Visual Recognition: Filtering and Transformations

Raquel Urtasun

TTI Chicago

Jan 15, 2012

- More on Image Filtering
- Additional transformations

• Chapter 2 and 3 of Rich Szeliski's book

• Available online here

Raquel Urtasun (TTI-C)

Visual Recognition

• Throw away every other row and column to create a 1/2 size image

1/4

1/8

[Source: S. Seitz]

Raquel Urtasun (TTI-C)

Jan 15, 2012 6 / 65

• Why does this look so crufty?

1/2

1/4 (2x zoom)

1/8 (4x zoom)

[Source: S. Seitz]

[Source: F. Durand]

Even worse for synthetic images

• What's happening?

[Source: L. Zhang]

• Occurs when your sampling rate is not high enough to capture the amount of detail in your image

• To do sampling right, need to understand the structure of your signal/image

• Occurs when your sampling rate is not high enough to capture the amount of detail in your image

• To do sampling right, need to understand the structure of your signal/image

• The minimum sampling rate is called the Nyquist rate

• Occurs when your sampling rate is not high enough to capture the amount of detail in your image

- To do sampling right, need to understand the structure of your signal/image
- The minimum sampling rate is called the Nyquist rate

• Shannons Sampling Theorem shows that the minimum sampling

 $f_s \geq 2 f_{max}$

• If you haven't seen this... take a class on Fourier analysis... everyone should have at least one!

Figure: example of a 1D signal [R. Szeliski et al.]

Nyquist limit 2D example

[Source: N. Snavely]

- When downsampling by a factor of two, the original image has frequencies that are too high
- How can we fix this?

- When downsampling by a factor of two, the original image has frequencies that are too high
- How can we fix this?

Gaussian pre-filtering

• Solution: filter the image, then subsample

G 1/4

G 1/8

Gaussian 1/2

[Source: S. Seitz]

Raquel Urtasun (TTI-C)

Jan 15, 2012 14 / 65

Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

[Source: S. Seitz]

1/2

1/4 (2x zoom)

1/8 (4x zoom)

[Source: S. Seitz]

Figure: (a) Example of a 2D signal. (b-d) downsampled with different filters

[Source: R. Szeliski]

Gaussian pre-filtering

• Solution: filter the image, then subsample

[Source: N. Snavely]

Gaussian pre-filtering

Gaussian Pyramids [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

• How much space does a Gaussian pyramid take compared to the original image?

[Source: S. Seitz]

Gaussian Pyramids [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

 How much space does a Gaussian pyramid take compared to the original image?

[Source: S. Seitz]

Example of Gaussian Pyramid

[Source: N. Snavely]

• Decimation: reduces resolution

$$g(i,j) = \sum_{k,l} f(k,l)h(i-k/r,j-l/r)$$

with r the down-sampling rate.

• Different filters exist to do this.

• Decimation: reduces resolution

$$g(i,j) = \sum_{k,l} f(k,l)h(i-k/r,j-l/r)$$

with r the down-sampling rate.

- Different filters exist to do this.
- What would you use?

• Decimation: reduces resolution

$$g(i,j) = \sum_{k,l} f(k,l)h(i-k/r,j-l/r)$$

with r the down-sampling rate.

- Different filters exist to do this.
- What would you use?

Image Up-Sampling

Image Up-Sampling

• This image is too small, how can we make it 10 times as big?

• Simplest approach: repeat each row and column 10 times (Nearest neighbor interpolation)

[Source: N. Snavely]

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

• It is a discrete point-sampling of a continuous function

• If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]

Image Interpolation

What if we don't know f?

• Guess an approximation: Can be done in a principled way via filtering

Image Interpolation

What if we don't know f?

• Guess an approximation: Can be done in a principled way via filtering

• Convert F to a continuous function

$$f_F(x) = egin{cases} F(rac{x}{d}) & ext{if } rac{x}{d} ext{ is an integer} \ 0 & ext{otherwise} \end{cases}$$

Image Interpolation

What if we don't know f?

- Guess an approximation: Can be done in a principled way via filtering
- Convert F to a continuous function

$$f_F(x) = egin{cases} F(rac{x}{d}) & ext{if } rac{x}{d} ext{ is an integer} \ 0 & ext{otherwise} \end{cases}$$

• Reconstruct by convolution with a reconstruction filter, h

$$\hat{f} = h * f_F$$

[Source: N. Snavely, S. Seitz]
Image Interpolation

What if we don't know f?

