CSC 411: Lecture 10: Neural Networks I

Richard Zemel, Raquel Urtasun and Sanja Fidler
University of Toronto

Today

- Multi-layer Perceptron
- Forward propagation
- Backward propagation

Motivating Examples

Cat
Dog

Are You Excited about Deep Learning?

Limitations of Linear Classifiers

- Linear classifiers (e.g., logistic regression) classify inputs based on linear combinations of features x_{i}

Limitations of Linear Classifiers

- Linear classifiers (e.g., logistic regression) classify inputs based on linear combinations of features x_{i}
- Many decisions involve non-linear functions of the input

Limitations of Linear Classifiers

- Linear classifiers (e.g., logistic regression) classify inputs based on linear combinations of features x_{i}
- Many decisions involve non-linear functions of the input
- Canonical example: do 2 input elements have the same value?

Limitations of Linear Classifiers

- Linear classifiers (e.g., logistic regression) classify inputs based on linear combinations of features x_{i}
- Many decisions involve non-linear functions of the input
- Canonical example: do 2 input elements have the same value?

- The positive and negative cases cannot be separated by a plane

Limitations of Linear Classifiers

- Linear classifiers (e.g., logistic regression) classify inputs based on linear combinations of features x_{i}
- Many decisions involve non-linear functions of the input
- Canonical example: do 2 input elements have the same value?

- The positive and negative cases cannot be separated by a plane
- What can we do?

How to Construct Nonlinear Classifiers?

- We would like to construct non-linear discriminative classifiers that utilize functions of input variables

How to Construct Nonlinear Classifiers?

- We would like to construct non-linear discriminative classifiers that utilize functions of input variables
- Use a large number of simpler functions

How to Construct Nonlinear Classifiers?

- We would like to construct non-linear discriminative classifiers that utilize functions of input variables
- Use a large number of simpler functions
- If these functions are fixed (Gaussian, sigmoid, polynomial basis functions), then optimization still involves linear combinations of (fixed functions of) the inputs

How to Construct Nonlinear Classifiers?

- We would like to construct non-linear discriminative classifiers that utilize functions of input variables
- Use a large number of simpler functions
- If these functions are fixed (Gaussian, sigmoid, polynomial basis functions), then optimization still involves linear combinations of (fixed functions of) the inputs
- Or we can make these functions depend on additional parameters \rightarrow need an efficient method of training extra parameters

Inspiration: The Brain

- Many machine learning methods inspired by biology, e.g., the (human) brain
- Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^{4}$ other neurons

Figure: The basic computational unit of the brain: Neuron
[Pic credit: http://cs231n.github.io/neural-networks-1/]

Mathematical Model of a Neuron

- Neural networks define functions of the inputs (hidden features), computed by neurons
- Artificial neurons are called units

Figure : A mathematical model of the neuron in a neural network
[Pic credit: http://cs231n.github.io/neural-networks-1/]

Activation Functions

Most commonly used activation functions:

- Sigmoid: $\quad \sigma(z)=\frac{1}{1+\exp (-z)}$
- Tanh: $\tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)}$
- ReLU (Rectified Linear Unit): $\operatorname{ReLU}(z)=\max (0, z)$

Neuron in Python

- Example in Python of a neuron with a sigmoid activation function

```
class Neuron(object):
    # ...
    def forward(inputs):
    """ assume inputs and weights are 1-D numpy arrays and bias is a number """
    cell_body_sum = np.sum(inputs * self.weights) + self.bias
    firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
    return firing_rate
```

Figure : Example code for computing the activation of a single neuron
[http://cs231n.github.io/neural-networks-1/]

Neural Network Architecture (Multi-Layer Perceptron)

- Network with one layer of four hidden units:

hidden layer

Figure : Two different visualizations of a 2-layer neural network. In this example: 3 input units, 4 hidden units and 2 output units

- Each unit computes its value based on linear combination of values of units that point into it, and an activation function

Neural Network Architecture (Multi-Layer Perceptron)

- Network with one layer of four hidden units:

hidden layer

Figure : Two different visualizations of a 2-layer neural network. In this example: 3 input units, 4 hidden units and 2 output units

- Naming conventions; a 2-layer neural network:
- One layer of hidden units
- One output layer (we do not count the inputs as a layer)

