Computer Vision: Filtering

Raquel Urtasun

TTI Chicago

Jan 10, 2013

Raquel Urtasun (TTI-C)

- Image formation
- Image Filtering

• Chapter 2 and 3 of Rich Szeliski's book

• Available online here

How is an image created?

The image formation process that produced a particular image depends on

- lighting conditions
- scene geometry
- surface properties
- camera optics

Image formation

What is an image?

- Sample the 2D space on a regular grid.
- **Quantize** each sample, i.e., the photons arriving at each active cell are integrated and then digitized.

[Source: D. Hoiem]

What is an image?

• A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	235 95	255	255	255
255	255	127	145			175					
255	255	12/	145	200	200	1/5	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

• Common to use one byte per value: 0=black, 255=white)

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

What is an image?

• We can think of a (grayscale) image as a function $f: \Re^2 \to \Re$ giving the intensity at position (x, y)

• A digital image is a discrete (sampled, quantized) version of this function

[Source: N. Snavely]

• As with any function, we can apply operators to an image

g(x,y) = f(x,y) + 20

g(x,y) = f(-x,y)

• We'll talk about special kinds of operators, **correlation** and **convolution** (linear filtering)

[Source: N. Snavely]

Filtering

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

• What's the next best thing?

[Source: S. Seitz]

Raquel Urtasun (TTI-C)

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

• What's the next best thing?

• Modify the pixels in an image based on some function of a local neighborhood of each pixel

Local image data

Modified image data

[Source: L. Zhang]

- Enhance an image, e.g., denoise, resize.
- Extract information, e.g., texture, edges.

- Enhance an image, e.g., denoise, resize.
- Extract information, e.g., texture, edges.
- Detect patterns, e.g., template matching.

- Enhance an image, e.g., denoise, resize.
- Extract information, e.g., texture, edges.
- Detect patterns, e.g., template matching.

• Simplest thing: replace each pixel by the average of its neighbors.

• This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

- Simplest thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]

Raquel Urtasun (TTI-C)

Noise reduction

- Simpler thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Non-uniform weights [1, 4, 6, 4, 1] / 16

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

0				

0 0

F[x, y]

G[x, y]

F[x, y]

G[x, y]

G[x, y]

F[x,y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

• Involves weighted combinations of pixels in small neighborhoods.

• The output pixels value is determined as a weighted sum of input pixel values

$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

• The entries of the weight kernel or mask h(k, l) are often called the **filter coefficients**.

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

- The entries of the weight kernel or mask h(k, l) are often called the **filter coefficients**.
- This operator is the correlation operator

$$g = f \otimes h$$

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

- The entries of the weight kernel or mask h(k, l) are often called the **filter coefficients**.
- This operator is the correlation operator

$$g = f \otimes h$$

Smoothing by averaging

depicts box filter: white = high value, black = low value

original

filtered

• What if the filter size was 5×5 instead of 3×3 ?

[Source: K. Graumann]

Raquel Urtasun (TTI-C)

• What if we want nearest neighboring pixels to have the most influence on the output?

2

Removes high-frequency components from the image (low-pass filter).

 $\frac{1}{16}$ 2 4

0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
	F[x, y]									

Smoothing with a Gaussian

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

Mean vs Gaussian

Raquel Urtasun (TTI-C)

Computer Vision

Jan 10, 2013 23 / 82

Gaussian filter: Parameters

• Size of kernel or mask: Gaussian function has infinite support, but discrete filters use finite kernels.

• Variance of the Gaussian: determines extent of smoothing.

Gaussian filter: Parameters

end

Is this the most general Gaussian?

• No, the most general form for $\mathbf{x} \in \Re^d$

$$\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

• But the simplified version is typically use for filtering.

- All values are positive.
- They all sum to 1.

- All values are positive.
- They all sum to 1.
- Amount of smoothing proportional to mask size.