- Guess an approximation: Can be done in a principled way via filtering
- Convert F to a continuous function

$$f_F(x) = \begin{cases} F(\frac{x}{d}) & \text{if } \frac{x}{d} \text{ is an integer} \\ 0 & \text{otherwise} \end{cases}$$

• Reconstruct by convolution with a reconstruction filter, h

$$\hat{f} = h * f_F$$

[Source: N. Snavely, S. Seitz]

Image Interpolation

• What does the 2D version of this hat function look like?

• Often implemented without cross-correlation, e.g., http://en.wikipedia.org/wiki/Bilinear_interpolation • What does the 2D version of this hat function look like?

• Often implemented without cross-correlation, e.g., http://en.wikipedia.org/wiki/Bilinear_interpolation

• Better filters give better resampled images: Bicubic is a common choice

• What does the 2D version of this hat function look like?

- Often implemented without cross-correlation, e.g., http://en.wikipedia.org/wiki/Bilinear_interpolation
- Better filters give better resampled images: Bicubic is a common choice

Image Interpolation

Original image

Interpolation results

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

[Source: N. Snavely]

Image Interpolation

What operation have we done?

Also used for resampling

[Source: N. Snavely]

• Published by [Kopt et al., SIGGRAPH 2011]

More Examples

"Bomberman" Input (15×23 Pixels)

"Toad" Input (16×27 Pixels)

Our Result

"Axe Battler" Input (43×71 Pixels)

"Invaders" Input (11×8 Pixels each)

Birnhi

"386" Input (25×31 Pixels)

hq4x

• We might want to change resolution of an image before processing.

• We might **not know which scale** we want, e.g., when searching for a face in an image.

- We might want to change resolution of an image before processing.
- We might **not know which scale** we want, e.g., when searching for a face in an image.
 - In this case, we will generate a full pyramid of different image sizes.

- We might want to change resolution of an image before processing.
- We might **not know which scale** we want, e.g., when searching for a face in an image.
 - In this case, we will generate a full pyramid of different image sizes.
- Can also be used to **accelerate the search**, by first finding at the coarser level of the pyramid and then at the full resolution.

- We might want to change resolution of an image before processing.
- We might **not know which scale** we want, e.g., when searching for a face in an image.
 - In this case, we will generate a full pyramid of different image sizes.
- Can also be used to **accelerate the search**, by first finding at the coarser level of the pyramid and then at the full resolution.

• To **interpolate** (or upsample) an image to a higher resolution, we need to select an **interpolation kernel** with which to convolve the image

$$g(i,j) = \sum_{k,l} f(k,l)h(i - rk, j - rl)$$

with r the up-sampling rate.

• The linear interpolator (corresponding to the tent kernel) produces interpolating piecewise linear curves.

• To **interpolate** (or upsample) an image to a higher resolution, we need to select an **interpolation kernel** with which to convolve the image

$$g(i,j) = \sum_{k,l} f(k,l)h(i-rk,j-rl)$$

with r the up-sampling rate.

• The linear interpolator (corresponding to the tent kernel) produces interpolating piecewise linear curves.

• More complex kernels, e.g., B-splines.

• To **interpolate** (or upsample) an image to a higher resolution, we need to select an **interpolation kernel** with which to convolve the image

$$g(i,j) = \sum_{k,l} f(k,l)h(i-rk,j-rl)$$

with r the up-sampling rate.

- The linear interpolator (corresponding to the tent kernel) produces interpolating piecewise linear curves.
- More complex kernels, e.g., B-splines.
- **Decimation**: reduces resolution

$$g(i,j) = \sum_{k,l} f(k,l)h(i-k/r,j-l/r)$$

with r the down-sampling rate.

• To **interpolate** (or upsample) an image to a higher resolution, we need to select an **interpolation kernel** with which to convolve the image

$$g(i,j) = \sum_{k,l} f(k,l)h(i - rk, j - rl)$$

with r the up-sampling rate.

- The linear interpolator (corresponding to the tent kernel) produces interpolating piecewise linear curves.
- More complex kernels, e.g., B-splines.
- Decimation: reduces resolution

$$g(i,j) = \sum_{k,l} f(k,l)h(i-k/r,j-l/r)$$

with r the down-sampling rate.

• Different filters exist as well.

• To **interpolate** (or upsample) an image to a higher resolution, we need to select an **interpolation kernel** with which to convolve the image

$$g(i,j) = \sum_{k,l} f(k,l)h(i-rk,j-rl)$$

with r the up-sampling rate.

- The linear interpolator (corresponding to the tent kernel) produces interpolating piecewise linear curves.
- More complex kernels, e.g., B-splines.
- Decimation: reduces resolution

$$g(i,j) = \sum_{k,l} f(k,l)h(i-k/r,j-l/r)$$

with r the down-sampling rate.

• Different filters exist as well.