Neural Network Architecture (Multi-Layer Perceptron)

- Going deeper: a 3-layer neural network with two layers of hidden units

hidden layer 1 hidden layer 2
Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidden layer and 1 output unit
- Naming conventions; a N-layer neural network:
- N-1 layers of hidden units
- One output layer
[http://cs231n.github.io/neural-networks-1/]

Representational Power

- Neural network with at least one hidden layer is a universal approximator (can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

Representational Power

- Neural network with at least one hidden layer is a universal approximator (can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

20 hidden neurons

- The capacity of the network increases with more hidden units and more hidden layers

Representational Power

- Neural network with at least one hidden layer is a universal approximator (can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

20 hidden neurons

- The capacity of the network increases with more hidden units and more hidden layers
- Why go deeper? Read e.g.,: Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana, Paper: paper]
[http://cs231n.github.io/neural-networks-1/]

Neural Networks

- We only need to know two algorithms
- Forward pass: performs inference
- Backward pass: performs learning

Forward Pass: What does the Network Compute?

Forward Pass: What does the Network Compute?

- Output of the network can be written as:

$$
h_{j}(\mathbf{x})=f\left(v_{j 0}+\sum_{i=1}^{D} x_{i} v_{j i}\right)
$$

Forward Pass: What does the Network Compute?

- Output of the network can be written as:

$$
\begin{aligned}
& h_{j}(\mathbf{x})=f\left(v_{j 0}+\sum_{i=1}^{D} x_{i} v_{j i}\right) \\
& o_{k}(\mathbf{x})=g\left(w_{k 0}+\sum_{j=1}^{J} h_{j}(\mathbf{x}) w_{k j}\right)
\end{aligned}
$$

(j indexing hidden units, k indexing the output units, D number of inputs)

Forward Pass: What does the Network Compute?

- Output of the network can be written as:

$$
\begin{aligned}
& h_{j}(\mathbf{x})=f\left(v_{j 0}+\sum_{i=1}^{D} x_{i} v_{j i}\right) \\
& o_{k}(\mathbf{x})=g\left(w_{k 0}+\sum_{j=1}^{J} h_{j}(\mathbf{x}) w_{k j}\right)
\end{aligned}
$$

(j indexing hidden units, k indexing the output units, D number of inputs)

- Activation functions f, g : sigmoid/logistic, tanh, or rectified linear (ReLU)

$$
\sigma(z)=\frac{1}{1+\exp (-z)}, \tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)}, \operatorname{ReLU}(z)=\max (0, z)
$$

Forward Pass in Python

- Example code for a forward pass for a 3-layer network in Python:


```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

- Can be implemented efficiently using matrix operations

Forward Pass in Python

- Example code for a forward pass for a 3-layer network in Python:


```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

- Can be implemented efficiently using matrix operations
- Example above: W_{1} is matrix of size $4 \times 3, W_{2}$ is 4×4. What about biases and W_{3} ?

Special Case

- What is a single layer (no hiddens) network with a sigmoid act. function?

Special Case

- What is a single layer (no hiddens) network with a sigmoid act. function?

- Network:

$$
\begin{aligned}
o_{k}(\mathbf{x}) & =\frac{1}{1+\exp \left(-z_{k}\right)} \\
z_{k} & =w_{k 0}+\sum_{j=1}^{J} x_{j} w_{k j}
\end{aligned}
$$

Special Case

- What is a single layer (no hiddens) network with a sigmoid act. function?

- Network:

$$
\begin{aligned}
o_{k}(\mathbf{x}) & =\frac{1}{1+\exp \left(-z_{k}\right)} \\
z_{k} & =w_{k 0}+\sum_{j=1}^{J} x_{j} w_{k j}
\end{aligned}
$$

- Logistic regression!

Example Application

- Classify image of handwritten digit (32×32 pixels): 4 vs non- 4

Example Application

- Classify image of handwritten digit (32×32 pixels): 4 vs non- 4

- How would you build your network?

