Computer Vision: Filtering

Raquel Urtasun

TTI Chicago
Jan 10, 2013

Today's lecture ...

- Image formation
- Image Filtering

Readings

- Chapter 2 and 3 of Rich Szeliski's book

- Available online here

How is an image created?

The image formation process that produced a particular image depends on

- lighting conditions
- scene geometry
- surface properties
- camera optics

[Source: R. Szeliski]

Image formation

What is an image?

[Source: A. Efros]

From photons to RGB values

- Sample the 2D space on a regular grid.
- Quantize each sample, i.e., the photons arriving at each active cell are integrated and then digitized.

[Source: D. Hoiem]

What is an image?

- A grid (matrix) of intensity values

- Common to use one byte per value: $0=$ black, $255=$ white)
[Source: N. Snavely]

What is an image?

- We can think of a (grayscale) image as a function $f: \Re^{2} \rightarrow \Re$ giving the intensity at position (x, y)

- A digital image is a discrete (sampled, quantized) version of this function
[Source: N. Snavely]

Image Transformations

- As with any function, we can apply operators to an image

$g(x, y)=f(x, y)+20$

$$
g(x, y)=f(-x, y)
$$

- We'll talk about special kinds of operators, correlation and convolution (linear filtering)
[Source: N. Snavely]

Filtering

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

- What's the next best thing?
[Source: S. Seitz]

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?
- Take lots of images and average them!

- What's the next best thing?
[Source: S. Seitz]

Image filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Local image data

Some function

[Source: L. Zhang]

Modified image data

Applications of Filtering

- Enhance an image, e.g., denoise, resize.
- Extract information, e.g., texture, edges.

Applications of Filtering

- Enhance an image, e.g., denoise, resize.
- Extract information, e.g., texture, edges.
- Detect patterns, e.g., template matching.

Applications of Filtering

- Enhance an image, e.g., denoise, resize.
- Extract information, e.g., texture, edges.
- Detect patterns, e.g., template matching.

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

[Source: S. Marschner]

Noise reduction

- Simplest thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Moving average in 1D: $[1,1,1,1,1] / 5$

[Source: S. Marschner]

Noise reduction

- Simpler thing: replace each pixel by the average of its neighbors
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Non-uniform weights $[1,4,6,4,1] / 16$

[Source: S. Marschner]

Moving Average in 2D

$$
F[x, y]
$$

$G[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

[Source: S. Seitz]

Moving Average in 2D

$$
F[x, y]
$$

$G[x, y]$

[Source: S. Seitz]

Moving Average in 2D

$$
F[x, y] \quad G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

[Source: S. Seitz]

Moving Average in 2D

$$
F[x, y] \quad G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30					

[Source: S. Seitz]

Moving Average in 2D

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

[Source: S. Seitz]

Moving Average in 2D

$$
F[x, y] \quad G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

[Source: S. Seitz]

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$
g(i, j)=\sum_{k, l} f(i+k, j+l) h(k, l)
$$

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$
g(i, j)=\sum_{k, l} f(i+k, j+l) h(k, l)
$$

- The entries of the weight kernel or mask $h(k, I)$ are often called the filter coefficients.

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$
g(i, j)=\sum_{k, l} f(i+k, j+l) h(k, l)
$$

- The entries of the weight kernel or mask $h(k, I)$ are often called the filter coefficients.
- This operator is the correlation operator

$$
g=f \otimes h
$$

Linear Filtering: Correlation

- Involves weighted combinations of pixels in small neighborhoods.
- The output pixels value is determined as a weighted sum of input pixel values

$$
g(i, j)=\sum_{k, l} f(i+k, j+l) h(k, l)
$$

- The entries of the weight kernel or mask $h(k, I)$ are often called the filter coefficients.
- This operator is the correlation operator

$$
g=f \otimes h
$$

Smoothing by averaging

$$
\square \begin{aligned}
& \text { depicts box filter: } \\
& \text { white }=\text { high value, black = low value }
\end{aligned}
$$

original

filtered

- What if the filter size was 5×5 instead of 3×3 ?
[Source: K. Graumann]

Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?
- Removes high-frequency components from the image (low-pass filter).