- All values are positive.
- They all sum to 1.
- Amount of smoothing proportional to mask size.
- Remove high-frequency components; low-pass filter.

- All values are positive.
- They all sum to 1.
- Amount of smoothing proportional to mask size.
- Remove high-frequency components; low-pass filter.

Example of Correlation

• What is the result of filtering the impulse signal (image) F with the arbitrary kernel H?

G[x, y]

• Convolution operator

$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l) = \sum_{k,l} f(k,l)h(i-k,j-l) = f * h$$

and h is then called the **impulse response function**.

• Equivalent to flip the filter in both dimensions (bottom to top, right to left) and apply cross-correlation.

• Convolution operator

$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l) = \sum_{k,l} f(k,l)h(i-k,j-l) = f * h$$

and h is then called the **impulse response function**.

• Equivalent to flip the filter in both dimensions (bottom to top, right to left) and apply cross-correlation.

• Correlation and convolution can both be written as a matrix-vector multiply, if we first convert the two-dimensional images f(i,j) and g(i,j) into raster-ordered vectors f and g

$$\mathbf{g} = \mathbf{H}\mathbf{f}$$

with \mathbf{H} a sparse matrix.

Correlation vs Convolution

Convolution

$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l)$$

$$G = H * F$$

Correlation

$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

$$G = H \otimes F$$

- For a Gaussian or box filter, how will the outputs differ?
- If the input is an impulse signal, how will the outputs differ? $h * \delta$?, and $h \otimes \delta$?

Example

• What's the result?

Original

[Source: D. Lowe]

		·	-
Raduel	Urtasun	(TTI-	CI

0 1 0

Example

• What's the result?

Original

Filtered (no change)

[Source: D. Lowe]

Raquel Urtasun (TTI-C)

Example

• What's the result?

Original

?

• What's the result?

• What's the result?

• What's the result?

Original

Sharpening filter (accentuates edges)

before

after

• Convolution with itself is another Gaussian

• Convolving twice with Gaussian kernel of width σ is the same as convolving once with kernel of width $\sigma\sqrt{2}$

Sharpening revisited

• What does blurring take away?

• Let's add it back

[Source: S. Lazebnik]

Raquel Urtasun (TTI-C)

Sharpening

"Optical" Convolution

• Camera Shake

Figure: Fergus, et al., SIGGRAPH 2006

• Blur in out-of-focus regions of an image.

Figure: Bokeh: Click for more info

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

Computer Vision

Jan 10, 2013 38 / 82

Correlation vs Convolution

• The convolution is both **commutative** and **associative**.

• The Fourier transform of two convolved images is the product of their individual Fourier transforms.

- The convolution is both **commutative** and **associative**.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.
- Both correlation and convolution are **linear shift-invariant (LSI)** operators, which obey both the superposition principle

$$h \circ (f_0 + f_1) = h \circ f_o + h \circ f_1$$

and the shift invariance principle

if
$$g(i,j) = f(i+k,j+l) \leftrightarrow (h \circ g)(i,j) = (h \circ f)(i+k,j+l)$$

which means that shifting a signal commutes with applying the operator.

- The convolution is both **commutative** and **associative**.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.
- Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both the superposition principle

$$h \circ (f_0 + f_1) = h \circ f_o + h \circ f_1$$

and the shift invariance principle

if
$$g(i,j) = f(i+k,j+l) \leftrightarrow (h \circ g)(i,j) = (h \circ f)(i+k,j+l)$$

which means that shifting a signal commutes with applying the operator.

• Is the same as saying that the effect of the operator is the same everywhere.

- The convolution is both **commutative** and **associative**.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.
- Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both the superposition principle

$$h \circ (f_0 + f_1) = h \circ f_o + h \circ f_1$$

and the shift invariance principle

if
$$g(i,j) = f(i+k,j+l) \leftrightarrow (h \circ g)(i,j) = (h \circ f)(i+k,j+l)$$

which means that shifting a signal commutes with applying the operator.

