
Computer Vision: Image Alignment

Raquel Urtasun

TTI Chicago

Jan 22, 2013

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 1 / 67

What did we see in class last week?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 2 / 67

Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 3 / 67

Detecting features

Harris corner detector: looks at the singular values of the autocorrelation
matrix

Laplacian of Gaussians: Detects blobs

Difference of Gaussians: fast approximation of the LOG

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 4 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 5 / 67

Describing features

Normalized gray-scale

SIFT

PCA-SIFT

GLOH

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 6 / 67

The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 7 / 67

Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

Matching strategy: which correspondences are passed on to the next stage

Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 8 / 67

Matching local features

To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 9 / 67

Feature Distance

How to define the difference between two features f1, f2?

Simple approach: L2 distance, ||f1 − f2||2
can give good scores to ambiguous (incorrect) matches

I1 I2

f1 f2

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 10 / 67

Feature Distance

Better approach: ratio distance ||f1−f2||2||f1−f ′2 ||2

f2 is best SSD match to f1 in I2

f ′2 is 2nd best SSD match to f1 in I2

gives large values for ambiguous matches

f1 f2 f2'

I1 I2

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 11 / 67

Matching Example

!"#$%&'()*#

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 12 / 67

Matching Example

!"#$%&'()*#

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 12 / 67

How to measure performance

How can we measure the performance of a feature matcher?

50
75

200 false match

true match

!"#$%&"'()*$#+,"'

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 13 / 67

Measuring performance

Area under the curve (AUC) is a way to summarize ROC with 1 number.

Mean average precision, which is the average precision (PPV) as you vary
the threshold, i.e., area under the curve in the precision-recall curve.

The equal error rate is sometimes used as well.

Figure: Images from R. Szeliski

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 14 / 67

Let’s look at image alignment

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 15 / 67

Readings

Chapter 3.6, 4.3 and 6.1 of Szeliski’s book

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 16 / 67

Image Alignment

Why don’t this images line up exactly?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 17 / 67

What is the geometric relationship between these images?

Answer: Similarity transformation (translation, rotation, uniform scale)

!"

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 18 / 67

What is the geometric relationship between these images?

!"

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 19 / 67

What is the geometric relationship between these images?

Very important for creating mosaics!

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 19 / 67

Image Warping

Image filtering: change range of image

g(x) = h(f (x))

!"

#"

$"
%"

#"

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 20 / 67

Image Warping

Image filtering: change range of image

g(x) = h(f (x))

!"

#"

$"
%"

#"

Image warping: change domain of image

g(x) = f (h(x))

!"

#"

$"
%"

#"

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 20 / 67

Image Warping

Image filtering: change range of image

g(x) = h(f (x))

!"
#" $"

Image warping: change domain of image

g(x) = f (h(x))

!"
#" $"

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 21 / 67

Parametric (global) warping

Examples of parametric warps:

!"#$%&#'($) "(!#'($) #%*+,!)

Why is it call parametric?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 22 / 67

Parametric (global) warping

!"

!!"!#$%&'! !"!"!#$(%&('!

Transformation T is a coordinate-changing machine:

p′ = T (p)

What does it mean that T is global?

Is the same for any point p
Can be described by just a few numbers (parameters)

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 23 / 67

Image Warping

Given a transformation specified by x ′ = h(x) and a source image f (x), how
do we compute the values of the pixels in the new image

g(x) = f (h(x))

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 24 / 67

Forward Warping

Send each pixel f (x) to its corresponding location (x ′, y ′) = T (x , y) in
g(x ′, y ′)

What are the problems with this?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 25 / 67

Problems of Forward-Warp

1 What it the value of h(x) is non-integer? What do we do?

Round the value of x ′ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around

Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.
This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

2 Appearance of cracks and holes, especially when magnifying an image

Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

What should we do?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 26 / 67

Problems of Forward-Warp

1 What it the value of h(x) is non-integer? What do we do?

Round the value of x ′ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around
Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.

