## Computer Vision: Image Features

Raquel Urtasun

TTI Chicago

Jan 17, 2013

Raquel Urtasun (TTI-C)

#### What did we see in class last week?

#### Last classes

- Image formation
- Filtering: convolution vs correlation



- Separable filters
- Computing edges
- Steerable filters
- Other transformations

#### • Local features:

- Interest point detection
- Descriptors
- Matching



• Chapter 3 and 4 of Rich Szeliski book



• Available online here

#### Local features

# Feature extraction: Corners and blobs



#### [Source: N. Snavely]

Raquel Urtasun (TTI-C)

# Motivation: Automatic panoramas



Credit: Matt Brown

### Motivation: Automatic panoramas



HD View http://research.microsoft.com/en-us/um/redmond/groups/ivm/HDView/HDGigapixel.htm

Also see GigaPan: http://gigapan.org/

# Why extract features?

#### How to combine these two images to form a panorama?



Figure: Two images

# Why extract features?

#### How to combine these two images to form a panorama?



Figure: Feature extraction and matching

# Why extract features?

#### How to combine these two images to form a panorama?



Figure: Image aligment

# Image matching



by <u>Diva Sian</u>



by swashford

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

Computer Vision

## Harder Case

• Why is this harder?



by <u>Diva Sian</u>

by scgbt

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

Computer Vision

Jan 17, 2013 11 / 97

# Harder Still



Figure: NASA Mars Rover images

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

### Look for tiny squares ...



Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

# Local features

- **Detection**: Identify the interest points.
- **Description**: Extract vector feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.



- Tracking: searches in a small neighborhood around each detected feature.
  - When images are taken from nearby viewpoints
  - or in successive times (e.g., video sequence)
- Matching: Determine correspondence between descriptors in two views.
  - When a large motion can happen, e.g., panoramas, wide baseline stereo, object recognition.

## Goal: interest operator repeatability

- We want to detect (at least some of) the same points in both images.
- We have to be able to run the detection procedure **independently per image**.



Figure: No chance to find the true matches

- We want to be able to **reliably match**, i.e., determine which point goes with which.
- Must provide some **invariance** to **geometric** and **photometric** differences between the two views.



### Invariant local features

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure,



[Source: N. Snavely]

- Locality: features are local, so robust to occlusion and clutter
- Quantity: hundreds or thousands in a single image
- Distinctiveness: can differentiate a large database of objects
- Efficiency: real-time performance achievable

[Source: N. Snavely]

Feature points are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ...

[Source: N. Snavely]

# Local features

- **Detection**: Identify the interest points.
- Description: Extract vector feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.



# What points to choose?



#### [Source: K. Grauman]

Raquel Urtasun (TTI-C)

- Look for image regions that are **unusual**: lead to unambiguous matches in other images
- How to define "unusual"?

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments at a single orientation suffer from the **aperture problem**, i.e., it is only possible to align the patches along the direction normal to the edge direction.

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments at a single orientation suffer from the **aperture problem**, i.e., it is only possible to align the patches along the direction normal to the edge direction.
- Gradients in at least two (significantly) different orientations are the easiest, e.g., corners.

- Textureless patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments at a single orientation suffer from the **aperture problem**, i.e., it is only possible to align the patches along the direction normal to the edge direction.
- Gradients in at least two (significantly) different orientations are the easiest, e.g., corners.

Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?



[Source: S. Seitz, D. Frolova, D. Simakov]

## Local measure of feature uniqueness

Suppose we only consider a small window of pixels

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner": significant change in all directions

Credit: S. Seitz, D. Frolova, D. Simakov

# A Simple Matching Criteria

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)



• this defines an SSD error

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

# A Simple Matching Criteria

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)



• this defines an SSD error

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

# A Simple Weighted Matching Criteria

• Compare two image patches using (weighted) summed square difference

$$E_{WSSD}(\mathbf{u}) = \sum_{i} w(\mathbf{p}_i) [I_1(\mathbf{p}_i + \mathbf{u}) - I_0(\mathbf{p}_i)]^2$$

with  $I_0$  and  $I_1$  two images being compared,  $\mathbf{u}(u_x, u_y)$  a displacement vector,  $w(\mathbf{p})$  a spatially varying weighting function, and the summation i is over all the pixels in the patch.

• We do not know which other image locations the feature will end up being matched against.