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
F[x, y]
$$

This kernel is an

 approximation of a 2 d Gaussian function:$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

$$
H[u, v]
$$

$\frac{1}{16}$	1	2	1
2	4	2	
1	2	1	
$H[u, v]$			

H
[Source: S. Seitz]

Smoothing with a Gaussian

[Source: K. Grauman]

Mean vs Gaussian

Gaussian filter: Parameters

- Size of kernel or mask: Gaussian function has infinite support, but discrete filters use finite kernels.

[Source: K. Grauman]

Gaussian filter: Parameters

- Variance of the Gaussian: determines extent of smoothing.

[Source: K. Grauman]

Gaussian filter: Parameters

for sigma=1:3:10
h = fspecial('gaussian', fsize, sigma); out $=$ imfilter (im, h) ; imshow (out) ; pause;
end
[Source: K. Grauman]

Is this the most general Gaussian?

- No, the most general form for $\mathbf{x} \in \Re^{d}$

$$
\mathcal{N}(\mathbf{x} ; \mu, \Sigma)=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

- But the simplified version is typically use for filtering.

Properties of the Smoothing

- All values are positive.
- They all sum to 1 .

Properties of the Smoothing

- All values are positive.
- They all sum to 1 .
- Amount of smoothing proportional to mask size.

Properties of the Smoothing

- All values are positive.
- They all sum to 1 .
- Amount of smoothing proportional to mask size.
- Remove high-frequency components; low-pass filter.
[Source: K. Grauman]

Properties of the Smoothing

- All values are positive.
- They all sum to 1 .
- Amount of smoothing proportional to mask size.
- Remove high-frequency components; low-pass filter.
[Source: K. Grauman]

Example of Correlation

- What is the result of filtering the impulse signal (image) F with the arbitrary kernel H ?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$$
F[x, y]
$$

$G[x, y]$
[Source: K. Grauman]

Convolution

- Convolution operator

$$
g(i, j)=\sum_{k, l} f(i-k, j-l) h(k, l)=\sum_{k, l} f(k, l) h(i-k, j-l)=f * h
$$

and h is then called the impulse response function.

- Equivalent to flip the filter in both dimensions (bottom to top, right to left) and apply cross-correlation.

Convolution

- Convolution operator

$$
g(i, j)=\sum_{k, l} f(i-k, j-l) h(k, l)=\sum_{k, l} f(k, l) h(i-k, j-l)=f * h
$$

and h is then called the impulse response function.

- Equivalent to flip the filter in both dimensions (bottom to top, right to left) and apply cross-correlation.

Matrix form

- Correlation and convolution can both be written as a matrix-vector multiply, if we first convert the two-dimensional images $f(i, j)$ and $g(i, j)$ into raster-ordered vectors f and g

$$
\mathbf{g}=\mathbf{H f}
$$

with \mathbf{H} a sparse matrix.

| 72 | 88 | 62 | 52 | 37 |
| :---: | :---: | :---: | :---: | :---: |$*$| $1 / 4$ | $1 / 2$ | $1 / 4$ |
| :--- | :--- | :--- | :--- |\(\Leftrightarrow \frac{1}{4}\left[\begin{array}{ccccc}2 \& 1 \& . \& . \& .

1 \& 2 \& 1 \& . \& \cdot

. \& 1 \& 2 \& 1 \& .

. \& 1 \& 2 \& 1

. \& . \& . \& 1 \& 2\end{array}\right]\left[$$
\begin{array}{c}72 \\
88 \\
62 \\
52 \\
37\end{array}
$$\right]\)

Correlation vs Convolution

- Convolution

$$
\begin{aligned}
g(i, j) & =\sum_{k, l} f(i-k, j-l) h(k, l) \\
G & =H * F
\end{aligned}
$$

- Correlation

$$
\begin{aligned}
g(i, j) & =\sum_{k, l} f(i+k, j+l) h(k, l) \\
G & =H \otimes F
\end{aligned}
$$

- For a Gaussian or box filter, how will the outputs differ?
- If the input is an impulse signal, how will the outputs differ? $h * \delta$?, and $h \otimes \delta$?