- We first **blur** and **subsample** the original image by a factor of two and store this in the next level of the pyramid.
- Subtract then this low-pass version from the original to yield the **band-pass** Laplacian image.

- We first **blur** and **subsample** the original image by a factor of two and store this in the next level of the pyramid.
- Subtract then this low-pass version from the original to yield the **band-pass Laplacian image**.
- The pyramid has **perfect reconstruction**: the Laplacian images plus the base-level Gaussian are sufficient to exactly reconstruct the original image.

- We first **blur** and **subsample** the original image by a factor of two and store this in the next level of the pyramid.
- Subtract then this low-pass version from the original to yield the **band-pass** Laplacian image.
- The pyramid has **perfect reconstruction**: the Laplacian images plus the base-level Gaussian are sufficient to exactly reconstruct the original image.
- Wavelets are alternative pyramids. We will not see them here.

- We first **blur** and **subsample** the original image by a factor of two and store this in the next level of the pyramid.
- Subtract then this low-pass version from the original to yield the band-pass Laplacian image.
- The pyramid has **perfect reconstruction**: the Laplacian images plus the base-level Gaussian are sufficient to exactly reconstruct the original image.
- Wavelets are alternative pyramids. We will not see them here.

Laplacian Pyramid Construction

• How do we reconstruct back?

Laplacian Pyramid Construction

• How do we reconstruct back?

Laplacian Pyramid Re-construction

 h_{θ}

• When is this useful?

Laplacian Pyramid Re-construction

 h_{θ}

• When is this useful?

More Complex Filters

- Oriented filters are used in many vision and image processing tasks: texture analysis, edge detection, image data compression, motion analysis.
- One approach to finding the response of a filter at many orientations is to apply many versions of the same filter, each different from the others by some small rotation in angle.

- **Oriented filters** are used in many vision and image processing tasks: texture analysis, edge detection, image data compression, motion analysis.
- One approach to finding the response of a filter at many orientations is to apply many versions of the same filter, each different from the others by some small rotation in angle.
- More efficient is to apply a few filters corresponding to a few angles and interpolate between the responses.

- Oriented filters are used in many vision and image processing tasks: texture analysis, edge detection, image data compression, motion analysis.
- One approach to finding the response of a filter at many orientations is to apply many versions of the same filter, each different from the others by some small rotation in angle.
- More efficient is to apply a few filters corresponding to a few angles and interpolate between the responses.
- One then needs to know how many filters are required and how to properly interpolate between the responses.

- **Oriented filters** are used in many vision and image processing tasks: texture analysis, edge detection, image data compression, motion analysis.
- One approach to finding the response of a filter at many orientations is to apply many versions of the same filter, each different from the others by some small rotation in angle.
- More efficient is to apply a few filters corresponding to a few angles and interpolate between the responses.
- One then needs to know how many filters are required and how to properly interpolate between the responses.
- With the correct filter set and the correct interpolation rule, it is possible to determine the response of a filter of arbitrary orientation without explicitly applying that filter.

- **Oriented filters** are used in many vision and image processing tasks: texture analysis, edge detection, image data compression, motion analysis.
- One approach to finding the response of a filter at many orientations is to apply many versions of the same filter, each different from the others by some small rotation in angle.
- More efficient is to apply a few filters corresponding to a few angles and interpolate between the responses.
- One then needs to know how many filters are required and how to properly interpolate between the responses.
- With the correct filter set and the correct interpolation rule, it is possible to determine the response of a filter of arbitrary orientation without explicitly applying that filter.
- **Steerable filters** are a class of filters in which a filter of arbitrary orientation is synthesized as a linear combination of a set of basis filters.

- **Oriented filters** are used in many vision and image processing tasks: texture analysis, edge detection, image data compression, motion analysis.
- One approach to finding the response of a filter at many orientations is to apply many versions of the same filter, each different from the others by some small rotation in angle.
- More efficient is to apply a few filters corresponding to a few angles and interpolate between the responses.
- One then needs to know how many filters are required and how to properly interpolate between the responses.
- With the correct filter set and the correct interpolation rule, it is possible to determine the response of a filter of arbitrary orientation without explicitly applying that filter.
- **Steerable filters** are a class of filters in which a filter of arbitrary orientation is synthesized as a linear combination of a set of basis filters.

Example of Steerable Filter

• 2D symmetric Gaussian with $\sigma=1$ and assume constant is 1

$$G(x, y, \sigma) = \exp\left(-x^2 + y^2\right)$$

• The directional derivative operator is steerable.

