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Today’s lecture ...

Image formation

Image Filtering
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Readings

Chapter 2 and 3 of Rich Szeliski’s book

Available online here
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How is an image created?

The image formation process that produced a particular image depends on

lighting conditions

scene geometry

surface properties

camera optics

[Source: R. Szeliski]
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Image formation
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What is an image?
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[Source: A. Efros]
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From photons to RGB values

Sample the 2D space on a regular grid.

Quantize each sample, i.e., the photons arriving at each active cell are
integrated and then digitized.

[Source: D. Hoiem]
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What is an image?

A grid (matrix) of intensity values
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[Source: N. Snavely]
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What is an image?

We can think of a (grayscale) image as a function f : <2 → < giving the
intensity at position (x , y)

x

y

f (x, y) 

A digital image is a discrete (sampled, quantized) version of this function

[Source: N. Snavely]
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Image Transformations

As with any function, we can apply operators to an image

!g (x,y) = f (x,y) + 20 !g (x,y) = f (-x,y) 

We’ll talk about special kinds of operators, correlation and convolution
(linear filtering)

[Source: N. Snavely]
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Filtering
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Question: Noise reduction

Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

What’s the next best thing?

[Source: S. Seitz]
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Image filtering

Modify the pixels in an image based on some function of a local
neighborhood of each pixel

!" #"$"

#" %"#"

!" &"#'"

()*+,"-.+/0"1+2+"

%"

3)1-401"-.+/0"1+2+"

5).0"678*9)8"

[Source: L. Zhang]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 13 / 82



Applications of Filtering

Enhance an image, e.g., denoise, resize.

Extract information, e.g., texture, edges.

Detect patterns, e.g., template matching.
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Noise reduction

Simplest thing: replace each pixel by the average of its neighbors.

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

[Source: S. Marschner]
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Noise reduction

Simplest thing: replace each pixel by the average of its neighbors

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 16 / 82



Noise reduction

Simpler thing: replace each pixel by the average of its neighbors

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]
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Moving Average in 2D

[Source: S. Seitz]
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[Source: S. Seitz]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 18 / 82



Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i , j) =
∑
k,l

f (i + k , j + l)h(k , l)

The entries of the weight kernel or mask h(k, l) are often called the filter
coefficients.

This operator is the correlation operator

g = f ⊗ h
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Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?

[Source: K. Graumann]
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Gaussian filter

What if we want nearest neighboring pixels to have the most influence on
the output?

Removes high-frequency components from the image (low-pass filter).

[Source: S. Seitz]
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Smoothing with a Gaussian

[Source: K. Grauman]
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Mean vs Gaussian
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Gaussian filter: Parameters

Size of kernel or mask: Gaussian function has infinite support, but discrete
filters use finite kernels.

[Source: K. Grauman]
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Gaussian filter: Parameters

Variance of the Gaussian: determines extent of smoothing.

[Source: K. Grauman]
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Gaussian filter: Parameters

[Source: K. Grauman]
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Is this the most general Gaussian?

No, the most general form for x ∈ <d

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

But the simplified version is typically use for filtering.
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Properties of the Smoothing

All values are positive.

They all sum to 1.

Amount of smoothing proportional to mask size.

Remove high-frequency components; low-pass filter.

[Source: K. Grauman]
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Example of Correlation

What is the result of filtering the impulse signal (image) F with the arbitrary
kernel H?

[Source: K. Grauman]
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Convolution

Convolution operator

g(i , j) =
∑
k,l

f (i − k , j − l)h(k , l) =
∑
k,l

f (k , l)h(i − k, j − l) = f ∗ h

and h is then called the impulse response function.

Equivalent to flip the filter in both dimensions (bottom to top, right to left)
and apply cross-correlation.
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Matrix form

Correlation and convolution can both be written as a matrix-vector multiply,
if we first convert the two-dimensional images f (i , j) and g(i , j) into
raster-ordered vectors f and g

g = Hf

with H a sparse matrix.
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Correlation vs Convolution

Convolution

g(i , j) =
∑
k,l

f (i − k , j − l)h(k, l)

G = H ∗ F

Correlation

g(i , j) =
∑
k,l

f (i + k , j + l)h(k, l)

G = H ⊗ F

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ? h ∗ δ?, and
h ⊗ δ?
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Example

What’s the result?