Example

- What's the result?

Original

[Source: D. Lowe]

Example

- What's the result?

Original

Filtered (no change)
[Source: D. Lowe]

Example

- What's the result?

Original

[Source: D. Lowe]

Example

- What's the result?

[Source: D. Lowe]

Example

- What's the result?

Original
[Source: D. Lowe]

Example

- What's the result?

[Source: D. Lowe]

Sharpening

after
[Source: D. Lowe]

Gaussian Filter

- Convolution with itself is another Gaussian

- Convolving twice with Gaussian kernel of width σ is the same as convolving once with kernel of width $\sigma \sqrt{2}$
[Source: K. Grauman]

Sharpening revisited

- What does blurring take away?

- Let's add it back

[Source: S. Lazebnik]

Sharpening

[Source: N. Snavely]

"Optical" Convolution

- Camera Shake

Figure: Fergus, et al., SIGGRAPH 2006

- Blur in out-of-focus regions of an image.

Figure: Bokeh: Click for more info
[Source: N. Snavely]

Correlation vs Convolution

- The convolution is both commutative and associative.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.

Correlation vs Convolution

- The convolution is both commutative and associative.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.
- Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both the superposition principle

$$
h \circ\left(f_{0}+f_{1}\right)=h \circ f_{0}+h \circ f_{1}
$$

and the shift invariance principle

$$
\text { if } g(i, j)=f(i+k, j+I) \leftrightarrow(h \circ g)(i, j)=(h \circ f)(i+k, j+l)
$$

which means that shifting a signal commutes with applying the operator.

Correlation vs Convolution

- The convolution is both commutative and associative.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.
- Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both the superposition principle

$$
h \circ\left(f_{0}+f_{1}\right)=h \circ f_{\circ}+h \circ f_{1}
$$

and the shift invariance principle

$$
\text { if } \quad g(i, j)=f(i+k, j+l) \leftrightarrow(h \circ g)(i, j)=(h \circ f)(i+k, j+l)
$$

which means that shifting a signal commutes with applying the operator.

- Is the same as saying that the effect of the operator is the same everywhere.

Correlation vs Convolution

- The convolution is both commutative and associative.
- The Fourier transform of two convolved images is the product of their individual Fourier transforms.
- Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both the superposition principle

$$
h \circ\left(f_{0}+f_{1}\right)=h \circ f_{o}+h \circ f_{1}
$$

and the shift invariance principle

$$
\text { if } \quad g(i, j)=f(i+k, j+l) \leftrightarrow(h \circ g)(i, j)=(h \circ f)(i+k, j+l)
$$

which means that shifting a signal commutes with applying the operator.

- Is the same as saying that the effect of the operator is the same everywhere.

Boundary Effects

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.

Boundary Effects

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.
- A number of alternative padding or extension modes have been developed.

Boundary Effects

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.
- A number of alternative padding or extension modes have been developed.

zero

blurred zero

wrap

normalized zero

clamp

blurred clamp

mirror

blurred mirror

Boundary Effects

- The results of filtering the image in this form will lead to a darkening of the corner pixels.
- The original image is effectively being padded with 0 values wherever the convolution kernel extends beyond the original image boundaries.
- A number of alternative padding or extension modes have been developed.

zero

blurred zero

wrap

normalized zero

clamp

blurred clamp

mirror

blurred mirror

Separable Filters

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring $2 K$ operations.

Separable Filters

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring $2 K$ operations.
- If his is possible, then the convolution kernel is called separable.