# A Simple Weighted Matching Criteria

• Compare two image patches using (weighted) summed square difference

$$E_{WSSD}(\mathbf{u}) = \sum_{i} w(\mathbf{p}_i) [I_1(\mathbf{p}_i + \mathbf{u}) - I_0(\mathbf{p}_i)]^2$$

with  $I_0$  and  $I_1$  two images being compared,  $\mathbf{u}(u_x, u_y)$  a displacement vector,  $w(\mathbf{p})$  a spatially varying weighting function, and the summation i is over all the pixels in the patch.

- We do not know which other image locations the feature will end up being matched against.
- We can only compute how stable this metric is with respect to small variations in position *u* by comparing an image patch against itself.
# A Simple Weighted Matching Criteria

• Compare two image patches using (weighted) summed square difference

$$E_{WSSD}(\mathbf{u}) = \sum_{i} w(\mathbf{p}_i) [I_1(\mathbf{p}_i + \mathbf{u}) - I_0(\mathbf{p}_i)]^2$$

with  $I_0$  and  $I_1$  two images being compared,  $\mathbf{u}(u_x, u_y)$  a displacement vector,  $w(\mathbf{p})$  a spatially varying weighting function, and the summation i is over all the pixels in the patch.

- We do not know which other image locations the feature will end up being matched against.
- We can only compute how stable this metric is with respect to small variations in position *u* by comparing an image patch against itself.
- This is the auto-correlation function

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta u) - I_{0}(\mathbf{p}_{i})]^{2}$$

# A Simple Weighted Matching Criteria

• Compare two image patches using (weighted) summed square difference

$$E_{WSSD}(\mathbf{u}) = \sum_{i} w(\mathbf{p}_i) [I_1(\mathbf{p}_i + \mathbf{u}) - I_0(\mathbf{p}_i)]^2$$

with  $I_0$  and  $I_1$  two images being compared,  $\mathbf{u}(u_x, u_y)$  a displacement vector,  $w(\mathbf{p})$  a spatially varying weighting function, and the summation i is over all the pixels in the patch.

- We do not know which other image locations the feature will end up being matched against.
- We can only compute how stable this metric is with respect to small variations in position *u* by comparing an image patch against itself.
- This is the auto-correlation function

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i}) [I_{0}(\mathbf{p}_{i} + \Delta u) - I_{0}(\mathbf{p}_{i})]^{2}$$

## Which one is better?



#### [Source: R. Szeliski]

#### • Small motion assumption

• Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i) \Delta \mathbf{u}$  with

$$\nabla l_0(\mathbf{p}_i) = \left(\frac{\partial l_0}{\partial x}, \frac{\partial l_0}{\partial y}\right)(\mathbf{p}_i)$$

- Small motion assumption
- Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i) \Delta \mathbf{u}$  with

$$\nabla I_0(\mathbf{p}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{p}_i)$$

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta \mathbf{u}) - I_{0}(\mathbf{p}_{i})]^{2}$$

- Small motion assumption
- Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i) \Delta \mathbf{u}$  with

$$\nabla I_0(\mathbf{p}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{p}_i)$$

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta \mathbf{u}) - I_{0}(\mathbf{p}_{i})]^{2}$$
$$\approx \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i}) + \nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u} - I_{0}(\mathbf{p}_{i})]^{2}$$

- Small motion assumption
- Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i) \Delta \mathbf{u}$  with

$$\nabla I_0(\mathbf{p}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{p}_i)$$

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta \mathbf{u}) - I_{0}(\mathbf{p}_{i})]^{2}$$
  

$$\approx \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i}) + \nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u} - I_{0}(\mathbf{p}_{i})]^{2}$$
  

$$= \sum_{i} w(\mathbf{p}_{i})[\nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u}]^{2}$$

- Small motion assumption
- Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i) \Delta \mathbf{u}$  with

$$\nabla I_0(\mathbf{p}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{p}_i)$$

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta \mathbf{u}) - I_{0}(\mathbf{p}_{i})]^{2}$$
  

$$\approx \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i}) + \nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u} - I_{0}(\mathbf{p}_{i})]^{2}$$
  

$$= \sum_{i} w(\mathbf{p}_{i})[\nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u}]^{2}$$
  

$$= \Delta \mathbf{u}^{T} \mathbf{A} \Delta \mathbf{u}$$

- Small motion assumption
- Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i) \Delta \mathbf{u}$  with

$$\nabla I_0(\mathbf{p}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{p}_i)$$

the image gradient. We can approximate the autocorrelation as

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta \mathbf{u}) - I_{0}(\mathbf{p}_{i})]^{2}$$
  

$$\approx \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i}) + \nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u} - I_{0}(\mathbf{p}_{i})]^{2}$$
  

$$= \sum_{i} w(\mathbf{p}_{i})[\nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u}]^{2}$$
  

$$= \Delta \mathbf{u}^{T} \mathbf{A} \Delta \mathbf{u}$$

• Gradient can be computed with the filtering techniques we saw, e.g., derivatives of Gaussians.