• Is the same as saying that the effect of the operator is the same everywhere.

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.
- A number of alternative padding or extension modes have been developed.

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.
- A number of alternative padding or extension modes have been developed.

Raquel Urtasun (TTI-C)

Computer Vision

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.
- A number of alternative padding or extension modes have been developed.

Raquel Urtasun (TTI-C)

Computer Vision

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring 2K operations.

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring 2K operations.
- If his is possible, then the convolution kernel is called **separable**.

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring 2K operations.
- If his is possible, then the convolution kernel is called **separable**.
- And it is the outer product of two kernels

 $\mathbf{K} = \mathbf{v} \mathbf{h}^{\mathsf{T}}$

- The process of performing a convolution requires K^2 operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring 2K operations.
- If his is possible, then the convolution kernel is called separable.
- And it is the outer product of two kernels

 $\mathbf{K} = \mathbf{v} \mathbf{h}^{T}$

	1	1		1
1	1	1		1
$\frac{1}{K^2}$	÷	÷	1	÷
	1	1		1

What does this filter do?

	1	2	1
$\frac{1}{16}$	2	4	2
	1	2	1

What does this filter do?

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

$\frac{1}{16}$ 1 4	6	4	1
--------------------	---	---	---

What does this filter do?

	-1	0	1
$\frac{1}{8}$	-2	0	2
	-1	0	1

What does this filter do?

1

	1	-2	1
$\frac{1}{4}$	-2	4	-2
	1	-2	1

What does this filter do?

• Inspection... this is what we were doing.

• Looking at the analytic form of it.

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the **singular value decomposition (SVD)**, and if only one singular value is non-zero, then it is separable

$$K = \mathbf{U} \Sigma \mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with $\Sigma = \operatorname{diag}(\sigma_i)$.

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the **singular value decomposition (SVD)**, and if only one singular value is non-zero, then it is separable

$$K = \mathbf{U} \Sigma \mathbf{V}^{T} = \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$$

with $\Sigma = \operatorname{diag}(\sigma_i)$.

• $\sqrt{\sigma_1}\mathbf{u}_1$ and $\sqrt{\sigma_1}\mathbf{v}_1^T$ are the vertical and horizontal kernels.

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the **singular value decomposition (SVD)**, and if only one singular value is non-zero, then it is separable

$$K = \mathbf{U} \Sigma \mathbf{V}^{T} = \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$$

with $\Sigma = \operatorname{diag}(\sigma_i)$.

• $\sqrt{\sigma_1}\mathbf{u}_1$ and $\sqrt{\sigma_1}\mathbf{v}_1^T$ are the vertical and horizontal kernels.

Application of filtering: Template matching

- Filters as templates: filters look like the effects they are intended to find.
- Use **normalized cross-correlation** score to find a given pattern (template) in the image.
- Normalization needed to control for relative brightnesses.

Template (mask)

[Source: K. Grauman]

Template matching

[Source: K. Grauman]

More complex Scenes

Let's talk about Edge Detection

Filtering: Edge detection

- Map image from 2d array of pixels to a set of curves or line segments or contours.
- More compact than pixels.
- Look for strong gradients, post-process.

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

• Edges are caused by a variety of factors

[Source: N. Snavely]

What causes an edge?

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

Looking more locally...

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

Images as functions

• Edges look like steep cliffs

[Source: N. Snavely]

• An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]

How can we differentiate a digital image F[x,y]?

• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

How can we differentiate a digital image F[x,y]?

• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using convolution?

How can we differentiate a digital image F[x,y]?

• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using convolution?

[Source: S. Seitz]

How can we differentiate a digital image F[x,y]?

• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using convolution?

[Source: S. Seitz]

Partial derivatives of an image

Figure: Using correlation filters

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

Finite Difference Filters

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

• The edge strength is given by the magnitude $||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

[Source: S. Seitz]

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• The edge strength is given by the magnitude $||\nabla f|| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$

[Source: S. Seitz]

Image Gradient

[Source: S. Lazebnik]

Effects of noise

- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.

