{WLS} = \sum_{i} \sigma_i^{-2} ||\mathbf{r}_i||_2^2$$

• If the  $\sigma_i^2$  are fixed, then the solution is simply

$$\mathbf{p} = (\boldsymbol{\Sigma}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \boldsymbol{\Sigma})^{-1} \boldsymbol{\Sigma}^{\mathsf{T}} \mathbf{A} \mathbf{b}$$

with  $\Sigma$ , the matrix containing for each observation the noise level

- What if we don't know Σ?
- Solve using iteratively reweighted least squares (IRLS)



#### To unwarp (rectify) and image

• solve for homography H given p and p'



To unwarp (rectify) and image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp



To unwarp (rectify) and image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
  - $\bullet\,$  linear in unknowns: w and coefficients of H



To unwarp (rectify) and image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
  - $\bullet\,$  linear in unknowns: w and coefficients of H
  - H is defined up to an arbitrary scale factor



To unwarp (rectify) and image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
  - $\bullet\,$  linear in unknowns: w and coefficients of H
  - H is defined up to an arbitrary scale factor
  - how many points are necessary to solve for H?



To unwarp (rectify) and image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
  - linear in unknowns:  ${\bf w}$  and coefficients of  ${\bf H}$
  - H is defined up to an arbitrary scale factor
  - how many points are necessary to solve for H?

$$\begin{bmatrix} ax'_i \\ ay'_i \\ a \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

• To get to non-homogenous coordinates

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned}$$

$$\begin{bmatrix} ax'_i \\ ay'_i \\ a \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

• To get to non-homogenous coordinates

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned}$$

• Warning: This is non-linear!!!

$$\begin{bmatrix} ax'_i \\ ay'_i \\ a \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

• To get to non-homogenous coordinates

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned}$$

• Warning: This is non-linear!!!

• But wait a minute!

$$\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$$

$$\begin{bmatrix} ax'_i \\ ay'_i \\ a \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

• To get to non-homogenous coordinates

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned}$$

- Warning: This is non-linear!!!
- But wait a minute!

$$\begin{array}{lll} x_i' \left( h_{20} x_i + h_{21} y_i + h_{22} \right) &=& h_{00} x_i + h_{01} y_i + h_{02} \\ y_i' \left( h_{20} x_i + h_{21} y_i + h_{22} \right) &=& h_{10} x_i + h_{11} y_i + h_{12} \end{array}$$

$$\begin{aligned} x_i' \left( h_{20} x_i + h_{21} y_i + h_{22} \right) &= h_{00} x_i + h_{01} y_i + h_{02} \\ y_i' \left( h_{20} x_i + h_{21} y_i + h_{22} \right) &= h_{10} x_i + h_{11} y_i + h_{12} \end{aligned}$$

• This is still linear in the unknowns

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Taking all the observations into account

$$\begin{bmatrix} x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x'_{1}x_{1} & -x'_{1}y_{1} & -x'_{1}\\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -y'_{1}x_{1} & -y'_{1}y_{1} & -y'_{1}\\ \vdots \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x'_{n}x_{n} & -x'_{n}y_{n} & -x'_{n}\\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -y'_{n}x_{n} & -y'_{n}y_{n} & -y'_{n} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{11} \\ h_{20} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix}$$

• Defines a least squares problem:

 $\min_{\mathbf{h}} ||\mathbf{A}\mathbf{h}||_2^2$ 

• Taking all the observations into account

$$\begin{bmatrix} x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x'_{1}x_{1} & -x'_{1}y_{1} & -x'_{1}\\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -y'_{1}x_{1} & -y'_{1}y_{1} & -y'_{1}\\ \vdots \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x'_{n}x_{n} & -x'_{n}y_{n} & -x'_{n}\\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -y'_{n}x_{n} & -y'_{n}y_{n} & -y'_{n} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{11} \\ h_{20} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix}$$

• Defines a least squares problem:

 $\min_{\mathbf{h}} ||\mathbf{A}\mathbf{h}||_2^2$ 

• Since h is only defined up to scale, solve for unit vector

• Taking all the observations into account

• Defines a least squares problem:

 $\min_{\mathbf{h}} ||\mathbf{A}\mathbf{h}||_2^2$ 

Since h is only defined up to scale, solve for unit vector
Solution: h

eigenvector of A<sup>T</sup>A with smallest eigenvalue

• Taking all the observations into account

• Defines a least squares problem:

 $\min_{\mathbf{h}} ||\mathbf{A}\mathbf{h}||_2^2$ 

- $\bullet\,$  Since h is only defined up to scale, solve for unit vector
- Solution:  $\hat{\boldsymbol{h}} = \text{eigenvector}$  of  $\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}$  with smallest eigenvalue
- Works with 4 or more points

• Taking all the observations into account

• Defines a least squares problem:

$$\min_{\mathbf{h}} ||\mathbf{A}\mathbf{h}||_2^2$$

- $\bullet\,$  Since h is only defined up to scale, solve for unit vector
- Solution:  $\hat{\boldsymbol{h}} = \text{eigenvector}$  of  $\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}$  with smallest eigenvalue
- Works with 4 or more points

Given images A and B

- Compute image features for A and B
- 2 Match features between A and B
- Compute homography between A and B using least squares on set of matches

Is there a problem with this?