- Small motion assumption
- Using a Taylor Series expansion  $I_0(\mathbf{p}_i + \Delta \mathbf{u}) \approx I_0(\mathbf{p}_i) + \nabla I_0(\mathbf{p}_i)\Delta \mathbf{u}$  with

$$\nabla I_0(\mathbf{p}_i) = \left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)(\mathbf{p}_i)$$

the image gradient. We can approximate the autocorrelation as

$$E_{AC}(\Delta \mathbf{u}) = \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i} + \Delta \mathbf{u}) - I_{0}(\mathbf{p}_{i})]^{2}$$

$$\approx \sum_{i} w(\mathbf{p}_{i})[I_{0}(\mathbf{p}_{i}) + \nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u} - I_{0}(\mathbf{p}_{i})]^{2}$$

$$= \sum_{i} w(\mathbf{p}_{i})[\nabla I_{0}(\mathbf{p}_{i})\Delta \mathbf{u}]^{2}$$

$$= \Delta \mathbf{u}^{T} \mathbf{A} \Delta \mathbf{u}$$

• Gradient can be computed with the filtering techniques we saw, e.g., derivatives of Gaussians.

### More on selection

• The autocorrelation is  $E_{AC}(\Delta \mathbf{u}) = \Delta \mathbf{u}^T \mathbf{A} \Delta \mathbf{u}$ , with

$$\mathbf{A} = \sum_{u} \sum_{v} w(u, v) \begin{bmatrix} l_x^2 & l_x l_y \\ l_y l_x & l_y^2 \end{bmatrix} = w * \begin{bmatrix} l_x^2 & l_x l_y \\ l_y l_x & l_y^2 \end{bmatrix}$$

where we have replaced the weighted summations with discrete convolutions with the weighting kernel w.

- A can be interpreted as a tensor where the outer products of the gradients are convolved with a weighting function.
- Eigenvalues a notion of uncertainty



### More on selection

• The autocorrelation is  $E_{AC}(\Delta \mathbf{u}) = \Delta \mathbf{u}^T \mathbf{A} \Delta \mathbf{u}$ , with

$$\mathbf{A} = \sum_{u} \sum_{v} w(u, v) \begin{bmatrix} l_x^2 & l_x l_y \\ l_y l_x & l_y^2 \end{bmatrix} = w * \begin{bmatrix} l_x^2 & l_x l_y \\ l_y l_x & l_y^2 \end{bmatrix}$$

where we have replaced the weighted summations with discrete convolutions with the weighting kernel w.

- A can be interpreted as a tensor where the outer products of the gradients are convolved with a weighting function.
- Eigenvalues a notion of uncertainty



• The eigenvectors of a matrix **A** are the vectors **x** that satisfy

 $\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$ 

#### with $\lambda$ a scalar call the ${\bf eigenvalue}$

• The eigenvalues can be found by solving

$$det(\mathbf{A} - \lambda I) = 0$$

• The eigenvectors of a matrix **A** are the vectors **x** that satisfy

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

with  $\lambda$  a scalar call the  ${\bf eigenvalue}$ 

• The eigenvalues can be found by solving

$$det(\mathbf{A} - \lambda I) = 0$$

 $\bullet\,$  In our case  ${\bm A}$  is a  $2\times 2$  matrix, so the solution is

$$\lambda = \frac{1}{2}[(a_{11} + a_{22} \pm \sqrt{4a_{12}a_{21} + (a_{11} - a_{22})^2}]$$

• The eigenvectors of a matrix **A** are the vectors **x** that satisfy

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

with  $\lambda$  a scalar call the  ${\bf eigenvalue}$ 

• The eigenvalues can be found by solving

$$det(\mathbf{A} - \lambda I) = 0$$

• In our case **A** is a  $2 \times 2$  matrix, so the solution is

$$\lambda = \frac{1}{2} [ (a_{11} + a_{22} \pm \sqrt{4a_{12}a_{21} + (a_{11} - a_{22})^2} ]$$