This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

2 Appearance of cracks and holes, especially when magnifying an image

Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

What should we do?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 26 / 67

Problems of Forward-Warp

1 What it the value of h(x) is non-integer? What do we do?

Round the value of x ′ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around
Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.
This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

2 Appearance of cracks and holes, especially when magnifying an image

Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

What should we do?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 26 / 67

Problems of Forward-Warp

1 What it the value of h(x) is non-integer? What do we do?

Round the value of x ′ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around
Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.
This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

2 Appearance of cracks and holes, especially when magnifying an image

Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

What should we do?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 26 / 67

Problems of Forward-Warp

1 What it the value of h(x) is non-integer? What do we do?

Round the value of x ′ to the nearest integer coordinate and copy the
pixel there, but severe aliasing and pixels that jump around
Distribute the value among its nearest neighbors in a weighted
(bilinear) fashion, keeping track of the per-pixel weights and
normalizing at the end.
This is call splatting, it suffers from both moderate amounts of
aliasing and a fair amount of blur

2 Appearance of cracks and holes, especially when magnifying an image

Filling such holes with their nearby neighbors can lead to further
aliasing and blurring

!!"#$"# %!"&#$&"#
"# "&#

'!"#$"#$# $&#

What should we do?

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 26 / 67

Inverse-Warping

Each pixel at the destination is sampled from the original image

How does this differ from forward mapping?

Since ĥ(x ′) is defined for all pixels in g(x ′), we no longer have holes

What if pixel comes from between two pixels?

!!"#$"# %!"&#$&"#
"# "&#

'$%!"#$"#$# $&#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 27 / 67

Inverse-Warping

Each pixel at the destination is sampled from the original image

How does this differ from forward mapping?

Since ĥ(x ′) is defined for all pixels in g(x ′), we no longer have holes

What if pixel comes from between two pixels?

!!"#$"# %!"&#$&"#
"# "&#

'$%!"#$"#$# $&#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 27 / 67

Inverse-Warping

Each pixel at the destination is sampled from the original image

How does this differ from forward mapping?

Since ĥ(x ′) is defined for all pixels in g(x ′), we no longer have holes

What if pixel comes from between two pixels?

!!"#$"# %!"&#$&"#
"# "&#

'$%!"#$"#$# $&#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 27 / 67

Inverse-Warping

Each pixel at the destination is sampled from the original image

How does this differ from forward mapping?

Since ĥ(x ′) is defined for all pixels in g(x ′), we no longer have holes

What if pixel comes from between two pixels?

!!"#$"# %!"&#$&"#
"# "&#

'$%!"#$"#$# $&#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 27 / 67

Inverse-Warping

What if pixel comes from between two pixels?

Resampling an image at non-integer locations is a well-studied problem (i.e.,
image interpolation) high-quality filters that control aliasing can be used

!!"#$"# %!"&#$&"#
"# "&#

$# $&#
'$%!"#$"#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 28 / 67

How to computer the inverse-warping?

Often ĥ(x ′) can simply be computed as the inverse of h(x).

In other cases, it is preferable to formulate as resampling a source image
f (x) given a mapping x = ĥ(x ′) from destination pixels x ′ to source pixels x .

Let’s see some examples of the former

Lets consider linear transformations (can be represented by a 2D matrix):

p′ = Tp

[
x ′

y ′

]
= T

[
x
y

]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 29 / 67

How to computer the inverse-warping?

Often ĥ(x ′) can simply be computed as the inverse of h(x).

In other cases, it is preferable to formulate as resampling a source image
f (x) given a mapping x = ĥ(x ′) from destination pixels x ′ to source pixels x .

Let’s see some examples of the former

Lets consider linear transformations (can be represented by a 2D matrix):

p′ = Tp

[
x ′

y ′

]
= T

[
x
y

]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 29 / 67

How to computer the inverse-warping?

Often ĥ(x ′) can simply be computed as the inverse of h(x).

In other cases, it is preferable to formulate as resampling a source image
f (x) given a mapping x = ĥ(x ′) from destination pixels x ′ to source pixels x .

Let’s see some examples of the former

Lets consider linear transformations (can be represented by a 2D matrix):

p′ = Tp

[
x ′

y ′

]
= T

[
x
y

]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 29 / 67

How to computer the inverse-warping?