Example Application

- Classify image of handwritten digit (32×32 pixels): 4 vs non- 4

- How would you build your network?
- For example, use one hidden layer and the sigmoid activation function:

$$
\begin{aligned}
o_{k}(\mathbf{x}) & =\frac{1}{1+\exp \left(-z_{k}\right)} \\
z_{k} & =w_{k 0}+\sum_{j=1}^{J} h_{j}(\mathbf{x}) w_{k j}
\end{aligned}
$$

Example Application

- Classify image of handwritten digit (32×32 pixels): 4 vs non- 4

- How would you build your network?
- For example, use one hidden layer and the sigmoid activation function:

$$
\begin{aligned}
o_{k}(\mathbf{x}) & =\frac{1}{1+\exp \left(-z_{k}\right)} \\
z_{k} & =w_{k 0}+\sum_{j=1}^{J} h_{j}(\mathbf{x}) w_{k j}
\end{aligned}
$$

- How can we train the network, that is, adjust all the parameters \mathbf{w} ?

Training Neural Networks

- Find weights:

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)}\right)
$$

where $\mathbf{o}=f(\mathbf{x} ; \mathbf{w})$ is the output of a neural network

Training Neural Networks

- Find weights:

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)}\right)
$$

where $\mathbf{o}=f(\mathbf{x} ; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
- Squared loss: $\sum_{k} \frac{1}{2}\left(o_{k}^{(n)}-t_{k}^{(n)}\right)^{2}$
- Cross-entropy loss: $-\sum_{k} t_{k}^{(n)} \log o_{k}^{(n)}$

Training Neural Networks

- Find weights:

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)}\right)
$$

where $\mathbf{o}=f(\mathbf{x} ; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
- Squared loss: $\sum_{k} \frac{1}{2}\left(o_{k}^{(n)}-t_{k}^{(n)}\right)^{2}$
- Cross-entropy loss: $-\sum_{k} t_{k}^{(n)} \log o_{k}^{(n)}$
- Gradient descent:

$$
\mathbf{w}^{t+1}=\mathbf{w}^{t}-\eta \frac{\partial E}{\partial \mathbf{w}^{t}}
$$

where η is the learning rate (and E is error/loss)

Useful Derivatives

name

 function derivativeSigmoid

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

$\sigma(z) \cdot(1-\sigma(z))$
Tanh
$\tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)} \quad 1 / \cosh ^{2}(z)$
ReLU

$$
\operatorname{ReLU}(z)=\max (0, z) \quad \begin{cases}1, & \text { if } z>0 \\ 0, & \text { if } z \leq 0\end{cases}
$$

Training Neural Networks: Back-propagation

- Back-propagation: an efficient method for computing gradients needed to perform gradient-based optimization of the weights in a multi-layer network

Training Neural Networks: Back-propagation

- Back-propagation: an efficient method for computing gradients needed to perform gradient-based optimization of the weights in a multi-layer network

Training neural nets:

Loop until convergence:

- for each example n

1. Given input $\mathbf{x}^{(n)}$, propagate activity forward $\left(\mathbf{x}^{(n)} \rightarrow \mathbf{h}^{(n)} \rightarrow o^{(n)}\right)$ (forward pass)
2. Propagate gradients backward (backward pass)
3. Update each weight (via gradient descent)

Training Neural Networks: Back-propagation

- Back-propagation: an efficient method for computing gradients needed to perform gradient-based optimization of the weights in a multi-layer network

Training neural nets:

Loop until convergence:

- for each example n

1. Given input $\mathbf{x}^{(n)}$, propagate activity forward $\left(\mathbf{x}^{(n)} \rightarrow \mathbf{h}^{(n)} \rightarrow o^{(n)}\right)$ (forward pass)
2. Propagate gradients backward (backward pass)
3. Update each weight (via gradient descent)

- Given any error function E , activation functions $g()$ and $f()$, just need to derive gradients

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities
- Each hidden activity can affect many output units and can therefore have many separate effects on the error. These effects must be combined

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities
- Each hidden activity can affect many output units and can therefore have many separate effects on the error. These effects must be combined
- We can compute error derivatives for all the hidden units efficiently

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities
- Each hidden activity can affect many output units and can therefore have many separate effects on the error. These effects must be combined
- We can compute error derivatives for all the hidden units efficiently
- Once we have the error derivatives for the hidden activities, its easy to get the error derivatives for the weights going into a hidden unit

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities
- Each hidden activity can affect many output units and can therefore have many separate effects on the error. These effects must be combined
- We can compute error derivatives for all the hidden units efficiently
- Once we have the error derivatives for the hidden activities, its easy to get the error derivatives for the weights going into a hidden unit
- This is just the chain rule!