Example of Steerable Filter

• 2D symmetric Gaussian with $\sigma=1$ and assume constant is 1

$$G(x, y, \sigma) = \exp\left(-x^2 + y^2\right)$$

- The directional derivative operator is steerable.
- The first derivative

$$G_1^0 = \frac{\partial}{\partial x} \exp\left(-x^2 + y^2\right) = -2x \exp\left(-x^2 + y^2\right)$$

and the same function rotated 90 degrees is

$$G_1^{90} = \frac{\partial}{\partial y} \exp\left(-x^2 + y^2\right) = -2y \exp\left(-x^2 + y^2\right)$$
Example of Steerable Filter

• 2D symmetric Gaussian with $\sigma=1$ and assume constant is 1

$$G(x, y, \sigma) = \exp\left(-x^2 + y^2\right)$$

- The directional derivative operator is steerable.
- The first derivative

$$G_1^0 = \frac{\partial}{\partial x} \exp\left(-x^2 + y^2\right) = -2x \exp\left(-x^2 + y^2\right)$$

and the same function rotated 90 degrees is

$$G_1^{90} = \frac{\partial}{\partial y} \exp\left(-x^2 + y^2\right) = -2y \exp\left(-x^2 + y^2\right)$$

• A filter of arbitrary orientation θ can be synthesized by taking a linear combination of G_1^0 and G_1^{90}

$$G_1^{\theta} = \cos\theta G_1^0 + \sin\theta G_1^{90}$$

 G_1^0 and G_1^{90} are the basis filters and $\cos\theta$ and $\sin\theta$ are the interpolation functions

Raquel Urtasun (TTI-C)

Example of Steerable Filter

• 2D symmetric Gaussian with $\sigma=1$ and assume constant is 1

$$G(x, y, \sigma) = \exp\left(-x^2 + y^2\right)$$

- The directional derivative operator is steerable.
- The first derivative

$$G_1^0 = \frac{\partial}{\partial x} \exp\left(-x^2 + y^2\right) = -2x \exp\left(-x^2 + y^2\right)$$

and the same function rotated 90 degrees is

$$G_1^{90} = \frac{\partial}{\partial y} \exp\left(-x^2 + y^2\right) = -2y \exp\left(-x^2 + y^2\right)$$

• A filter of arbitrary orientation θ can be synthesized by taking a linear combination of G_1^0 and G_1^{90}

$$G_1^{\theta} = \cos\theta G_1^0 + \sin\theta G_1^{90}$$

 G_1^0 and G_1^{90} are the basis filters and $\cos\theta$ and $\sin\theta$ are the interpolation functions

Raquel Urtasun (TTI-C)

• Because convolution is a linear operation, we can synthesize an image filtered at an arbitrary orientation by taking linear combinations of the images filtered with G_1^0 and G_1^{90}

if
$$R_1^0 = G_1^0 * I$$
 and $R_1^{90} = G_1^{90} * I$ then $R_1^\theta = \cos \theta R_1^0 + \sin \theta R_1^{90}$

• Check yourself that this is the case.

• Because convolution is a linear operation, we can synthesize an image filtered at an arbitrary orientation by taking linear combinations of the images filtered with G_1^0 and G_1^{90}

if
$$R_1^0 = G_1^0 * I$$
 and $R_1^{90} = G_1^{90} * I$ then $R_1^ heta = \cos heta R_1^0 + \sin heta R_1^{90}$

• Check yourself that this is the case.

• See [Freeman & Adelson, 91] for the conditions on when a filter is steerable and how many basis are necessary.

• Because convolution is a linear operation, we can synthesize an image filtered at an arbitrary orientation by taking linear combinations of the images filtered with G_1^0 and G_1^{90}

if
$$R_1^0=G_1^0*I$$
 and $R_1^{90}=G_1^{90}*I$ then $R_1^ heta=\cos heta R_1^0+\sin heta R_1^{90}$

- Check yourself that this is the case.
- See [Freeman & Adelson, 91] for the conditions on when a filter is steerable and how many basis are necessary.

Figure 2-1: Example of steerable filters. (a) $G_1^{0^\circ}$, first derivative with respect to x (horizontal) of a Gaussian. (b) $G_1^{00^\circ}$, which is $G_1^{0^\circ}$, rotated by 90°. From a linear combination of these two filters, one can create G_1^{θ} , an arbitrary rotation of the first derivative of a Gaussian. (c) $G_1^{30^\circ}$, formed by $\frac{1}{2}G_1^{0^\circ} + \frac{\sqrt{3}}{2}G_1^{90^\circ}$. The same linear combinations used to synthesize G_1^{θ} from the basis filters will also synthesize the response of an image to G_1^{θ} from the responses of the image to the basis filters: (d) Image of circular disk. (e) $G_1^{0^\circ}$ (at a smaller scale than pictured above) convolved with the disk, (d). (f) $G_1^{00^\circ}$ convolved with (d), (g) $G_1^{30^\circ}$ convolved with (d), obtained from $\frac{1}{2}$ [image c] $+\frac{\sqrt{3}}{2}$ [image f].