Effects of noise

• Smooth first, and look for picks in $\frac{\partial}{\partial x}(h * f)$.

Sigma = 50

[Source: S. Seitz]

Derivative theorem of convolution

• Differentiation property of convolution

$$\frac{\partial}{\partial x}(h*f) = \left(\frac{\partial h}{\partial x}\right)*f = h*\left(\frac{\partial f}{\partial x}\right)$$

It saves one operation

[Source: S. Seitz]

2D Edge Detection Filters

[Source: N. Snavely]

Derivative of Gaussians

[Source: K. Grauman]

Laplacian of Gaussians

• Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]

2D Edge Filtering

with ∇^2 the Laplacian operator $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

[Source: S. Seitz]

The detected structures differ depending on the Gaussian's scale parameter:

- Larger values: larger scale edges detected.
- Smaller values: finer features detected.

σ = 1 pixel

 σ = 3 pixels

[Source: K. Grauman]

- Use opposite signs to get response in regions of high contrast.
- They sum to 0 so that there is no response in constant regions.

- Use opposite signs to get response in regions of high contrast.
- They sum to 0 so that there is no response in constant regions.
- High absolute value at points of high contrast.

[Source: K. Grauman]

- Use opposite signs to get response in regions of high contrast.
- They sum to 0 so that there is no response in constant regions.
- High absolute value at points of high contrast.

[Source: K. Grauman]

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

and taking the first or second derivatives.

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

and taking the first or second derivatives.

• These filters are band-pass filters: they filter low and high frequencies.

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.
- The second derivative of a two-dimensional image is the laplacian operator

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.
- The second derivative of a two-dimensional image is the laplacian operator

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• Blurring an image with a Gaussian and then taking its Laplacian is equivalent to convolving directly with the **Laplacian of Gaussian** (LoG) filter,

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.
- The second derivative of a two-dimensional image is the laplacian operator

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• Blurring an image with a Gaussian and then taking its Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

• The directional or oriented filter can obtained by smoothing with a Gaussian (or some other filter) and then taking a directional derivative $\nabla_{\mathbf{u}} = \frac{\partial}{\partial \mathbf{u}}$ $\mathbf{u} \cdot \nabla(G * f) = \nabla_{\mathbf{u}}(G * f) = (\nabla_{\mathbf{u}}G) * f$

with $\mathbf{u} = (\cos \theta, \sin \theta)$.

• The Sobel operator is a simple approximation of this:

Practical Example

[Source: N. Snavely]

Finding Edges

Figure: Gradient magnitude

[Source: N. Snavely]

Finding Edges

Figure: Gradient magnitude

[Source: N. Snavely]

Raquel Urtasun (TTI-C)

Computer Vision

Non-Maxima Suppression

Figure: Gradient magnitude

• Check if pixel is local maximum along gradient direction: requires interpolation

[Source: N. Snavely]

Finding Edges

Figure: Thresholding

[Source: N. Snavely]

Finding Edges

Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]

Canny Edge Detector

Matlab: edge(image, 'canny')

- Filter image with derivative of Gaussian
- Pind magnitude and orientation of gradient
- 3 Non-maximum suppression
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

[Source: D. Lowe and L. Fei-Fei]

- Still one of the most widely used edge detectors in computer vision
- J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- Depends on several parameters: σ of the **blur** and the **thresholds**

Canny edge detector

- large σ detects large-scale edges
- small σ detects fine edges

[Source: S. Seitz]

Scale Space (Witkin 83)

Properties of scale space (w/ Gaussian smoothing)

- edge position may shift with increasing scale (σ)
- two edges may merge with increasing scale
- an edge may **not** split into two with increasing scale

[Source: N. Snavely]

Next class ... more on filtering and image features