Separable Filters

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring $2 K$ operations.
- If his is possible, then the convolution kernel is called separable.
- And it is the outer product of two kernels

$$
\mathbf{K}=\mathbf{v} \mathbf{h}^{T}
$$

Separable Filters

- The process of performing a convolution requires K^{2} operations per pixel, where K is the size (width or height) of the convolution kernel.
- In many cases, this operation can be speed up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring $2 K$ operations.
- If his is possible, then the convolution kernel is called separable.
- And it is the outer product of two kernels

$$
\mathbf{K}=\mathbf{v h}^{T}
$$

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{K^{2}}$| 1 | 1 | \cdots | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | 1 |
| | \vdots | \vdots | 1 |
| | | | |
| 1 | 1 | \cdots | 1 |

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{K^{2}}$| 1 | 1 | \cdots | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | 1 |
| \vdots | \vdots | 1 | \vdots |
| 1 | 1 | \cdots | 1 |

What does this filter do?

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

4	1	2

What does this filter do?

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{256}$| 1 | 4 | 6 | 4 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 24 | 16 | 4 |
| 6 | 24 | 36 | 24 | 6 |
| 4 | 16 | 24 | 16 | 4 |
| 1 | 4 | 6 | 4 | 1 |

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{256}$| 1 | 4 | 6 | 4 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 24 | 16 | 4 |
| 6 | 24 | 36 | 24 | 6 |
| 4 | 16 | 24 | 16 | 4 |
| 1 | 4 | 6 | 4 | 1 |

16				
1	4	6	4	1

What does this filter do?

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

$\frac{1}{2}$| -1 | 0 | 1 |
| :--- | :--- | :--- |

What does this filter do?

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{4}$| 1 | -2 | 1 |
| :---: | :---: | :---: |
| -2 | 4 | -2 |
| 1 | -2 | 1 |

Let's play a game...

Is this separable? If yes, what's the separable version?

$\frac{1}{4}$| 1 | -2 | 1 |
| :---: | :---: | :---: |
| -2 | 4 | -2 |
| 1 | -2 | 1 |

$\frac{1}{2}$| 1 | -2 | 1 |
| :--- | :--- | :--- |

What does this filter do?

How can we tell if a given kernel K is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.

How can we tell if a given kernel K is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$
K=\mathbf{U} \Sigma \mathbf{V}^{\top}=\sum_{i} \sigma_{i} u_{i} v_{i}^{\top}
$$

with $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$.

How can we tell if a given kernel K is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$
K=\mathbf{U} \Sigma \mathbf{V}^{\top}=\sum_{i} \sigma_{i} u_{i} v_{i}^{\top}
$$

with $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$.

- $\sqrt{\sigma_{1}} \mathbf{u}_{1}$ and $\sqrt{\sigma_{1}} \mathbf{v}_{1}^{\top}$ are the vertical and horizontal kernels.

How can we tell if a given kernel K is indeed separable?

- Inspection... this is what we were doing.
- Looking at the analytic form of it.
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$
K=\mathbf{U} \Sigma \mathbf{V}^{T}=\sum_{i} \sigma_{i} u_{i} v_{i}^{\top}
$$

with $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$.

- $\sqrt{\sigma_{1}} \mathbf{u}_{1}$ and $\sqrt{\sigma_{1}} \mathbf{v}_{1}^{T}$ are the vertical and horizontal kernels.

Application of filtering: Template matching

- Filters as templates: filters look like the effects they are intended to find.
- Use normalized cross-correlation score to find a given pattern (template) in the image.
- Normalization needed to control for relative brightnesses.

Template (mask)
Scene
[Source: K. Grauman]

Template matching

[Source: K. Grauman]

More complex Scenes

Let's talk about Edge Detection

Filtering: Edge detection

- Map image from 2d array of pixels to a set of curves or line segments or contours.
- More compact than pixels.
- Look for strong gradients, post-process.

Figure: [Shotton et al. PAMI, 07]
[Source: K. Grauman]

Origin of edges

- Edges are caused by a variety of factors

[Source: N. Snavely]

What causes an edge?

[Source: K. Grauman]

Looking more locally...

[Source: K. Grauman]

Images as functions

- Edges look like steep cliffs

[Source: N. Snavely]

Characterizing Edges

- An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]

How to Implement Derivatives with Convolution

How can we differentiate a digital image $\mathrm{F}[\mathrm{x}, \mathrm{y}]$?

- Option 1: reconstruct a continuous image f, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x)}{\epsilon}
$$

- Option 2: take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x]}{1}
$$

How to Implement Derivatives with Convolution

How can we differentiate a digital image $F[x, y]$?