[Source: W. Freeman 91]

Raquel Urtasun (TTI-C)

What about the second order derivative?

What about the second order derivative?

• Only three basis are required

What about the second order derivative?

• Only three basis are required

$$G_{\hat{\mathbf{u}}\hat{\mathbf{u}}} = u^2 G_{xx} + 2uv G_{x,y} + v^2 G_{y,y}$$

with $\hat{\mathbf{u}} = (u, v)$

Other transformations

- If an image is going to be repeatedly convolved with different box filters, it is useful to compute the **summed area table**.
- It is the running sum of all the pixel values from the origin

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

- If an image is going to be repeatedly convolved with different box filters, it is useful to compute the **summed area table**.
- It is the running sum of all the pixel values from the origin

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- If an image is going to be repeatedly convolved with different box filters, it is useful to compute the **summed area table**.
- It is the running sum of all the pixel values from the origin

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

• The image s(i, j) is called an **integral image** and can actually be computed using only two additions per pixel if separate row sums are used.

- If an image is going to be repeatedly convolved with different box filters, it is useful to compute the **summed area table**.
- It is the running sum of all the pixel values from the origin

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- The image s(i, j) is called an **integral image** and can actually be computed using only two additions per pixel if separate row sums are used.
- To find the summed area (integral) inside a rectangle $[i_0, i_1] \times [j_0, j_1]$ we simply combine four samples from the summed area table.

 $S([i_0, i_1] \times [j_0, j_1]) = s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$

- If an image is going to be repeatedly convolved with different box filters, it is useful to compute the **summed area table**.
- It is the running sum of all the pixel values from the origin

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- The image s(i, j) is called an **integral image** and can actually be computed using only two additions per pixel if separate row sums are used.
- To find the summed area (integral) inside a rectangle $[i_0, i_1] \times [j_0, j_1]$ we simply combine four samples from the summed area table.

 $S([i_0, i_1] \times [j_0, j_1]) = s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$

• Summed area tables have been used in face detection [Viola & Jones, 04]

- If an image is going to be repeatedly convolved with different box filters, it is useful to compute the **summed area table**.
- It is the running sum of all the pixel values from the origin

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

• This can be efficiently computed using a recursive (raster-scan) algorithm

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(i,j)$$

- The image s(i, j) is called an **integral image** and can actually be computed using only two additions per pixel if separate row sums are used.
- To find the summed area (integral) inside a rectangle $[i_0, i_1] \times [j_0, j_1]$ we simply combine four samples from the summed area table.

 $S([i_0, i_1] \times [j_0, j_1]) = s(i_1, j_1) - s(i_1, j_0 - 1) - s(i_0 - 1, j_1) + s(i_0 - 1, j_0 - 1)$

• Summed area tables have been used in face detection [Viola & Jones, 04]

3	2	7	2	3	3	5	12	14	17		3	5	12	14	17
1	5	1	3	4	4	11	19	24	31		4	11	19	24	31
5	1	3	5	1	9	17	28	38	46		9	17	28	38	46
4	3	2	1	6	13	24	37	48	62		13	24	37	48	62
2	4	1	4	8	15	30	44	59	81		15	30	44	59	81
	(a)	S =	24			(h)	s =	28		•		(c)	S =	24	

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation of area sum. Each value in the summed area table s(i, j) (red) is computed recursively from its three adjacent (blue) neighbors (3.31). Area sums *S* (green) are computed by combining the four values at the rectangle corners (purple) (3.32). Positive values are shown in **bold** and negative values in *italics*.

$$h\circ(f+g)=h\circ f+h\circ g$$

• Median filter: Non linear filter that selects the median value from each pixels neighborhood.

$$h \circ (f + g) = h \circ f + h \circ g$$

- Median filter: Non linear filter that selects the median value from each pixels neighborhood.
- Robust to **outliers**, but not good for Gaussian noise.

$$h \circ (f + g) = h \circ f + h \circ g$$

- Median filter: Non linear filter that selects the median value from each pixels neighborhood.
- Robust to **outliers**, but not good for Gaussian noise.

