Computer Vision: Image Alignment

Raquel Urtasun

TTI Chicago
Jan 22, 2013

What did we see in class last week?

Local features

- Detection: Identify the interest points.
- Description: Extract vector feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]

Detecting features

- Harris corner detector: looks at the singular values of the autocorrelation matrix
- Laplacian of Gaussians: Detects blobs
- Difference of Gaussians: fast approximation of the LOG

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature.

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- Distinctive: individual features can be matched to a large database of objects.

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- Distinctive: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- Distinctive: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.
- Accurate: precise localization.

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- Distinctive: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.
- Accurate: precise localization.
- Efficient: close to real-time performance.

Properties of the ideal feature

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- Distinctive: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.
- Accurate: precise localization.
- Efficient: close to real-time performance.

Describing features

- Normalized gray-scale
- SIFT
- PCA-SIFT
- GLOH

The ideal feature descriptor

- Repeatable (invariant/robust)
- Distinctive
- Compact
- Efficient

Matching local features

Once we have extracted features and their descriptors, we need to match the features between these images.

- Matching strategy: which correspondences are passed on to the next stage
- Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman

Matching local features

- To generate candidate matches, find patches that have the most similar appearance (e.g., lowest SSD)
- Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance)

[Source: K. Grauman]

Feature Distance

How to define the difference between two features f_{1}, f_{2} ?

- Simple approach: L2 distance, $\left\|\mid f_{1}-f_{2}\right\|_{2}$
- can give good scores to ambiguous (incorrect) matches

I_{1}

I_{2}
[Source: N. Snavely]

Feature Distance

Better approach: ratio distance $\frac{\left\|f_{1}-f_{2}\right\|_{2}}{\left\|f_{1}-f_{2}^{\prime}\right\|_{2}}$

- f_{2} is best SSD match to f_{1} in I_{2}
- f_{2}^{\prime} is 2 nd best SSD match to f_{1} in I_{2}
- gives large values for ambiguous matches

I_{1}

I_{2}
[Source: N. Snavely]

Matching Example

51 matches

[Source: N. Snavely]

Matching Example

58 matches

[Source: N. Snavely]

How to measure performance

- How can we measure the performance of a feature matcher?

[Source: N. Snavely]

Measuring performance

- Area under the curve (AUC) is a way to summarize ROC with 1 number.
- Mean average precision, which is the average precision (PPV) as you vary the threshold, i.e., area under the curve in the precision-recall curve.
- The equal error rate is sometimes used as well.

Figure: Images from R. Szeliski

Let's look at image alignment

Readings

- Chapter 3.6, 4.3 and 6.1 of Szeliski's book

Image Alignment

Why don't this images line up exactly?

[Source: N. Snavely]

What is the geometric relationship between these images?

- Answer: Similarity transformation (translation, rotation, uniform scale)

[Source: N. Snavely]

What is the geometric relationship between these images?

[Source: N. Snavely]

What is the geometric relationship between these images?

Very important for creating mosaics!
[Source: N. Snavely]

Image Warping

- Image filtering: change range of image

$$
g(x)=h(f(x))
$$

[Source: R. Szeliski]

Image Warping

- Image filtering: change range of image

$$
g(x)=h(f(x))
$$

- Image warping: change domain of image

$$
g(x)=f(h(x))
$$

[Source: R. Szeliski]

Image Warping

- Image filtering: change range of image

$$
g(x)=h(f(x))
$$

- Image warping: change domain of image

$$
g(x)=f(h(x))
$$

[Source: R. Szeliski]

Parametric (global) warping

- Examples of parametric warps:

translation

rotation

aspect
- Why is it call parametric?

Parametric (global) warping

$p=(x, y)$

$p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

- Transformation T is a coordinate-changing machine:

$$
p^{\prime}=T(p)
$$

- What does it mean that T is global?
- Is the same for any point p
- Can be described by just a few numbers (parameters)
[Source: N. Snavely]

Image Warping

- Given a transformation specified by $x^{\prime}=h(x)$ and a source image $f(x)$, how do we compute the values of the pixels in the new image

$$
g(x)=f(h(x))
$$

Forward Warping

- Send each pixel $f(x)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in $g\left(x^{\prime}, y^{\prime}\right)$
procedure forwardWarp $(f, \boldsymbol{h}$, out $g)$:
For every pixel \boldsymbol{x} in $f(\boldsymbol{x})$

1. Compute the destination location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$.
2. Copy the pixel $f(\boldsymbol{x})$ to $g\left(\boldsymbol{x}^{\prime}\right)$.