Computing Gradients: Single Layer Network

- Let's take a single layer network

Computing Gradients: Single Layer Network

- Let's take a single layer network and draw it a bit differently

Output of unit k

Output layer activation function
Net input to output unit k
Weight from input ito k
Input unit i

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=
$$

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=\frac{\partial E}{\partial o_{k}} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}
$$

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=\frac{\partial E}{\partial o_{k}} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}
$$

- Error gradient is computable for any continuous activation function $g()$, and any continuous error function

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=\underbrace{\frac{\partial E}{\partial o_{k}}}_{\delta_{k}^{*}} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}
$$

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=\frac{\partial E}{\partial o_{k}} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}=\delta_{k}^{o} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}
$$

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=\frac{\partial E}{\partial o_{k}} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}=\underbrace{\delta_{k}^{o} \cdot \frac{\partial o_{k}}{\partial z_{k}}}_{\delta_{k}^{2}} \frac{\partial z_{k}}{\partial w_{k i}}
$$

Computing Gradients: Single Layer Network

- Error gradients for single layer network:

$$
\frac{\partial E}{\partial w_{k i}}=\frac{\partial E}{\partial o_{k}} \frac{\partial o_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{k i}}=\delta_{k}^{z} \frac{\partial z_{k}}{\partial w_{k i}}=\delta_{k}^{z} \cdot x_{i}
$$

Gradient Descent for Single Layer Network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_{k}^{(n)}}=o_{k}^{(n)}-t_{k}^{(n)}:=\delta_{k}^{o}
$$

Using logistic activation functions:

$$
\begin{aligned}
o_{k}^{(n)} & =g\left(z_{k}^{(n)}\right)=\left(1+\exp \left(-z_{k}^{(n)}\right)\right)^{-1} \\
\frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} & =o_{k}^{(n)}\left(1-o_{k}^{(n)}\right)
\end{aligned}
$$

Gradient Descent for Single Layer Network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_{k}^{(n)}}=o_{k}^{(n)}-t_{k}^{(n)}:=\delta_{k}^{o}
$$

Using logistic activation functions:

$$
\begin{aligned}
o_{k}^{(n)} & =g\left(z_{k}^{(n)}\right)=\left(1+\exp \left(-z_{k}^{(n)}\right)\right)^{-1} \\
\frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} & =o_{k}^{(n)}\left(1-o_{k}^{(n)}\right)
\end{aligned}
$$

- The error gradient is then:

$$
\frac{\partial E}{\partial w_{k i}}=
$$

Gradient Descent for Single Layer Network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_{k}^{(n)}}=o_{k}^{(n)}-t_{k}^{(n)}:=\delta_{k}^{o}
$$

Using logistic activation functions:

$$
\begin{aligned}
o_{k}^{(n)} & =g\left(z_{k}^{(n)}\right)=\left(1+\exp \left(-z_{k}^{(n)}\right)\right)^{-1} \\
\frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} & =o_{k}^{(n)}\left(1-o_{k}^{(n)}\right)
\end{aligned}
$$

- The error gradient is then:

$$
\frac{\partial E}{\partial w_{k i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k i}}=
$$

Gradient Descent for Single Layer Network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_{k}^{(n)}}=o_{k}^{(n)}-t_{k}^{(n)}:=\delta_{k}^{o}
$$

Using logistic activation functions:

$$
\begin{aligned}
o_{k}^{(n)} & =g\left(z_{k}^{(n)}\right)=\left(1+\exp \left(-z_{k}^{(n)}\right)\right)^{-1} \\
\frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} & =o_{k}^{(n)}\left(1-o_{k}^{(n)}\right)
\end{aligned}
$$

- The error gradient is then:

$$
\frac{\partial E}{\partial w_{k i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k i}}=\sum_{n=1}^{N}\left(o_{k}^{(n)}-t_{k}^{(n)}\right) o_{k}^{(n)}\left(1-o_{k}^{(n)}\right) x_{i}^{(n)}
$$