Example of non-linear filters

1	2	1	2	4
2	1	3	5	8
1	3	7	6	9
3	4	8	6	7
4	5	7	8	9

(Median filter)

1	2	1	2	4
2	1	3	5	8
1	3	7	6	9
3	4	8	6	7
4	5	7	8	9

(α -trimmed mean)

$$h \circ (f + g) = h \circ f + h \circ g$$

- Median filter: Non linear filter that selects the median value from each pixels neighborhood.
- Robust to outliers, but not good for Gaussian noise.
- α -trimmed mean: averages together all of the pixels except for the α fraction that are the smallest and the largest.

$$h \circ (f + g) = h \circ f + h \circ g$$

- Median filter: Non linear filter that selects the median value from each pixels neighborhood.
- Robust to **outliers**, but not good for Gaussian noise.
- α -trimmed mean: averages together all of the pixels except for the α fraction that are the smallest and the largest.

Example of non-linear filters

1	2	1	2	4
2	1	3	5	8
1	3	7	6	9
3	4	8	6	7
4	5	7	8	9

(Median filter)

1	2	1	2	4
2	1	3	5	8
1	3	7	6	9
3	4	8	6	7
4	5	7	8	9

(α -trimmed mean)

Bilateral Filtering

• Weighted filter kernel with a **better outlier rejection**.

• Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose values differ too much from the central pixel value.

- Weighted filter kernel with a **better outlier rejection**.
- Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose values differ too much from the central pixel value.
- The output pixel value depends on a weighted combination of neighboring pixel values

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

- Weighted filter kernel with a **better outlier rejection**.
- Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose values differ too much from the central pixel value.
- The output pixel value depends on a weighted combination of neighboring pixel values

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

• Data-dependent bilateral weight function

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{||f(i,j) - f(k,l)||^2}{2\sigma_r^2}\right)$$

composed of the domain kernel and the range kernel.

- Weighted filter kernel with a **better outlier rejection**.
- Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose values differ too much from the central pixel value.
- The output pixel value depends on a weighted combination of neighboring pixel values

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

• Data-dependent bilateral weight function

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{||f(i,j) - f(k,l)||^2}{2\sigma_r^2}\right)$$

composed of the domain kernel and the range kernel.

Example Bilateral Filtering

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b) domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d) bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]

Distance Transform

• Useful to quickly precomputing the distance to a curve or a set of points.

• Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan distance

$$d(k,l) = |k| + |l|$$

or Euclidean distance

$$d(k,l) = \sqrt{k^2 + l^2}$$

- Useful to quickly precomputing the distance to a curve or a set of points.
- Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan distance

$$d(k,l) = |k| + |l|$$

or Euclidean distance

$$d(k,l) = \sqrt{k^2 + l^2}$$

• The distance transform D(i, j) of a binary image b(i, j) is defined as

$$D(i,j) = \min_{k,l;b(k,l)=0} d(i-k,j-l)$$

it is the distance to the nearest pixel whose value is 0.

- Useful to quickly precomputing the distance to a curve or a set of points.
- Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan distance

$$d(k,l) = |k| + |l|$$

or Euclidean distance

$$d(k,l) = \sqrt{k^2 + l^2}$$

• The distance transform D(i,j) of a binary image b(i,j) is defined as

$$D(i,j) = \min_{k,l;b(k,l)=0} d(i-k,j-l)$$

it is the distance to the nearest pixel whose value is 0.

Distance Transform Algorithm

- The **Manhattan distance** can be computed using a forward and backward pass of a simple raster-scan algorithm.
- Forward pass: each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or west neighbor.

Distance Transform Algorithm

- The **Manhattan distance** can be computed using a forward and backward pass of a simple raster-scan algorithm.
- Forward pass: each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or west neighbor.
- **Backward pass**: the same, but the minimum is both over the current value D and 1 + the distance of the south and east neighbors.

0	0	0	0	1	0	0		0	0	0	0	1	0	0	0	0	0	0	1	0	0		0	0
0	0	1	1	1	0	0		0	0	1	1	2	0	0	0	0	1	1	2	0	0		0	0
0	1	1	1	1	1	0	1	0	1	2	2	3	1	0	0	1	2	2	3	1	0		0	1
0	1	1	1	1	1	0		0	1	2	3				0	1	2	2	1	1	0		0	1
0	1	1	1	0	0	0									0	1	2	1	0	0	0		0	1
0	0	1	0	0	0	0	1								0	0	1	0	0	0	0		0	0
0	0	0	0	0	0	0									0	0	0	0	0	0	0		0	0
(a)						(b)							(c)											

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward) raster sweep: green values are used to compute the orange value; (c) bottom to top (backward) raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]

Raquel Urtasun (TTI-C)

00 (d)

0 0

0 0 0 0

0 0 0

Distance Transform Algorithm

- The **Manhattan distance** can be computed using a forward and backward pass of a simple raster-scan algorithm.
- Forward pass: each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or west neighbor.
- **Backward pass**: the same, but the minimum is both over the current value D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward) raster sweep: green values are used to compute the orange value; (c) bottom to top (backward) raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]

Raquel Urtasun (TTI-C)

Example of Distance Transform

- More complicated in the Euclidean case.
- Example of a distance transform

- The ridges is the **skeleton** or **medial axis**.
- Extension: Signed distance transform.