Given images A and B

- Compute image features for A and B
- 2 Match features between A and B
- Compute homography between A and B using least squares on set of matches

Is there a problem with this?



## Simple case

• Lets consider a simpler example ... linear regression



• How can we fix this?

#### Simple case

• Lets consider a simpler example ... linear regression



#### • How can we fix this?

• We need a better cost function

## Simple case

• Lets consider a simpler example ... linear regression



- How can we fix this?
- We need a better cost function

#### More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust

#### More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function  $\rho(\mathbf{r})$  to the residuals

$$E_{RLS}(\Delta \mathbf{p}) = \sum_{i} \rho(||\mathbf{r}_{i}||)$$

instead of taking the square of the residual

#### More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function  $\rho(\mathbf{r})$  to the residuals

$$E_{RLS}(\Delta \mathbf{p}) = \sum_{i} \rho(||\mathbf{r}_{i}||)$$

instead of taking the square of the residual

• We can take the derivative with respect to  $\mathbf{p}$  and set it to 0  $\sum_{i} \psi(||\mathbf{r}_{i}||) \frac{\partial ||\mathbf{r}_{i}||}{\partial \mathbf{p}} = \sum_{i} \frac{\psi(||\mathbf{r}_{i}||)}{||\mathbf{r}_{i}||} \mathbf{r}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{p}} = 0$ 

where  $\psi(\mathbf{r}) = \rho'(\mathbf{r})$  is the derivative, called **influence function**
### More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function  $\rho(\mathbf{r})$  to the residuals

$$E_{RLS}(\Delta \mathbf{p}) = \sum_{i} \rho(||\mathbf{r}_{i}||)$$

instead of taking the square of the residual

• We can take the derivative with respect to **p** and set it to 0

$$\sum_{i} \psi(||\mathbf{r}_{i}||) \frac{\partial ||\mathbf{r}_{i}||}{\partial \mathbf{p}} = \sum_{i} \frac{\psi(||\mathbf{r}_{i}||)}{||\mathbf{r}_{i}||} \mathbf{r}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{p}} = 0$$

where  $\psi({\bf r})=\rho'({\bf r})$  is the derivative, called influence function

 If we introduce a weight w(r) = ψ(r)/r, we observe that finding the stationary point is equivalent to minimizing the iteratively reweighted least squares (IRLS)

$$E_{IRLS} = \sum_{i} w(||\mathbf{r}_i||) ||\mathbf{r}_i||^2$$

### More Robust Least-squares

- Least-squares assumes that the noise follows a Gaussian distribution
- M-estimators are use to make least-squares more robust
- They involve applying a robust penalty function  $\rho(\mathbf{r})$  to the residuals

$$E_{RLS}(\Delta \mathbf{p}) = \sum_{i} \rho(||\mathbf{r}_{i}||)$$

instead of taking the square of the residual

• We can take the derivative with respect to **p** and set it to 0

$$\sum_{i} \psi(||\mathbf{r}_{i}||) \frac{\partial ||\mathbf{r}_{i}||}{\partial \mathbf{p}} = \sum_{i} \frac{\psi(||\mathbf{r}_{i}||)}{||\mathbf{r}_{i}||} \mathbf{r}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{p}} = 0$$

where  $\psi({\bf r})=\rho'({\bf r})$  is the derivative, called influence function

• If we introduce a weight  $w(r) = \psi(r)/r$ , we observe that finding the stationary point is equivalent to minimizing the **iteratively reweighted** least squares (IRLS)

$$E_{IRLS} = \sum_{i} w(||\mathbf{r}_i||) ||\mathbf{r}_i||^2$$

• We want to minimize

$$E_{IRLS} = \sum_{i} w(||\mathbf{r}_i||) ||\mathbf{r}_i||^2$$

• A simple algorithm works by iterating between

- Oslving for the parameters p
- Olving for the weights w

• We want to minimize

$$E_{IRLS} = \sum_{i} w(||\mathbf{r}_i||)||\mathbf{r}_i||^2$$

- A simple algorithm works by iterating between
  - Solving for the parameters p
    Solving for the weights w
- When the number of outliers is very high, IRLS does not work well (will not converge to the global optima)

• We want to minimize

$$E_{IRLS} = \sum_{i} w(||\mathbf{r}_i||)||\mathbf{r}_i||^2$$

- A simple algorithm works by iterating between
  - Solving for the parameters p
  - Olving for the weights w
- When the number of outliers is very high, IRLS does not work well (will not converge to the global optima)

- Given a hypothesized line, count the number of points that agree with the line
- Agree = within a small distance of the line i.e., the inliers to that line

- Given a hypothesized line, count the number of points that agree with the line
- Agree = within a small distance of the line i.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

- Given a hypothesized line, count the number of points that agree with the line
- Agree = within a small distance of the line i.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers





# Counting Inliers



What's the problem with this approach?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?