- What are the problems with this?

Problems of Forward-Warp

(1) What it the value of $h(x)$ is non-integer? What do we do?

- Round the value of x^{\prime} to the nearest integer coordinate and copy the pixel there, but severe aliasing and pixels that jump around

Problems of Forward-Warp

(1) What it the value of $h(x)$ is non-integer? What do we do?

- Round the value of x^{\prime} to the nearest integer coordinate and copy the pixel there, but severe aliasing and pixels that jump around
- Distribute the value among its nearest neighbors in a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the end.

Problems of Forward-Warp

(1) What it the value of $h(x)$ is non-integer? What do we do?

- Round the value of x^{\prime} to the nearest integer coordinate and copy the pixel there, but severe aliasing and pixels that jump around
- Distribute the value among its nearest neighbors in a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the end.
- This is call splatting, it suffers from both moderate amounts of aliasing and a fair amount of blur

Problems of Forward-Warp

(1) What it the value of $h(x)$ is non-integer? What do we do?

- Round the value of x^{\prime} to the nearest integer coordinate and copy the pixel there, but severe aliasing and pixels that jump around
- Distribute the value among its nearest neighbors in a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the end.
- This is call splatting, it suffers from both moderate amounts of aliasing and a fair amount of blur
(2) Appearance of cracks and holes, especially when magnifying an image
- Filling such holes with their nearby neighbors can lead to further aliasing and blurring

What should we do?

Problems of Forward-Warp

(1) What it the value of $h(x)$ is non-integer? What do we do?

- Round the value of x^{\prime} to the nearest integer coordinate and copy the pixel there, but severe aliasing and pixels that jump around
- Distribute the value among its nearest neighbors in a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the end.
- This is call splatting, it suffers from both moderate amounts of aliasing and a fair amount of blur
(2) Appearance of cracks and holes, especially when magnifying an image
- Filling such holes with their nearby neighbors can lead to further aliasing and blurring

What should we do?

Inverse-Warping

procedure inverseWarp $(f, h$, out $g)$:
For every pixel \boldsymbol{x}^{\prime} in $g\left(\boldsymbol{x}^{\prime}\right)$

1. Compute the source location $x=\hat{h}\left(x^{\prime}\right)$
2. Resample $f(\boldsymbol{x})$ at location \boldsymbol{x} and copy to $g\left(\boldsymbol{x}^{\prime}\right)$

- Each pixel at the destination is sampled from the original image
- How does this differ from forward mapping?

Inverse-Warping

procedure inverseWarp $(f, \boldsymbol{h}$, out $g)$:
For every pixel \boldsymbol{x}^{\prime} in $g\left(\boldsymbol{x}^{\prime}\right)$

1. Compute the source location $x=\hat{h}\left(\boldsymbol{x}^{\prime}\right)$
2. Resample $f(\boldsymbol{x})$ at location \boldsymbol{x} and copy to $g\left(\boldsymbol{x}^{\prime}\right)$

- Each pixel at the destination is sampled from the original image
- How does this differ from forward mapping?
- Since $\hat{h}\left(x^{\prime}\right)$ is defined for all pixels in $g\left(x^{\prime}\right)$, we no longer have holes

Inverse-Warping

procedure inverseWarp $(f, \boldsymbol{h}$, out $g)$:
For every pixel \boldsymbol{x}^{\prime} in $g\left(\boldsymbol{x}^{\prime}\right)$

1. Compute the source location $x=\hat{h}\left(x^{\prime}\right)$
2. Resample $f(\boldsymbol{x})$ at location \boldsymbol{x} and copy to $g\left(\boldsymbol{x}^{\prime}\right)$

- Each pixel at the destination is sampled from the original image
- How does this differ from forward mapping?
- Since $\hat{h}\left(x^{\prime}\right)$ is defined for all pixels in $g\left(x^{\prime}\right)$, we no longer have holes
- What if pixel comes from between two pixels?

Inverse-Warping

procedure inverseWarp $(f, h$, out $g)$:
For every pixel \boldsymbol{x}^{\prime} in $g\left(\boldsymbol{x}^{\prime}\right)$

1. Compute the source location $x=\hat{h}\left(\boldsymbol{x}^{\prime}\right)$
2. Resample $f(\boldsymbol{x})$ at location \boldsymbol{x} and copy to $g\left(\boldsymbol{x}^{\prime}\right)$

- Each pixel at the destination is sampled from the original image
- How does this differ from forward mapping?
- Since $\hat{h}\left(x^{\prime}\right)$ is defined for all pixels in $g\left(x^{\prime}\right)$, we no longer have holes
- What if pixel comes from between two pixels?