[Source: P. Felzenszwalb]
- Fourier analysis could be used to analyze the frequency characteristics of various filters.
- How can we analyze what a given filter does to high, medium, and low frequencies?

- Fourier analysis could be used to analyze the frequency characteristics of various filters.
- How can we analyze what a given filter does to high, medium, and low frequencies?
- Pass a sinusoid of known frequency through the filter and to observe by how much it is attenuated

$$s(x) = \sin(2\pi f x + \phi_i) = \sin(\omega x + \phi_i)$$

with frequency f, angular frequency ω and phase ϕ_i .

- Fourier analysis could be used to analyze the frequency characteristics of various filters.
- How can we analyze what a given filter does to high, medium, and low frequencies?
- Pass a sinusoid of known frequency through the filter and to observe by how much it is attenuated

$$s(x) = \sin(2\pi f x + \phi_i) = \sin(\omega x + \phi_i)$$

with frequency f, angular frequency ω and phase ϕ_i .

 If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x), we get another sinusoid of the same frequency but different magnitude and phase

$$o(x) = h(x) * s(x) = A\sin(\omega x + \phi_o)$$

- Fourier analysis could be used to analyze the frequency characteristics of various filters.
- How can we analyze what a given filter does to high, medium, and low frequencies?
- Pass a sinusoid of known frequency through the filter and to observe by how much it is attenuated

$$s(x) = \sin(2\pi f x + \phi_i) = \sin(\omega x + \phi_i)$$

with frequency f, angular frequency ω and phase ϕ_i .

 If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x), we get another sinusoid of the same frequency but different magnitude and phase

$$o(x) = h(x) * s(x) = A\sin(\omega x + \phi_o)$$

Filtering and Fourier

• Convolution can be expressed as a weighted summation of shifted input signals (sinusoids); so it is just a single sinusoid at that frequency.

$$o(x) = h(x) * s(x) = A\sin(\omega x + \phi_o)$$

A is the **gain** or **magnitude** of the filter, while the phase difference $\Delta \phi = \phi_o - \phi_i$ is the **shift** or **phase**

Figure 3.24 The Fourier Transform as the response of a filter h(x) to an input sinusoid $s(x) = e^{j\omega x}$ yielding an output sinusoid $o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$.

• The sinusoid is express as $s(x) = e^{j\omega x} = \cos \omega x + j \sin \omega x$ and the filter sinusoid as

$$o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$$

• The Fourier transform pair is

$$h(x) \longleftrightarrow H(\omega)$$

• The sinusoid is express as $s(x) = e^{j\omega x} = \cos \omega x + j \sin \omega x$ and the filter sinusoid as

$$o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$$

• The Fourier transform pair is

$$h(x) \longleftrightarrow H(\omega)$$

• The Fourier transform in continuous domain

$$H(\omega) = \int_{-\infty}^{\infty} h(x) e^{-j\omega x} dx$$

• The sinusoid is express as $s(x) = e^{j\omega x} = \cos \omega x + j \sin \omega x$ and the filter sinusoid as

$$o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$$

• The Fourier transform pair is

$$h(x) \longleftrightarrow H(\omega)$$

• The Fourier transform in continuous domain

$$H(\omega) = \int_{-\infty}^{\infty} h(x) e^{-j\omega x} dx$$

• The Fourier transform in discrete domain

$$H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j\frac{2\pi kx}{N}}$$

where N is the length of the signal.

• The sinusoid is express as $s(x) = e^{j\omega x} = \cos \omega x + j \sin \omega x$ and the filter sinusoid as

$$o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$$

• The Fourier transform pair is

$$h(x) \longleftrightarrow H(\omega)$$

• The Fourier transform in continuous domain

$$H(\omega) = \int_{-\infty}^{\infty} h(x) e^{-j\omega x} dx$$

• The Fourier transform in discrete domain

$$H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j\frac{2\pi kx}{N}}$$

where N is the length of the signal.

• The discrete form is known as the Discrete Fourier Transform (DFT).