Often ĥ(x ′) can simply be computed as the inverse of h(x).

In other cases, it is preferable to formulate as resampling a source image
f (x) given a mapping x = ĥ(x ′) from destination pixels x ′ to source pixels x .

Let’s see some examples of the former

Lets consider linear transformations (can be represented by a 2D matrix):

p′ = Tp

[
x ′

y ′

]
= T

[
x
y

]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 29 / 67

Common linear transformations

Uniform scaling by s

S =

[
s 0
0 s

]

!"#"$% !"#"$%

What’s the inverse?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 30 / 67

Common linear transformations

Rotation by an angle θ (about the origin)

R =

[
cos θ − sin θ
sin θ cos θ

]

!"#"$% !"#"$%
!%

What’s the inverse?
R−1 = RT

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 31 / 67

2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D mirror about Y axis?

x ′ = −x
y ′ = y

T =

[
−1 0
0 1

]

2D mirror across line y = x?

x ′ = y
y ′ = x

T =

[
0 1
1 0

]
[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 32 / 67

2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D mirror about Y axis?

x ′ = −x
y ′ = y

T =

[
−1 0
0 1

]

2D mirror across line y = x?

x ′ = y
y ′ = x

T =

[
0 1
1 0

]
[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 32 / 67

2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D Translation?
x ′ = x + tx
y ′ = y + ty

Translation is NOT a linear operation on 2D coordinates

What can we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 33 / 67

2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D Translation?
x ′ = x + tx
y ′ = y + ty

Translation is NOT a linear operation on 2D coordinates

What can we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 33 / 67

2× 2 Matrices

What types of transformations can be represented with a 2× 2 matrix?

2D Translation?
x ′ = x + tx
y ′ = y + ty

Translation is NOT a linear operation on 2D coordinates

What can we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 33 / 67

All 2D Linear Transformations

Linear transformations are combinations of

Scale,

Rotation

Shear

Mirror [
x ′

y ′

]
=

[
a b
c d

] [
x
y

]
[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 34 / 67

All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 35 / 67

All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 35 / 67

All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 35 / 67

All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]

What about the translation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 35 / 67

All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 35 / 67

All 2D Linear Transformations

Properties of linear transformations:

Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition[
x ′

y ′

]
=

[
a b
c d

] [
e f
g h

] [
i j
k l

] [
x
y

]
What about the translation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 35 / 67

Homogeneous coordinates

!"#$%&''())'*+,'-*",'$**")#+(.,&'

/*-*0,+,*12'#-(0,''
$**")#+(.,2'

3*+4,"5+0'!"#$'/*-*0,+,*12'$**")#+(.,2'

6'

7'

8'

%'9':' ;&<%=''<%='(>'

/*-*0,+,*12'?@(+,'

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 36 / 67

Translation

Solution: homogeneous coordinates to the rescue

T =

1 0 tx
0 1 ty
0 0 1

Thus we can write 1 0 tx

0 1 ty
0 0 1

xy
1

 =

x + tx
y + ty

1

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 37 / 67

Affine Transformations

!"#$%&!"'()&*!+)"$,-%.$$
/!'%$&),$0$1$1$2$3$,4$5!//$!"$$
!"#$$%&!"'()&*!+)"%

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 38 / 67

Basic Affine Transformations

x ′y ′
1

 =

1 0 tx
0 1 ty
0 0 1

xy
1

Translationx ′y ′

1

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xy
1

2D in-plane rotation

x ′y ′
1

 =

sx 0 0
0 sy 0
0 0 1

xy
1

Scalex ′y ′

1

 =

 1 shx 0
shy 1 0
0 0 1

xy
1

Shear

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 39 / 67

Affine Transformations

Affine transformations are combinations of

Linear transformations, and

Translations x ′y ′
w

 =

a b c
d e f
0 0 1

xy
w

Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 40 / 67

Is this an affine Tranformation?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 41 / 67

What’s next?