• Once you know  $\lambda$  you can find  ${\bf x}$  by solving

$$(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$$

• The eigenvectors of a matrix **A** are the vectors **x** that satisfy

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

with  $\lambda$  a scalar call the  ${\bf eigenvalue}$ 

• The eigenvalues can be found by solving

$$det(\mathbf{A} - \lambda I) = 0$$

• In our case  $\boldsymbol{\mathsf{A}}$  is a  $2\times 2$  matrix, so the solution is

$$\lambda = \frac{1}{2} [ (a_{11} + a_{22} \pm \sqrt{4a_{12}a_{21} + (a_{11} - a_{22})^2} ]$$

 $\bullet$  Once you know  $\lambda$  you can find  ${\bf x}$  by solving

$$(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$$

## Eigenvalues a notion of uncertainty

• A is symmetric

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{bmatrix} \mathbf{U}^{\mathsf{T}} \quad \text{with} \quad \mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

- The eigenvalues of **A** reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.
- How is this matrix for



[Source: R. Szeliski]

# Eigenvalues a notion of uncertainty



Eigenvalues and eigenvectors of **A** 

- $\mathbf{x}_{max}$  = direction of largest increase in E
- $\lambda_{max} =$  amount of increase in direction  $\mathbf{x}_{max}$
- $\mathbf{x}_{max}$  = direction of smallest increase in E
- $\lambda_{min} =$  amount of increase in direction  $\mathbf{x}_{min}$



# Interpreting the eigenvalues

Classification of image points using eigenvalues of A:



- Shi and Tomasi, 94 proposed the smallest eigenvalue of **A**, i.e.,  $\lambda_0^{-1/2}$ , which is a rotationally invariant measure
- Harris and Stephens, 88 is rotationally invariant and downweights edge-like features where  $\lambda_1\gg\lambda_0$

$$det(\mathbf{A}) - \alpha trace(\mathbf{A})^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$$

- Shi and Tomasi, 94 proposed the smallest eigenvalue of **A**, i.e.,  $\lambda_0^{-1/2}$ , which is a rotationally invariant measure
- Harris and Stephens, 88 is rotationally invariant and downweights edge-like features where  $\lambda_1\gg\lambda_0$

$$det(\mathbf{A}) - \alpha trace(\mathbf{A})^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$$

• Triggs, 04 suggested

$$\lambda_0 - \alpha \lambda_1$$

- Shi and Tomasi, 94 proposed the smallest eigenvalue of **A**, i.e.,  $\lambda_0^{-1/2}$ , which is a rotationally invariant measure
- Harris and Stephens, 88 is rotationally invariant and downweights edge-like features where  $\lambda_1\gg\lambda_0$

$$det(\mathbf{A}) - \alpha trace(\mathbf{A})^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$$

Triggs, 04 suggested

$$\lambda_0 - \alpha \lambda_1$$

• Brown et al, 05 use the harmonic mean

$$\frac{\det(\mathbf{A})}{\operatorname{trace}(\mathbf{A})} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$$

which is smoother when  $\lambda_0 \approx \lambda_1$ .

- Shi and Tomasi, 94 proposed the smallest eigenvalue of **A**, i.e.,  $\lambda_0^{-1/2}$ , which is a rotationally invariant measure
- Harris and Stephens, 88 is rotationally invariant and downweights edge-like features where  $\lambda_1\gg\lambda_0$

$$det(\mathbf{A}) - \alpha trace(\mathbf{A})^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$$

Triggs, 04 suggested

$$\lambda_0 - \alpha \lambda_1$$

• Brown et al, 05 use the harmonic mean

$$\frac{\mathsf{det}(\mathbf{A})}{\mathsf{trace}(\mathbf{A})} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$$

which is smoother when  $\lambda_0 \approx \lambda_1$ .







"edge":  $\lambda_1 >> \lambda_2$  $\lambda_2 >> \lambda_1$ 

"corner":  $\lambda_1$  and  $\lambda_2$  are large,  $\lambda_1 \sim \lambda_2$ ;

"flat" region  $\lambda_1$  and  $\lambda_2$  are small;

[Source: K. Grauman]

- Compute the gradients at each point in the image
- **2** Compute **A** for each image window to get its **cornerness** scores.
- Ompute the eigenvalues
- Find points whose surrounding window gave large corner response (f > threshold).
- **9** Take the points of local maxima, i.e., perform non-maximum suppression.