- Option 1: reconstruct a continuous image f, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x)}{\epsilon}
$$

- Option 2: take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x]}{1}
$$

- What would be the filter to implement this using convolution?

How to Implement Derivatives with Convolution

How can we differentiate a digital image $\mathrm{F}[\mathrm{x}, \mathrm{y}]$?

- Option 1: reconstruct a continuous image f, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x)}{\epsilon}
$$

- Option 2: take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x]}{1}
$$

- What would be the filter to implement this using convolution?

[Source: S. Seitz]

How to Implement Derivatives with Convolution

How can we differentiate a digital image $\mathrm{F}[\mathrm{x}, \mathrm{y}]$?

- Option 1: reconstruct a continuous image f, then compute the partial derivative as

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon, y)-f(x)}{\epsilon}
$$

- Option 2: take discrete derivative (finite difference)

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x+1, y]-f[x]}{1}
$$

- What would be the filter to implement this using convolution?

[Source: S. Seitz]

Partial derivatives of an image

Figure: Using correlation filters
[Source: K. Grauman]

Finite Difference Filters

Prewitt: $\quad M_{z}=$\begin{tabular}{|r|r|r|}
\hline-1 \& 0 \& 1

\hline-1 \& 0 \& 1

\hline-1 \& 0 \& 1

\hline

$\quad ; \quad M_{y}=$

\hline 1 \& 1 \& 1

\hline 0 \& 0 \& 0

\hline-1 \& -1 \& -1

\hline
\end{tabular}

Sobel: $\quad M_{x}=$\begin{tabular}{|c|c|c|}
\hline-1 \& 0 \& 1

\hline-2 \& 0 \& 2

\hline-1 \& 0 \& 1

\hline

$\quad ; \quad M_{y}=$

\hline 1 \& 2 \& 1

\hline 0 \& 0 \& 0

\hline-1 \& -2 \& -1

\hline
\end{tabular}

$$
\text { Roberts: } \quad M_{x}=\begin{array}{|r|l|}
\hline 0 & 1 \\
\hline-1 & 0 \\
\hline
\end{array} ; \quad M_{y}=\begin{array}{|l|r|}
\hline 1 & 0 \\
\hline 0 & -1 \\
\hline
\end{array}
$$

>> My = fspecial('sobel');
>> outim $=$ imfilter (double(im), My);
>> imagesc (outim) ;
>> colormap gray;

[Source: K. Grauman]

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

$$
\stackrel{\nabla}{\longrightarrow}=\left[\frac{\partial f}{\partial x}, 0\right]
$$

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

$$
\xrightarrow{\nabla}=\left[\frac{\partial f}{\partial x}, 0\right] \quad \downarrow_{\nabla f=\left[0, \frac{\partial f}{\partial y}\right]} \quad \text { LO }_{\boldsymbol{\theta}}^{\longrightarrow} \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

- The gradient direction (orientation of edge normal) is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

$$
\underset{\square}{\nabla f f}=\left[\frac{\partial f}{\partial x}, 0\right] \quad \varliminf_{\nabla f=\left[0, \frac{\partial f}{\partial y}\right]} \quad \mathfrak{L o}_{\boldsymbol{\theta}}^{\longrightarrow} \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

- The gradient direction (orientation of edge normal) is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- The edge strength is given by the magnitude $\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}$
[Source: S. Seitz]

Image Gradient

- The gradient of an image $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid change in intensity

- The gradient direction (orientation of edge normal) is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- The edge strength is given by the magnitude $\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}$
[Source: S. Seitz]

Image Gradient

[Source: S. Lazebnik]

Effects of noise

- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.

[Source: S. Seitz]

Effects of noise

- Smooth first, and look for picks in $\frac{\partial}{\partial x}(h * f)$.