!"#$%&'!#()*'+!,*#%

-.!&%.!//$#(%-.$#%-$%
+$((%-0&.%&.0(%'*-1!

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 42 / 67

Homography

Also called Projective Transformation or Planar Perspective Map

!"##$%&"&!"#"$%&'!(&&
'()&')&*&%+',%-',./0,+#&'*+

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 43 / 67

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 44 / 67

Homographies

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 45 / 67

Projective Transformations

Affine transformations and Projective warpsx ′y ′
w ′

 =

a b c
d e f
g h i

xy
w

Properties of affine transformations:

Origin does not necessarily map to origin

Lines map to lines

Parallel lines do not necessarily remain parallel

Ratios are not preserved

Closed under composition

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 46 / 67

2D Image Tranformations

These transformations are a nested set of groups

Closed under composition and inverse is a member

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 47 / 67

Homographies

!"#$%"#&&'()%*"'(%
$"'%+'(,-.(#$,/%.)%01%

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 48 / 67

Points at infinity

Points at infinity become finite i.e., vanishing points

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 49 / 67

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 50 / 67

Computing transformations

Given a set of matches between images A and B

How can we compute the transform T from A to B?

Find transform T that best agrees with the matches

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 51 / 67

Computing Transformations

!"

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 52 / 67

Computing Transformations

Can also think of as fitting a ”model” to our data

The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

Fitting the model means solving for the parameters that best explain the
observed data

Usually involves minimizing some objective / cost function

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 53 / 67

Computing Transformations

Can also think of as fitting a ”model” to our data

The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

Fitting the model means solving for the parameters that best explain the
observed data

Usually involves minimizing some objective / cost function

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 53 / 67

Computing Transformations

Can also think of as fitting a ”model” to our data

The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

Fitting the model means solving for the parameters that best explain the
observed data

Usually involves minimizing some objective / cost function

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 53 / 67

Computing Transformations

Can also think of as fitting a ”model” to our data

The model is the transformation of a given type, e.g. a translation, affine
xform, homography etc

Fitting the model means solving for the parameters that best explain the
observed data

Usually involves minimizing some objective / cost function

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 53 / 67

Simple Case: Translations

!"#$%"$#&$'"()&$*"+$
$$$$$$$$$$$$$$$$$$$$,$$

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 54 / 67

Simple Case: Translations

The displacement of match i is (x ′i − xi , y
′
i − yi). We can thus solve for

(xt , yt) = (
1

n

n∑
i=1

x ′i − xi ,
1

n

n∑
i=1

y ′i − yi)

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 55 / 67

Another View

xi + xt = x ′i
yi + yt = y ′i

System of linear equations

What are the knowns?

How many unknowns?

How many equations (per match)?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 56 / 67

Another View

xi + xt = x ′i
yi + yt = y ′i

System of linear equations

What are the knowns?

How many unknowns?

How many equations (per match)?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 56 / 67

Another View

xi + xt = x ′i
yi + yt = y ′i

System of linear equations

What are the knowns?

How many unknowns?

How many equations (per match)?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 56 / 67

Another View

xi + xt = x ′i
yi + yt = y ′i

System of linear equations

What are the knowns?

How many unknowns?

How many equations (per match)?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 56 / 67

Another View

xi + xt = x ′i
yi + yt = y ′i

Problem: more equations than unknowns

Overdetermined system of equations

We will find the least squares solution

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 57 / 67

Another View

xi + xt = x ′i
yi + yt = y ′i

Problem: more equations than unknowns

Overdetermined system of equations

We will find the least squares solution

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 57 / 67

Least squares formulation

For each point (xi , yi) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 58 / 67

Least squares formulation

For each point (xi , yi) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 58 / 67

Least squares formulation

For each point (xi , yi) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 58 / 67

Least squares formulation

For each point (xi , yi) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 58 / 67

Least squares formulation

For each point (xi , yi) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 58 / 67

Least squares formulation

For each point (xi , yi) we have

xi + xt = x ′i
yi + yt = y ′i

We define the residuals as

rxi (xt) = xi + xt − x ′i
ryi (yt) = yi + yt − y ′i

Goal: minimize sum of squared residuals

C (xt , yt) =
n∑

i=1

(rxi (xt)
2 + ryi (yt)

2)

The solution is called the least squares solution

For translations, is equal to mean displacement

What do we do?