# Example



#### [Source: K. Grauman]

# 1) Compute Cornerness



#### [Source: K. Grauman]

# 2) Find High Response



#### [Source: K. Grauman]

# 3) Non-maxima Suppresion

#### [Source: K. Grauman]

### Results



#### [Source: K. Grauman]

## Another Example



#### [Source: K. Grauman]



#### [Source: K. Grauman]



#### [Source: K. Grauman]

# Image Transformations

#### Geometric:









Rotation

Scale

#### **Photometric:**



Intensity change

• Rotation invariant?

$$\mathbf{A} = w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} = \mathbf{U} \begin{bmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{bmatrix} \mathbf{U}^T \quad \text{with} \quad \mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$
## Properties of Harris Corner Detector

Rotation invariant?

$$\mathbf{A} = \mathbf{w} * \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} = \mathbf{U} \begin{bmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{bmatrix} \mathbf{U}^T \quad \text{with} \quad \mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i$$



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

[Source: N. Snavely]

## Properties of Harris Corner Detector

• Scale Invariant?



All points will be classified as edges

Corner !

#### Properties of Harris Corner Detector

- Affine intensity change  $I \rightarrow aI + b$ ?
- Only derivatives are used, so it's invariant to shift  $I \rightarrow I + b$
- What about intensity scale?



How can we independently select interest points in each image, such that the detections are repeatable across different scales?

• Extract features at a **variety of scales**, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

• Extract features at a **variety of scales**, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.

• When does this work?

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

- Extract features at a **variety of scales**, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.
- When does this work?
- More efficient to extract features stable in both location and scale.

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

- Extract features at a **variety of scales**, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.
- When does this work?
- More efficient to extract features stable in both location and scale.
- Find scale that gives local maxima of a function *f* in both position and scale.



How can we independently select interest points in each image, such that the detections are repeatable across different scales?

- Extract features at a **variety of scales**, e.g., by using multiple resolutions in a pyramid, and then matching features at the same level.
- When does this work?
- More efficient to extract features stable in both location and scale.
- Find scale that gives local maxima of a function *f* in both position and scale.



Function responses for increasing scale (scale signature).





Function responses for increasing scale (scale signature).





Function responses for increasing scale (scale signature).





• Instead of computing f for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid









(sometimes need to create inbetween levels, e.g. a ¾-size image)

# What can the signature function be?

- Lindeberg (1998): extrema in the Laplacian of Gaussians (LoG).
- Lowe (2004) proposed computing a set of sub-octave **Difference of Gaussian filters** looking for 3D (space+scale) maxima in the resulting structure.



• Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$abla^2 g = rac{\partial^2 g}{\partial x^2} + rac{\partial^2 g}{\partial y^2}$$



#### [Source: K. Grauman]

# Blob detection in 2D: scale selection

 ${\sf Laplacian-of-Gaussian} = {\sf blob} \ {\sf detector}$ 



[Source: B. Leibe]

# Characteristic Scale

• We define the **characteristic scale** as the scale that produces peak of Laplacian response



[Source: S. Lazebnik]





































Interest points are local maxima in both position and scale.





scale



[Source: S. Lazebnik]

# Fast approximation

#### [Source: K. Grauman]

# Lowe's DoG

• Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian filters looking for 3D (space+scale) maxima in the resulting structure



[Source: R. Szeliski]
- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- Invariant: to certain transformations, e.g, scale, rotation.
- **Robust**: noise, blur, discretization, compression, etc. do not have a big impact on the feature.

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- **Invariant**: to certain transformations, e.g, scale, rotation.
- **Robust**: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- **Distinctive**: individual features can be matched to a large database of objects.

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- **Invariant**: to certain transformations, e.g, scale, rotation.
- **Robust**: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- **Distinctive**: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- **Invariant**: to certain transformations, e.g, scale, rotation.
- **Robust**: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- **Distinctive**: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.
- Accurate: precise localization.

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- **Invariant**: to certain transformations, e.g, scale, rotation.
- **Robust**: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- **Distinctive**: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.
- Accurate: precise localization.
- Efficient: close to real-time performance.