### RAndom SAmple Consensus



#### [Source: N. Snavely]

# RAndom SAmple Consensus



[Source: N. Snavely]

### RAndom SAmple Consensus



[Source: N. Snavely]

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50% outliers

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50% outliers
- "All good matches are alike; every bad match is bad in its own way." [Tolstoy via Alyosha Efros]

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50% outliers
- "All good matches are alike; every bad match is bad in its own way." [Tolstoy via Alyosha Efros]

 Randomly select minimal subset of points

2 Hypothesize a model



- Randomly select minimal subset of points
- Ø Hypothesize a model
- Ompute error function



- Randomly select minimal subset of points
- Output A Hypothesize a model
- Ompute error function
- Select points consistent with model



- Randomly select minimal subset of points
- Ø Hypothesize a model
- Ompute error function
- Select points consistent with model
- 6 Repeat hypothesize and verify loop



- Randomly select minimal subset of points
- Ø Hypothesize a model
- 3 Compute error function
- Select points consistent with model
- Sepeat hypothesize and verify loop



- Randomly select minimal subset of points
- Output A Hypothesize a model
- Ompute error function
- Select points consistent with model
- Sepeat hypothesize and verify loop
- Choose model with largest set of inliers



- Randomly select minimal subset of points
- Output A Hypothesize a model
- 3 Compute error function
- Select points consistent with model
- Repeat hypothesize and verify loop
- Choose model with largest set of inliers



#### • Inlier threshold related to the amount of noise we expect in inliers

• Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99% probability

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
- How many rounds do we need?

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
- How many rounds do we need?

## How many rounds?

#### • Sufficient number of trials S must be tried.

• Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.

## How many rounds?

- Sufficient number of trials S must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is  $p^k$
- Sufficient number of trials *S* must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is  $p^k$
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

- Sufficient number of trials *S* must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is  $p^k$
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = \frac{\log(1-P)}{\log(1-p^k)}$$

- Sufficient number of trials *S* must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is  $p^k$
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = rac{\log(1-P)}{\log(1-p^k)}$$

• The number of trials grows quickly with the number of sample points used.

- Sufficient number of trials *S* must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is  $p^k$
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = rac{\log(1-P)}{\log(1-p^k)}$$

- The number of trials grows quickly with the number of sample points used.
- Use the minimum number of sample points k possible for any given trial

- Sufficient number of trials *S* must be tried.
- Let *p* be the probability that any given correspondence is valid and *P* be the total probability of success after *S* trials.
- The likelihood in one trial that all k random samples are inliers is  $p^k$
- The likelihood that S such trials will all fail is

$$1-P=(1-p^k)^S$$

• The required minimum number of trials is

$$S = rac{\log(1-P)}{\log(1-p^k)}$$

- The number of trials grows quickly with the number of sample points used.
- Use the minimum number of sample points k possible for any given trial

### How big is the number of samples?

- For alignment, depends on the motion model
- Each sample is a correspondence (pair of matching points)

| Transformation    | Matrix                                                                        | # DoF | Preserves      | Icon       |
|-------------------|-------------------------------------------------------------------------------|-------|----------------|------------|
| translation       | $\left[ egin{array}{c c} I & t \end{array}  ight]_{2 	imes 3}$                | 2     | orientation    |            |
| rigid (Euclidean) | $\left[ egin{array}{c c} R & t \end{array}  ight]_{2 	imes 3}$                | 3     | lengths        | $\bigcirc$ |
| similarity        | $\left[ \begin{array}{c c} s oldsymbol{R} & t \end{array}  ight]_{2 	imes 3}$ | 4     | angles         | $\bigcirc$ |
| affine            | $\left[ egin{array}{c} A \end{array}  ight]_{2	imes 3}$                       | 6     | parallelism    |            |
| projective        | $\left[ egin{array}{c} 	ilde{H} \end{array}  ight]_{3	imes 3}$                | 8     | straight lines |            |

- Simple and general
- Applicable to many different problems

- Simple and general
- Applicable to many different problems
- Often works well in practice

- Simple and general
- Applicable to many different problems
- Often works well in practice

### Cons

Parameters to tune

- Simple and general
- Applicable to many different problems
- Often works well in practice

### Cons

- Parameters to tune
- Sometimes too many iterations are required

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

### • An example of a "voting"-based fitting scheme

• Each hypothesis gets voted on by each data point, best hypothesis wins

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes, e.g., Hough transforms

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes, e.g., Hough transforms

Next class ... more on cameras and projection