Gradient Descent for Single Layer Network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_{k}^{(n)}}=o_{k}^{(n)}-t_{k}^{(n)}:=\delta_{k}^{o}
$$

Using logistic activation functions:

$$
\begin{aligned}
o_{k}^{(n)} & =g\left(z_{k}^{(n)}\right)=\left(1+\exp \left(-z_{k}^{(n)}\right)\right)^{-1} \\
\frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} & =o_{k}^{(n)}\left(1-o_{k}^{(n)}\right)
\end{aligned}
$$

- The error gradient is then:

$$
\frac{\partial E}{\partial w_{k i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k i}}=\sum_{n=1}^{N}\left(o_{k}^{(n)}-t_{k}^{(n)}\right) o_{k}^{(n)}\left(1-o_{k}^{(n)}\right) x_{i}^{(n)}
$$

- The gradient descent update rule is given by:

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=
$$

Gradient Descent for Single Layer Network

- Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$
\frac{\partial E}{\partial o_{k}^{(n)}}=o_{k}^{(n)}-t_{k}^{(n)}:=\delta_{k}^{o}
$$

Using logistic activation functions:

$$
\begin{aligned}
o_{k}^{(n)} & =g\left(z_{k}^{(n)}\right)=\left(1+\exp \left(-z_{k}^{(n)}\right)\right)^{-1} \\
\frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} & =o_{k}^{(n)}\left(1-o_{k}^{(n)}\right)
\end{aligned}
$$

- The error gradient is then:

$$
\frac{\partial E}{\partial w_{k i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k i}}=\sum_{n=1}^{N}\left(o_{k}^{(n)}-t_{k}^{(n)}\right) o_{k}^{(n)}\left(1-o_{k}^{(n)}\right) x_{i}^{(n)}
$$

- The gradient descent update rule is given by:

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N}\left(o_{k}^{(n)}-t_{k}^{(n)}\right) o_{k}^{(n)}\left(1-o_{k}^{(n)}\right) x_{i}^{(n)}
$$

Multi-layer Neural Network

Back-propagation: Sketch on One Training Case

- Convert discrepancy between each output and its target value into an error derivative

$$
E=\frac{1}{2} \sum_{k}\left(o_{k}-t_{k}\right)^{2} ; \quad \frac{\partial E}{\partial o_{k}}=o_{k}-t_{k}
$$

Back-propagation: Sketch on One Training Case

- Convert discrepancy between each output and its target value into an error derivative

$$
E=\frac{1}{2} \sum_{k}\left(o_{k}-t_{k}\right)^{2} ; \quad \frac{\partial E}{\partial o_{k}}=o_{k}-t_{k}
$$

- Compute error derivatives in each hidden layer from error derivatives in layer above. [assign blame for error at k to each unit j according to its influence on k (depends on $w_{k j}$)]

Back-propagation: Sketch on One Training Case

- Convert discrepancy between each output and its target value into an error derivative

$$
E=\frac{1}{2} \sum_{k}\left(o_{k}-t_{k}\right)^{2} ; \quad \frac{\partial E}{\partial o_{k}}=o_{k}-t_{k}
$$

- Compute error derivatives in each hidden layer from error derivatives in layer above. [assign blame for error at k to each unit j according to its influence on k (depends on $w_{k j}$)]

- Use error derivatives w.r.t. activities to get error derivatives w.r.t. the weights.

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

- Hidden weight gradients are then computed via back-prop:

$$
\frac{\partial E}{\partial h_{j}^{(n)}}=
$$

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

- Hidden weight gradients are then computed via back-prop:

$$
\frac{\partial E}{\partial h_{j}^{(n)}}=\sum_{k} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial h_{j}^{(n)}}=
$$

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

- Hidden weight gradients are then computed via back-prop:

$$
\frac{\partial E}{\partial h_{j}^{(n)}}=\sum_{k} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial h_{j}^{(n)}}=\sum_{k} \delta_{k}^{z,(n)} w_{k j}:=\delta_{j}^{h,(n)}
$$