• The sinusoid is express as $s(x) = e^{j\omega x} = \cos \omega x + j \sin \omega x$ and the filter sinusoid as

$$o(x) = h(x) * s(x) = Ae^{j\omega x + \phi}$$

• The Fourier transform pair is

$$h(x) \longleftrightarrow H(\omega)$$

• The Fourier transform in continuous domain

$$H(\omega) = \int_{-\infty}^{\infty} h(x) e^{-j\omega x} dx$$

• The Fourier transform in discrete domain

$$H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x) e^{-j\frac{2\pi kx}{N}}$$

where N is the length of the signal.

• The discrete form is known as the Discrete Fourier Transform (DFT).

Properties Fourier Transform

Property	Signal		Transform	
superposition	$f_1(x) + f_2(x)$		$F_1(\omega) + F_2(\omega)$	
shift	$f(x-x_0)$		$F(\omega)e^{-j\omega x_0}$	
reversal	f(-x)		$F^*(\omega)$	
convolution	f(x) * h(x)		$F(\omega)H(\omega)$	
correlation	$f(x)\otimes h(x)$		$F(\omega)H^*(\omega)$	
multiplication	f(x)h(x)		$F(\omega) * H(\omega)$	
differentiation	f'(x)		$j\omega F(\omega)$	
domain scaling	f(ax)		$1/aF(\omega/a)$	
real images	$f(x) = f^*(x)$	\Leftrightarrow	$F(\omega) = F(-\omega)$	
Parseval's Theorem	$\sum_{x} [f(x)]^2$	=	$\sum_{\omega} [F(\omega)]^2$	

[Source: R. Szeliski]

Name	Signal			Transform		
impulse	<u> </u>	$\delta(x)$	⇔	1		
shifted impulse		$\delta(x-u)$	⇔	$e^{-j\omega u}$		
box filter		box(x/a)	⇔	$a {\rm sinc}(a \omega)$	<u> </u>	
tent	A	tent(x/a)	⇔	$a { m sinc}^2(a\omega)$	<u> </u>	
Gaussian	A	$G(x;\sigma)$	⇔	$\frac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$	<u> </u>	
Laplacian of Gaussian		$\big(\tfrac{x^2}{\sigma^4} - \tfrac{1}{\sigma^2}\big)G\big(x;\sigma\big)$	⇔	$-\tfrac{\sqrt{2\pi}}{\sigma}\omega^2 G(\omega;\sigma^{-1})$	<u></u>	
Gabor		$\cos(\omega_0 x) G(x;\sigma)$	⇔	$\tfrac{\sqrt{2\pi}}{\sigma}G(\omega\pm\omega_0;\sigma^{-1})$	<u>. A</u> ĮA.	
unsharp mask	<u> </u>	$\begin{array}{l} (1+\gamma)\delta(x) \\ -\gamma G(x;\sigma) \end{array}$	⇔	$\begin{array}{c} (1+\gamma)-\\ \frac{\sqrt{2\pi\gamma}}{\sigma}G(\omega;\sigma^{-1}) \end{array}$		
windowed sinc	<u> </u>	$\frac{\operatorname{rcos}(x/(aW))}{\operatorname{sinc}(x/a)}$	⇔	(see Figure 3.29)	<u> </u>	

[Source: R. Szeliski]

[Source: R. Szeliski]

Raquel Urtasun (TTI-C)

• Same as 1D, but in 2D. Now the sinusoid is

$$s(x,y) = \sin(\omega_x x + \omega_y y)$$

• The 2D Fourier in continuous domain is then

$$H(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{-j(\omega_x x + \omega_y y)} dx dy$$

and in the discrete domain

$$H(k_x, k_y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x, y) e^{-2\pi j \frac{k_x x + k_y y}{MN}}$$

where M and N are the width and height of the image.

• Same as 1D, but in 2D. Now the sinusoid is

$$s(x, y) = \sin(\omega_x x + \omega_y y)$$

• The 2D Fourier in continuous domain is then

$$H(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{-j(\omega_x x + \omega_y y)} dx dy$$

and in the discrete domain

$$H(k_x, k_y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x, y) e^{-2\pi j \frac{k_x x + k_y y}{MN}}$$

where M and N are the width and height of the image.

• All the properties carry over to 2D.

• Same as 1D, but in 2D. Now the sinusoid is

$$s(x, y) = \sin(\omega_x x + \omega_y y)$$

• The 2D Fourier in continuous domain is then

$$H(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{-j(\omega_x x + \omega_y y)} dx dy$$

and in the discrete domain

$$H(k_x, k_y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} h(x, y) e^{-2\pi j \frac{k_x x + k_y y}{MN}}$$

where M and N are the width and height of the image.

• All the properties carry over to 2D.

Example of 2D Fourier Transform

[Source: A. Jepson]

Raquel Urtasun (TTI-C)

Next class ... image features