Inverse-Warping

- What if pixel comes from between two pixels?
- Resampling an image at non-integer locations is a well-studied problem (i.e., image interpolation) high-quality filters that control aliasing can be used

How to computer the inverse-warping?

- Often $\hat{h}\left(x^{\prime}\right)$ can simply be computed as the inverse of $h(x)$.
- In other cases, it is preferable to formulate as resampling a source image $f(x)$ given a mapping $x=\hat{h}\left(x^{\prime}\right)$ from destination pixels x^{\prime} to source pixels x.

How to computer the inverse-warping?

- Often $\hat{h}\left(x^{\prime}\right)$ can simply be computed as the inverse of $h(x)$.
- In other cases, it is preferable to formulate as resampling a source image $f(x)$ given a mapping $x=\hat{h}\left(x^{\prime}\right)$ from destination pixels x^{\prime} to source pixels x.
- Let's see some examples of the former

How to computer the inverse-warping?

- Often $\hat{h}\left(x^{\prime}\right)$ can simply be computed as the inverse of $h(x)$.
- In other cases, it is preferable to formulate as resampling a source image $f(x)$ given a mapping $x=\hat{h}\left(x^{\prime}\right)$ from destination pixels x^{\prime} to source pixels x.
- Let's see some examples of the former
- Lets consider linear transformations (can be represented by a 2D matrix):

$$
p^{\prime}=\mathbf{T} p \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

How to computer the inverse-warping?

- Often $\hat{h}\left(x^{\prime}\right)$ can simply be computed as the inverse of $h(x)$.
- In other cases, it is preferable to formulate as resampling a source image $f(x)$ given a mapping $x=\hat{h}\left(x^{\prime}\right)$ from destination pixels x^{\prime} to source pixels x.
- Let's see some examples of the former
- Lets consider linear transformations (can be represented by a 2D matrix):

$$
p^{\prime}=\mathbf{T} p \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Common linear transformations

- Uniform scaling by s

$$
\mathbf{S}=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]
$$

- What's the inverse?
[Source: N. Snavely]

Common linear transformations

- Rotation by an angle θ (about the origin)

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- What's the inverse?

$$
\mathbf{R}^{-1}=\mathbf{R}^{T}
$$

[Source: N. Snavely]

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

- 2D mirror about Y axis?

$$
\begin{array}{lll}
x^{\prime}=-x & \mathbf{T}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \\
y^{\prime}=y & y
\end{array}
$$

- 2D mirror across line $y=x$?

$$
\begin{array}{lll}
x^{\prime} & =y & T=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
y^{\prime}=x &
\end{array}
$$

[Source: N. Snavely]

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

- 2D mirror about Y axis?

$$
\begin{array}{lll}
x^{\prime}=-x & \mathbf{T}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \\
y^{\prime}=y & =
\end{array}
$$

- 2D mirror across line $y=x$?

$$
\begin{array}{lll}
x^{\prime} & =y & \mathbf{T}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
y^{\prime}=x &
\end{array}
$$

[Source: N. Snavely]

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

- 2D Translation?

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{y}
\end{aligned}
$$

- Translation is NOT a linear operation on 2D coordinates

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

- 2D Translation?

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{y}
\end{aligned}
$$

- Translation is NOT a linear operation on 2D coordinates
- What can we do?
[Source: N. Snavely]

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

- 2D Translation?

$$
\begin{aligned}
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{y}
\end{aligned}
$$

- Translation is NOT a linear operation on 2D coordinates
- What can we do?
[Source: N. Snavely]

All 2D Linear Transformations

Linear transformations are combinations of

- Scale,
- Rotation
- Shear
- Mirror

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

[Source: N. Snavely]

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What about the translation?