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

- Hidden weight gradients are then computed via back-prop:

$$
\begin{aligned}
& \frac{\partial E}{\partial h_{j}^{(n)}}=\sum_{k} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial h_{j}^{(n)}}=\sum_{k} \delta_{k}^{z,(n)} w_{k j}:=\delta_{j}^{h,(n)} \\
& \frac{\partial E}{\partial v_{j i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial h_{j}^{(n)}} \frac{\partial h_{j}^{(n)}}{\partial u_{j}^{(n)}} \frac{\partial u_{j}^{(n)}}{\partial v_{j i}}=
\end{aligned}
$$

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

- Hidden weight gradients are then computed via back-prop:

$$
\begin{gathered}
\frac{\partial E}{\partial h_{j}^{(n)}}=\sum_{k} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial h_{j}^{(n)}}=\sum_{k} \delta_{k}^{z,(n)} w_{k j}:=\delta_{j}^{h,(n)} \\
\frac{\partial E}{\partial v_{j i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial h_{j}^{(n)}} \frac{\partial h_{j}^{(n)}}{\partial u_{j}^{(n)}} \frac{\partial u_{j}^{(n)}}{\partial v_{j i}}=\sum_{n=1}^{N} \delta_{j}^{h,(n)} f^{\prime}\left(u_{j}^{(n)}\right) \frac{\partial u_{j}^{(n)}}{\partial v_{j i}}=
\end{gathered}
$$

Gradient Descent for Multi-layer Network

- The output weight gradients for a multi-layer network are the same as for a single layer network

$$
\frac{\partial E}{\partial w_{k j}}=\sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{k j}}=\sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}
$$

where δ_{k} is the error w.r.t. the net input for unit k

- Hidden weight gradients are then computed via back-prop:

$$
\begin{gathered}
\frac{\partial E}{\partial h_{j}^{(n)}}=\sum_{k} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial h_{j}^{(n)}}=\sum_{k} \delta_{k}^{z,(n)} w_{k j}:=\delta_{j}^{h,(n)} \\
\frac{\partial E}{\partial v_{j i}}=\sum_{n=1}^{N} \frac{\partial E}{\partial h_{j}^{(n)}} \frac{\partial h_{j}^{(n)}}{\partial u_{j}^{(n)}} \frac{\partial u_{j}^{(n)}}{\partial v_{j i}}=\sum_{n=1}^{N} \delta_{j}^{h,(n)} f^{\prime}\left(u_{j}^{(n)}\right) \frac{\partial u_{j}^{(n)}}{\partial v_{j i}}=\sum_{n=1}^{N} \delta_{j}^{u,(n)} x_{i}^{(n)}
\end{gathered}
$$

Choosing Activation and Loss Functions

- When using a neural network for regression, sigmoid activation and MSE as the loss function work well

Choosing Activation and Loss Functions

- When using a neural network for regression, sigmoid activation and MSE as the loss function work well
- For classification, if it is a binary (2-class) problem, then cross-entropy error function often does better (as we saw with logistic regression)

$$
\begin{gathered}
E=-\sum_{n=1}^{N} t^{(n)} \log o^{(n)}+\left(1-t^{(n)}\right) \log \left(1-o^{(n)}\right) \\
o^{(n)}=\left(1+\exp \left(-z^{(n)}\right)^{-1}\right.
\end{gathered}
$$

Choosing Activation and Loss Functions

- When using a neural network for regression, sigmoid activation and MSE as the loss function work well
- For classification, if it is a binary (2-class) problem, then cross-entropy error function often does better (as we saw with logistic regression)

$$
\begin{gathered}
E=-\sum_{n=1}^{N} t^{(n)} \log o^{(n)}+\left(1-t^{(n)}\right) \log \left(1-o^{(n)}\right) \\
o^{(n)}=\left(1+\exp \left(-z^{(n)}\right)^{-1}\right.
\end{gathered}
$$

- We can then compute via the chain rule

$$
\begin{array}{r}
\frac{\partial E}{\partial o}=(o-t) /(o(1-o)) \\
\frac{\partial o}{\partial z}=o(1-o) \\
\frac{\partial E}{\partial z}=\frac{\partial E}{\partial o} \frac{\partial o}{\partial z}=(o-t)
\end{array}
$$