[Source: S. Seitz]

Derivative theorem of convolution

- Differentiation property of convolution

$$
\frac{\partial}{\partial x}(h * f)=\left(\frac{\partial h}{\partial x}\right) * f=h *\left(\frac{\partial f}{\partial x}\right)
$$

- It saves one operation

[Source: S. Seitz]

2D Edge Detection Filters

Gaussian $h_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{u^{2}+y^{2}}{2 \sigma^{2}}}$

Derivative of Gaussian (x)

$$
\frac{\partial}{\partial x} h_{\sigma}(u, v)
$$

[Source: N. Snavely]

Derivative of Gaussians

x-direction

y-direction

[Source: K. Grauman]

Laplacian of Gaussians

- Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]

2D Edge Filtering

Gaussian
$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$

with ∇^{2} the Laplacian operator $\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$
[Source: S. Seitz]

Effect of σ on derivatives

The detected structures differ depending on the Gaussian's scale parameter:

- Larger values: larger scale edges detected.
- Smaller values: finer features detected.

$\sigma=1$ pixel

$\sigma=3$ pixels
[Source: K. Grauman]

Derivatives

- Use opposite signs to get response in regions of high contrast. - They sum to 0 so that there is no response in constant regions.

Derivatives

- Use opposite signs to get response in regions of high contrast.
- They sum to 0 so that there is no response in constant regions.
- High absolute value at points of high contrast.
[Source: K. Grauman]

Derivatives

- Use opposite signs to get response in regions of high contrast.
- They sum to 0 so that there is no response in constant regions.
- High absolute value at points of high contrast.
[Source: K. Grauman]

Band-pass filters

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

and taking the first or second derivatives.

Band-pass filters

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.

Band-pass filters

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.
- The second derivative of a two-dimensional image is the laplacian operator

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

Band-pass filters

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.
- The second derivative of a two-dimensional image is the laplacian operator

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

- Blurring an image with a Gaussian and then taking its Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

Band-pass filters

- The Sobel and corner filters are band-pass and oriented filters.
- More sophisticated filters can be obtained by convolving with a Gaussian filter

$$
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)
$$

and taking the first or second derivatives.

- These filters are band-pass filters: they filter low and high frequencies.
- The second derivative of a two-dimensional image is the laplacian operator

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

- Blurring an image with a Gaussian and then taking its Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

Band-pass filters

- The directional or oriented filter can obtained by smoothing with a Gaussian (or some other filter) and then taking a directional derivative $\nabla_{\mathbf{u}}=\frac{\partial}{\partial \mathbf{u}}$

$$
\mathbf{u} \cdot \nabla(G * f)=\nabla_{\mathbf{u}}(G * f)=\left(\nabla_{\mathbf{u}} G\right) * f
$$

with $\mathbf{u}=(\cos \theta, \sin \theta)$.

- The Sobel operator is a simple approximation of this:

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

$$
\frac{1}{2} \begin{array}{|l|l|l|}
\hline-1 & 0 & 1 \\
\hline
\end{array}
$$

Practical Example

[Source: N. Snavely]

Finding Edges

Figure: Gradient magnitude

Finding Edges

Figure: Gradient magnitude

Non-Maxima Suppression

Figure: Gradient magnitude

- Check if pixel is local maximum along gradient direction: requires interpolation
[Source: N. Snavely]

Finding Edges

Figure: Thresholding

Finding Edges

Figure: Thinning: Non-maxima suppression

Canny Edge Detector

Matlab: edge(image, 'canny')
(1) Filter image with derivative of Gaussian
(2) Find magnitude and orientation of gradient
(3) Non-maximum suppression
(9) Linking and thresholding (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them
[Source: D. Lowe and L. Fei-Fei]

Canny edge detector

- Still one of the most widely used edge detectors in computer vision
- J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- Depends on several parameters: σ of the blur and the thresholds

Canny edge detector

- large σ detects large-scale edges
- small σ detects fine edges

original

Canny with $\sigma=1$

Canny with $\sigma=2$
[Source: S. Seitz]

Scale Space (Witkin 83)

Properties of scale space (w/ Gaussian smoothing)

- edge position may shift with increasing scale (σ)
- two edges may merge with increasing scale
- an edge may not split into two with increasing scale
[Source: N. Snavely]

Next class ... more on filtering and image features