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 58 / 67

Matrix Formulation

We can also write as a matrix equation

!!""#!# !""#$# !!""#$#

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 59 / 67

Least Squares

At = b

We want to find the optimal t by

min
t
||At− b||22

We can write

||At− b||22 = tT (ATA)t− 2tT (ATb) + ||b||22

To solve, form the normal equations

(ATA)t = ATb

and compute
t = (ATA)−1Ab

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 60 / 67

Least Squares

At = b

We want to find the optimal t by

min
t
||At− b||22

We can write

||At− b||22 = tT (ATA)t− 2tT (ATb) + ||b||22

To solve, form the normal equations

(ATA)t = ATb

and compute
t = (ATA)−1Ab

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 60 / 67

Least Squares

At = b

We want to find the optimal t by

min
t
||At− b||22

We can write

||At− b||22 = tT (ATA)t− 2tT (ATb) + ||b||22

To solve, form the normal equations

(ATA)t = ATb

and compute
t = (ATA)−1Ab

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 60 / 67

Least Squares

At = b

We want to find the optimal t by

min
t
||At− b||22

We can write

||At− b||22 = tT (ATA)t− 2tT (ATb) + ||b||22

To solve, form the normal equations

(ATA)t = ATb

and compute
t = (ATA)−1Ab

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 60 / 67

Least Squares

At = b

We want to find the optimal t by

min
t
||At− b||22

We can write

||At− b||22 = tT (ATA)t− 2tT (ATb) + ||b||22

To solve, form the normal equations

(ATA)t = ATb

and compute
t = (ATA)−1Ab

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 60 / 67

Least squares: generalized linear regression

!"#"$%"&"'"

(!)*"%)+"

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 61 / 67

Linear regression

!"#$%&'()"!!*!)

Cost(m, b) =
n∑

i=1

|yi − (mxi + b)|2

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 62 / 67

Linear regression

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 63 / 67

Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w

How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 64 / 67

Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w

How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 64 / 67

Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w

How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 64 / 67

Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w

How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 64 / 67

Affine Transformations

When we are dealing with an affine transformationx ′y ′
w ′

 =

a b c
d e f
0 0 1

xy
w

How many unknowns?

How many equations per match?

How many matches do we need?

Why to use more?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 64 / 67

Affine Transformation Cost Function

We can write the residuals as

rxi (a, b, c , d , e, f) = (axi + byi + c)− x ′i
ryi (a, b, c , d , e, f) = (dxi + eyi + f)− y ′i

Cost function

C (a, b, c , d , e, f) =
N∑
i=1

(
rxi (a, b, c , d , e, f)2 + ryi (a, b, c , d , e, f)2

)

And in matrix form ...

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 65 / 67

Affine Transformation Cost Function

We can write the residuals as

rxi (a, b, c , d , e, f) = (axi + byi + c)− x ′i
ryi (a, b, c , d , e, f) = (dxi + eyi + f)− y ′i

Cost function

C (a, b, c , d , e, f) =
N∑
i=1

(
rxi (a, b, c , d , e, f)2 + ryi (a, b, c , d , e, f)2

)

And in matrix form ...

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 65 / 67

Affine Transformation Cost Function

We can write the residuals as

rxi (a, b, c , d , e, f) = (axi + byi + c)− x ′i
ryi (a, b, c , d , e, f) = (dxi + eyi + f)− y ′i

Cost function

C (a, b, c , d , e, f) =
N∑
i=1

(
rxi (a, b, c , d , e, f)2 + ryi (a, b, c , d , e, f)2

)

And in matrix form ...

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 65 / 67

Matrix form

!!""#$# $""#%# !!""#%#

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 66 / 67

Next class ... more sophisticated matching

Raquel Urtasun (TTI-C) Computer Vision Jan 22, 2013 67 / 67

	Introduction