[Source: N. Snavely]

All 2D Linear Transformations

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What about the translation?
[Source: N. Snavely]

Homogeneous coordinates

Trick: add one more coordinate:

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

[Source: N. Snavely]

Translation

- Solution: homogeneous coordinates to the rescue

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Thus we can write

$$
\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

[Source: N. Snavely]

Affine Transformations

$$
\begin{aligned}
& \mathbf{T}= {\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] } \\
& \begin{array}{l}
\text { any transformation with } \\
\text { last row [0 0 1] we call an } \\
\text { affine transformation }
\end{array} \\
& {\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] }
\end{aligned}
$$

[Source: N. Snavely]

Basic Affine Transformations

$$
\begin{array}{ccc}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} & {\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\text { Translation } & \text { Scale } \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & s h_{x} & 0 \\
s h_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\text { 2D in-plane rotation } & \text { Shear }
\end{array}
$$

[Source: N. Snavely]

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
[Source: N. Snavely]

Is this an affine Tranformation?

[Source: N. Snavely]

What's next?

[Source: N. Snavely]

Homography

- Also called Projective Transformation or Planar Perspective Map

Called a homography

(or planar perspective map)

[Source: N. Snavely]

Image warping with homographies

[Source: N. Snavely]

Homographies

[Source: N. Snavely]

Projective Transformations

- Affine transformations and Projective warps

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
[Source: N. Snavely]

2D Image Tranformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	

- These transformations are a nested set of groups
- Closed under composition and inverse is a member

Homographies

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\\
\begin{array}{c}
\text { What happens when } \\
\text { the denominator is } \mathbf{0} ?
\end{array}
\end{gathered}\left[\begin{array}{c}
\frac{a x+b y+c}{g x+h y+1} \\
\frac{d x+e y+f}{g x+h y+1} \\
1
\end{array}\right] .
$$

Points at infinity

- Points at infinity become finite i.e., vanishing points

[Source: N. Snavely]

Image warping with homographies

Computing transformations

Given a set of matches between images A and B

- How can we compute the transform T from A to B ?
- Find transform T that best agrees with the matches

[Source: N. Snavely]

Computing Transformations

[Source: N. Snavely]

Computing Transformations

Can also think of as fitting a "model" to our data

- The model is the transformation of a given type, e.g. a translation, affine xform, homography etc

Computing Transformations

Can also think of as fitting a "model" to our data

- The model is the transformation of a given type, e.g. a translation, affine xform, homography etc
- Fitting the model means solving for the parameters that best explain the observed data

Computing Transformations

Can also think of as fitting a "model" to our data

- The model is the transformation of a given type, e.g. a translation, affine xform, homography etc
- Fitting the model means solving for the parameters that best explain the observed data
- Usually involves minimizing some objective / cost function
[Source: N. Snavely]

Computing Transformations

Can also think of as fitting a "model" to our data

- The model is the transformation of a given type, e.g. a translation, affine xform, homography etc
- Fitting the model means solving for the parameters that best explain the observed data
- Usually involves minimizing some objective / cost function
[Source: N. Snavely]

Simple Case: Translations

How do we solve for
$\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)$?
[Source: N. Snavely]

Simple Case: Translations

The displacement of match i is $\left(x_{i}^{\prime}-x_{i}, y_{i}^{\prime}-y_{i}\right)$. We can thus solve for

$$
\left(x_{t}, y_{t}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime}-x_{i}, \frac{1}{n} \sum_{i=1}^{n} y_{i}^{\prime}-y_{i}\right)
$$

[Source: N. Snavely]

Another View

System of linear equations

- What are the knowns?

Another View

System of linear equations

- What are the knowns?
- How many unknowns?

Another View

System of linear equations

- What are the knowns?
- How many unknowns?
- How many equations (per match)?
[Source: N. Snavely]

Another View

System of linear equations

- What are the knowns?
- How many unknowns?
- How many equations (per match)?
[Source: N. Snavely]

Another View

Problem: more equations than unknowns

- Overdetermined system of equations
- We will find the least squares solution
[Source: N. Snavely]

Another View

Problem: more equations than unknowns

- Overdetermined system of equations
- We will find the least squares solution
[Source: N. Snavely]

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
x_{i}+x_{t} & =x_{i}^{\prime} \\
y_{i}+y_{t} & =y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement
- What do we do?
[Source: N. Snavely]

Least squares formulation

- For each point $\left(x_{i}, y_{i}\right)$ we have

$$
\begin{aligned}
& x_{i}+x_{t}=x_{i}^{\prime} \\
& y_{i}+y_{t}=y_{i}^{\prime}
\end{aligned}
$$

- We define the residuals as

$$
\begin{aligned}
& r_{x_{i}}\left(x_{t}\right)=x_{i}+x_{t}-x_{i}^{\prime} \\
& r_{y_{i}}\left(y_{t}\right)=y_{i}+y_{t}-y_{i}^{\prime}
\end{aligned}
$$