- Local: features are local, so robust to occlusion and clutter (no prior segmentation).
- **Invariant**: to certain transformations, e.g, scale, rotation.
- **Robust**: noise, blur, discretization, compression, etc. do not have a big impact on the feature.
- **Distinctive**: individual features can be matched to a large database of objects.
- Quantity: many features can be generated for even small objects.
- Accurate: precise localization.
- Efficient: close to real-time performance.

- Hessian
- Lowe: DoG
- Lindeberg: scale selection
- Miikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuyttelaars & Van Gool: EBR and IBR
- Matas: MSER
- Kadir & Brrady: Salient Regions
- Speeded–Up Robust Features (SURF) of Bay et al.

• • • •

### Evaluation criteria: repeatability

- **Repeatability rate**: percentage of detected features that have correct corresponding points
- What's the problem of this?



#### [Source: T. Tuytelaars]

### Evaluation criteria: repeatability

- Two points are in correspondence if the intersection over union is bigger than a certain threshold.
- Look for affine invariant features!



[Source: T. Tuytelaars]

## Local features

- **Detection**: Identify the interest points.
- Description: Extract vector feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.



[Source: K. Grauman]

- Repeatable (invariant/robust)
- Distinctive
- Compact
- Efficient

#### • Make sure your detector is invariant

• Design an invariant feature descriptor

- Make sure your detector is invariant
- Design an invariant feature descriptor
  - Simplest descriptor: a single 0. What's this invariant to?

- Make sure your detector is invariant
- Design an invariant feature descriptor
  - Simplest descriptor: a single 0. What's this invariant to?
  - Next simplest descriptor: a square window of pixels. What's this invariant to?

- Make sure your detector is invariant
- Design an invariant feature descriptor
  - Simplest descriptor: a single 0. What's this invariant to?
  - Next simplest descriptor: a square window of pixels. What's this invariant to?
  - Lets look at some better approaches

[Source: N. Snavely]

- Make sure your detector is invariant
- Design an invariant feature descriptor
  - Simplest descriptor: a single 0. What's this invariant to?
  - Next simplest descriptor: a square window of pixels. What's this invariant to?
  - Lets look at some better approaches

[Source: N. Snavely]



#### [Source: T. Tuytelaars]



#### [Source: T. Tuytelaars]

### Raw Pixels as Local Descriptrs

- The simplest way is to write down the list of intensities to form a feature vector, and normalize them (i.e., mean 0, variance 1).
- Why normalization?
- But this is very sensitive to even small shifts, rotations and any affine transformation.



- Compute the gradient at each pixel in a  $16 \times 16$  window around the detected keypoint, using the appropriate level of the Gaussian pyramid at which the keypoint was detected.
- Downweight gradients by a Gaussian fall-off function (blue circle) to reduce the influence of gradients far from the center.
- In each  $4 \times 4$  quadrant, compute a gradient orientation histogram using 8 orientation histogram bins.



- Compute the gradient at each pixel in a  $16 \times 16$  window around the detected keypoint, using the appropriate level of the Gaussian pyramid at which the keypoint was detected.
- Downweight gradients by a Gaussian fall-off function (blue circle) to reduce the influence of gradients far from the center.
- In each  $4 \times 4$  quadrant, compute a gradient orientation histogram using 8 orientation histogram bins.



- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.

- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.

- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- SIFT: Scale Invariant Feature Transform

- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- SIFT: Scale Invariant Feature Transform
- Great engineering effort!

- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- SIFT: Scale Invariant Feature Transform
- Great engineering effort!
- Why subpatches?

- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- SIFT: Scale Invariant Feature Transform
- Great engineering effort!
- Why subpatches?
- Why does SIFT have some illumination invariance?

- The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
- To reduce the **effects of contrast or gain** (additive variations are already removed by the gradient), the 128-D vector is normalized to unit length.
- To further make the descriptor robust to other **photometric variations**, values are clipped to 0.2 and the resulting vector is once again renormalized to unit length.
- SIFT: Scale Invariant Feature Transform
- Great engineering effort!
- Why subpatches?
- Why does SIFT have some illumination invariance?