[Source: D. Lowe]
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Example

What’s the result?

Original!
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[Source: D. Lowe]
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Example
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Sharpening

[Source: D. Lowe]
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Gaussian Filter

Convolution with itself is another Gaussian

* !"

Convolving twice with Gaussian kernel of width σ is the same as convolving
once with kernel of width σ

√
2

[Source: K. Grauman]
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Sharpening revisited

What does blurring take away?

!"#$#%&'( )*!!+,-.(/0102(

!"

.-+&#'(

#"

Let’s add it back
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[Source: S. Lazebnik]
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Sharpening
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[Source: N. Snavely]
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”Optical” Convolution

Camera Shake

* !"
Figure: Fergus, et al., SIGGRAPH 2006

Blur in out-of-focus regions of an image.

Figure: Bokeh: Click for more info

[Source: N. Snavely]
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Correlation vs Convolution

The convolution is both commutative and associative.

The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

Both correlation and convolution are linear shift-invariant (LSI)
operators, which obey both the superposition principle

h ◦ (f0 + f1) = h ◦ fo + h ◦ f1

and the shift invariance principle

if g(i , j) = f (i + k, j + l)↔ (h ◦ g)(i , j) = (h ◦ f )(i + k, j + l)

which means that shifting a signal commutes with applying the operator.

Is the same as saying that the effect of the operator is the same everywhere.
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Boundary Effects

The results of filtering the image in this form will lead to a darkening of the
corner pixels.

The original image is effectively being padded with 0 values wherever the
convolution kernel extends beyond the original image boundaries.

A number of alternative padding or extension modes have been developed.
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Separable Filters

The process of performing a convolution requires K 2 operations per pixel,
where K is the size (width or height) of the convolution kernel.

In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

If his is possible, then the convolution kernel is called separable.

And it is the outer product of two kernels

K = vhT
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Let’s play a game...

Is this separable? If yes, what’s the separable version?
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How can we tell if a given kernel K is indeed separable?

Inspection... this is what we were doing.

Looking at the analytic form of it.

Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K = UΣVT =
∑
i

σiuiv
T
i

with Σ = diag(σi ).
√
σ1u1 and

√
σ1vT

1 are the vertical and horizontal kernels.
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Application of filtering: Template matching

Filters as templates: filters look like the effects they are intended to find.

Use normalized cross-correlation score to find a given pattern (template)
in the image.

Normalization needed to control for relative brightnesses.

[Source: K. Grauman]
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Template matching

[Source: K. Grauman]
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More complex Scenes
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Let’s talk about Edge Detection
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Filtering: Edge detection

Map image from 2d array of pixels to a set of curves or line segments or
contours.

More compact than pixels.

Look for strong gradients, post-process.

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]
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Origin of edges

Edges are caused by a variety of factors

depth discontinuity 

surface color discontinuity 

illumination discontinuity 

surface normal discontinuity 

[Source: N. Snavely]
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What causes an edge?

[Source: K. Grauman]
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Looking more locally...

[Source: K. Grauman]
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Images as functions

Edges look like steep cliffs

[Source: N. Snavely]
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Characterizing Edges

An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]
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How to Implement Derivatives with Convolution

How can we differentiate a digital image F[x,y]?

Option 1: reconstruct a continuous image f , then compute the partial
derivative as

∂f (x , y)

∂x
= lim
ε→0

f (x + ε, y)− f (x)

ε

Option 2: take discrete derivative (finite difference)

∂f (x , y)

∂x
≈ f [x + 1, y ]− f [x ]

1

What would be the filter to implement this using convolution?

1 -1 -1 

1 
!" !"