- Goal: minimize sum of squared residuals

$$
C\left(x_{t}, y_{t}\right)=\sum_{i=1}^{n}\left(r_{x_{i}}\left(x_{t}\right)^{2}+r_{y_{i}}\left(y_{t}\right)^{2}\right)
$$

- The solution is called the least squares solution
- For translations, is equal to mean displacement
- What do we do?
[Source: N. Snavely]

Matrix Formulation

- We can also write as a matrix equation

$$
\left[\begin{array}{cc}
{\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\vdots \\
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{c}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime}-x_{1} \\
y_{1}^{\prime}-y_{1} \\
x_{2}^{\prime}-x_{2} \\
y_{2}^{\prime}-y_{2} \\
\vdots \\
\frac{\mathbf{A}}{2 n \times 2} \\
x_{n}^{\prime}-x_{n} \\
y_{n}^{\prime}-y_{n}
\end{array}\right]} \\
\underset{2 \times 1}{\mathbf{4}}=\underset{2 n \times 1}{0}
\end{array}\right.
$$

Least Squares

$$
\mathbf{A t}=\mathbf{b}
$$

- We want to find the optimal \mathbf{t} by

$$
\min _{t}\|A t-b\|_{2}^{2}
$$

Least Squares

$$
\mathbf{A t}=\mathbf{b}
$$

- We want to find the optimal \mathbf{t} by

$$
\min _{\mathbf{t}}\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}
$$

- We can write

$$
\|\mathbf{A} \mathbf{t}-\mathbf{b}\|_{2}^{2}=\mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{t}-2 \mathbf{t}^{T}\left(\mathbf{A}^{\top} \mathbf{b}\right)+\|\mathbf{b}\|_{2}^{2}
$$

Least Squares

$$
\mathbf{A t}=\mathbf{b}
$$

- We want to find the optimal \mathbf{t} by

$$
\min _{\mathbf{t}}\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}
$$

- We can write

$$
\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}=\mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{t}-2 \mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{b}\right)+\|\mathbf{b}\|_{2}^{2}
$$

- To solve, form the normal equations

$$
\left(A^{\top} A\right) t=A^{\top} b
$$

Least Squares

$$
\mathbf{A t}=\mathbf{b}
$$

- We want to find the optimal \mathbf{t} by

$$
\min _{\mathbf{t}}\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}
$$

- We can write

$$
\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}=\mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{t}-2 \mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{b}\right)+\|\mathbf{b}\|_{2}^{2}
$$

- To solve, form the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{t}=\mathbf{A}^{T} \mathbf{b}
$$

- and compute

$$
\mathbf{t}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A} \mathbf{b}
$$

Least Squares

$$
\mathbf{A t}=\mathbf{b}
$$

- We want to find the optimal \mathbf{t} by

$$
\min _{\mathbf{t}}\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}
$$

- We can write

$$
\|\mathbf{A t}-\mathbf{b}\|_{2}^{2}=\mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{t}-2 \mathbf{t}^{T}\left(\mathbf{A}^{T} \mathbf{b}\right)+\|\mathbf{b}\|_{2}^{2}
$$

- To solve, form the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{t}=\mathbf{A}^{T} \mathbf{b}
$$

- and compute

$$
\mathbf{t}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A} \mathbf{b}
$$

Least squares: generalized linear regression

[Source: N. Snavely]

Linear regression

[Source: N. Snavely]

Linear regression

$$
\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

[Source: N. Snavely]

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?
- Why to use more?
[Source: N. Snavely]

Affine Transformations

When we are dealing with an affine transformation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?
- Why to use more?
[Source: N. Snavely]

Affine Transformation Cost Function

- We can write the residuals as

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function

$$
C(a, b, c, d, e, f)=\sum_{i=1}^{N}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

Affine Transformation Cost Function

- We can write the residuals as

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function

$$
C(a, b, c, d, e, f)=\sum_{i=1}^{N}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

- And in matrix form ...
[Source: N. Snavely]

Affine Transformation Cost Function

- We can write the residuals as

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function

$$
C(a, b, c, d, e, f)=\sum_{i=1}^{N}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

- And in matrix form ...
[Source: N. Snavely]

Matrix form

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & \vdots & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]
$$

[Source: N. Snavely]

Next class ... more sophisticated matching