Extraordinarily robust matching technique

- Changes in viewpoint: up to about 60 degree out of plane rotation
- Changes in illumination: sometimes even day vs. night
- Fast and efficient can run in real time
- Lots of code available





#### [Source: S. Seitz]

### Example



Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]

- The dimensionality of SIFT is very high, i.e., 128D for each keypoint
- Reduce the dimensionality using linear dimensionality reduction
- In this case, principal component analysis (PCA)
- Use 10D or so descriptor

#### Invariant to

- Scale
- Rotation

Partially invariant to

- Illumination changes
- Camera viewpoint
- Occlusion, clutter

## Making descriptor rotation invariant (MOPS)

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation
- Multiscale Oriented PatcheS descriptor



Figure: Figure from M. Brown

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

Computer Vision

## Gradient location-orientation histogram (GLOH)

- Developed by Mikolajczyk and Schmid (2005): variant on SIFT that uses a log-polar binning structure instead of the four quadrants.
- The spatial bins are 11, and 15, with eight angular bins (except for the central region), for a total of 17 spatial bins and 16 orientation bins.
- The 272D histogram is then projected onto a 128D descriptor using PCA trained on a large database.



[Source: R. Szeliski]

- Steerable filters
- moment invariants,
- complex filters
- shape context,
- PCA-SIFT,
- HOG,
- SURF
- DAISY
- o ...
## Local features

- **Detection**: Identify the interest points.
- Description: Extract vector feature descriptor around each interest point.
- Matching: Determine correspondence between descriptors in two views.



[Source: K. Grauman]

# Matching local features

Once we have extracted features and their descriptors, we need to match the features between these images.

- Matching strategy: which correspondences are passed on to the next stage
- Devise efficient data structures and algorithms to perform this matching



Figure: Images from K. Grauman

# Matching local features

- To generate candidate matches, find patches that have the most similar appearance (e.g., lowest SSD)
- Simplest approach: **compare them all**, take the closest (or closest k, or within a thresholded distance)



#### [Source: K. Grauman]

## Ambiguous matches

- At what SSD value do we have a good match?
- To add robustness, consider ratio of distance to best match to distance to second best match
  - If low, first match looks good.
  - If high, could be ambiguous match.



#### [Source: K. Grauman]

# Matching SIFT Descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor



Figure: Images from D. Lowe

[Source: K. Grauman]

## Which threshold to use?

- Setting the threshold too high results in too many false positives, i.e., incorrect matches being returned.
- Setting the threshold too low results in too many false negatives, i.e., too many correct matches being missed



Figure: Images from R. Szeliski

### How to measure performance

• How can we measure the performance of a feature matcher?



### feature distance

[Source: N. Snavely]

## How to quantize how good is our matching?

- TP: true positives, i.e., number of correct matches
- FN: false negatives, matches that were not correctly detected
- FP: false positives, proposed matches that are incorrect
- TN: true negatives, non-matches that were correctly rejected.

True positive rate (recall) 
$$TPR = \frac{TP}{TP + FN} = \frac{TP}{P}$$
  
False positive rate  $FPR = \frac{FP}{FP + TN} = \frac{FP}{N}$ 

positive predictive value (precision)  $PPV = \frac{TP}{TP + FP} = \frac{TP}{P'}$ 

accuracy 
$$ACC = \frac{TP + TN}{P + N}$$

.

## Measuring performance

- Any particular matching strategy (at a particular threshold or parameter setting) can be rated by the TPR and FPR numbers
- We want TPR=1 (recall) and FPR=0
- As we vary the matching threshold, we obtain a family of such points, i.e., receiver operating characteristic (ROC curve)
- The closer this curve lies to the upper left corner, the better its performance



Figure: Images from R. Szeliski

## Measuring performance

- Area under the curve (AUC) is a way to summarize ROC with 1 number.
- Mean average precision, which is the average precision (PPV) as you vary the threshold, i.e., area under the curve in the precision-recall curve.
- The equal error rate is sometimes used as well.



Figure: Images from R. Szeliski

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
- [Source: K. Grauman]

### Wide Baseline Stereo



[Source: T. Tuytelaars]

# Recognizing the Same Object



Schmid and Mohr 1997



Sivic and Zisserman, 2003



Rothganger et al. 2003



Lowe 2002

[Source: K. Grauman]

# Motion Tracking



Figure: Images from J. Pilet

Interest point detection

- Harris corner detector
- Laplacian of Gaussian, automatic scale selection
- Difference of Gaussians

Invariant descriptors

- Rotation according to dominant gradient direction
- Histograms for robustness to small shifts and translations (SIFT descriptor)
- Polar coordinate descriptors GLOH.

### Next class ... more sophisticated matching