[Source: S. Seitz]
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Partial derivatives of an image

Figure: Using correlation filters

[Source: K. Grauman]
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Finite Difference Filters

[Source: K. Grauman]
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Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1
(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
( ∂f∂x )2 + ( ∂f∂y )2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 61 / 82



Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1
(
∂f

∂y
/
∂f

∂x

)

The edge strength is given by the magnitude ||∇f || =
√

( ∂f∂x )2 + ( ∂f∂y )2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 61 / 82



Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1
(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
( ∂f∂x )2 + ( ∂f∂y )2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 61 / 82



Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1
(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
( ∂f∂x )2 + ( ∂f∂y )2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 61 / 82



Image Gradient

[Source: S. Lazebnik]
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Effects of noise

Consider a single row or column of the image.

Plotting intensity as a function of position gives a signal.

!"#$%&#'()*&#+,-.&

[Source: S. Seitz]
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Effects of noise

Smooth first, and look for picks in ∂
∂x (h ∗ f ).

[Source: S. Seitz]
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Derivative theorem of convolution

Differentiation property of convolution

∂

∂x
(h ∗ f ) = (

∂h

∂x
) ∗ f = h ∗ (

∂f

∂x
)

It saves one operation

[Source: S. Seitz]
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2D Edge Detection Filters

Gaussian Derivative of Gaussian (x)

hσ(x , y) = 1
2πσ2 exp−

u2+v2

2σ2 ∂
∂x hσ(u, v)

[Source: N. Snavely]
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Derivative of Gaussians

[Source: K. Grauman]
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Laplacian of Gaussians

Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]
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2D Edge Filtering

with ∇2 the Laplacian operator ∇2f = ∂2f
∂x2 + ∂2f

∂y2

[Source: S. Seitz]
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Effect of σ on derivatives

The detected structures differ depending on the Gaussian’s scale parameter:

Larger values: larger scale edges detected.

Smaller values: finer features detected.

[Source: K. Grauman]
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Derivatives

Use opposite signs to get response in regions of high contrast.

They sum to 0 so that there is no response in constant regions.

High absolute value at points of high contrast.

[Source: K. Grauman]
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Band-pass filters

The Sobel and corner filters are band-pass and oriented filters.

More sophisticated filters can be obtained by convolving with a Gaussian
filter

G (x , y , σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
and taking the first or second derivatives.

These filters are band-pass filters: they filter low and high frequencies.

The second derivative of a two-dimensional image is the laplacian operator

∇2f =
∂2f

∂x2
+
∂2f

∂y2

Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,
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Band-pass filters

The directional or oriented filter can obtained by smoothing with a
Gaussian (or some other filter) and then taking a directional derivative
∇u = ∂

∂u
u · ∇(G ∗ f ) = ∇u(G ∗ f ) = (∇uG ) ∗ f

with u = (cos θ, sin θ).

The Sobel operator is a simple approximation of this:
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Practical Example

[Source: N. Snavely]
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Finding Edges

Figure: Gradient magnitude

[Source: N. Snavely]
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Finding Edges

!"#$#%&'%("#%#)*#+%

Figure: Gradient magnitude

[Source: N. Snavely]
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Non-Maxima Suppression

Figure: Gradient magnitude

Check if pixel is local maximum along gradient direction: requires
interpolation

[Source: N. Snavely]
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Finding Edges

Figure: Thresholding

[Source: N. Snavely]
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Finding Edges

Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]
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Canny Edge Detector

Matlab: edge(image,’canny’)

1 Filter image with derivative of Gaussian

2 Find magnitude and orientation of gradient

3 Non-maximum suppression

4 Linking and thresholding (hysteresis):

Define two thresholds: low and high
Use the high threshold to start edge curves and the low threshold to
continue them

[Source: D. Lowe and L. Fei-Fei]
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edge(image,'canny')


Canny edge detector

Still one of the most widely used edge detectors in computer vision

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Depends on several parameters: σ of the blur and the thresholds
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Canny edge detector

large σ detects large-scale edges

small σ detects fine edges

Canny with  Canny with  original  

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Computer Vision Jan 10, 2013 80 / 82



Scale Space (Witkin 83)

larger  

Gaussian filtered signal  

first derivative peaks 

Properties of scale space (w/ Gaussian smoothing)

edge position may shift with increasing scale (σ)

two edges may merge with increasing scale

an edge may not split into two with increasing scale

[Source: N. Snavely]
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Next class ... more on filtering and image features
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