Multi-class Classification

- For multi-class classification problems, use cross-entropy as loss and the softmax activation function

$$
\begin{array}{r}
E=-\sum_{n} \sum_{k} t_{k}^{(n)} \log o_{k}^{(n)} \\
o_{k}^{(n)}=\frac{\exp \left(z_{k}^{(n)}\right)}{\sum_{j} \exp \left(z_{j}^{(n)}\right)}
\end{array}
$$

- And the derivatives become

$$
\begin{array}{r}
\frac{\partial o_{k}}{\partial z_{k}}=o_{k}\left(1-o_{k}\right) \\
\frac{\partial E}{\partial z_{k}}=\sum_{j} \frac{\partial E}{\partial o_{j}} \frac{\partial o_{j}}{\partial z_{k}}=\left(o_{k}-t_{k}\right) o_{k}\left(1-o_{k}\right)
\end{array}
$$

Example Application

- Now trying to classify image of handwritten digit: 32×32 pixels
- 10 output units, 1 per digit
- Use the softmax function:

$$
\begin{aligned}
o_{k} & =\frac{\exp \left(z_{k}\right)}{\sum_{j} \exp \left(z_{j}\right)} \\
z_{k} & =w_{k 0}+\sum_{j=1}^{J} h_{j}(\mathbf{x}) w_{k j}
\end{aligned}
$$

- What is J ?

Ways to Use Weight Derivatives

- How often to update

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

- after each training case (stochastic gradient descent)

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

- after each training case (stochastic gradient descent)
- after a mini-batch of training cases

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

- after each training case (stochastic gradient descent)
- after a mini-batch of training cases
- How much to update

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

- after each training case (stochastic gradient descent)
- after a mini-batch of training cases
- How much to update
- Use a fixed learning rate

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

- after each training case (stochastic gradient descent)
- after a mini-batch of training cases
- How much to update
- Use a fixed learning rate
- Adapt the learning rate

Ways to Use Weight Derivatives

- How often to update
- after a full sweep through the training data (batch gradient descent)

$$
w_{k i} \leftarrow w_{k i}-\eta \frac{\partial E}{\partial w_{k i}}=w_{k i}-\eta \sum_{n=1}^{N} \frac{\partial E\left(\mathbf{o}^{(n)}, \mathbf{t}^{(n)} ; \mathbf{w}\right)}{\partial w_{k i}}
$$

- after each training case (stochastic gradient descent)
- after a mini-batch of training cases
- How much to update
- Use a fixed learning rate
- Adapt the learning rate
- Add momentum

$$
\begin{aligned}
w_{k i} & \leftarrow w_{k i}-v \\
v & \leftarrow \gamma v+\eta \frac{\partial E}{\partial w_{k i}}
\end{aligned}
$$

Comparing Optimization Methods

[http://cs231n.github.io/neural-networks-3/, Alec Radford]

Monitor Loss During Training

- Check how your loss behaves during training, to spot wrong hyperparameters, bugs, etc

Figure : Left: Good vs bad parameter choices, Right: How a real loss might look like during training. What are the bumps caused by? How could we get a more smooth loss?

Monitor Accuracy on Train/Validation During Training

- Check how your desired performance metrics behaves during training

[http://cs231n.github.io/neural-networks-3/]

Why "Deep"?

Supervised Learning: Examples

Classification

Why "Deep"?

Supervised Learning: Examples

Classification

Supervised Deep Learning

Classification

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as nonlinearity

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as nonlinearity

- x is the input

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as nonlinearity

- \mathbf{x} is the input
- \mathbf{y} is the output (what we want to predict)

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as nonlinearity

- x is the input
- \mathbf{y} is the output (what we want to predict)
- \mathbf{h}^{i} is the i-th hidden layer

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as nonlinearity

- x is the input
- \mathbf{y} is the output (what we want to predict)
- \mathbf{h}^{i} is the i-th hidden layer
- W_{i} are the parameters of the i-th layer

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

- Do it in a compositional way,

$$
\mathbf{h}^{1}=\max \left(0, W_{1}^{T} \mathbf{x}+b^{1}\right)
$$

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

- Do it in a compositional way

$$
\begin{aligned}
\mathbf{h}^{1} & =\max \left(0, W_{1}^{\top} \mathbf{x}+b_{1}\right) \\
\mathbf{h}^{2} & =\max \left(0, W_{2}^{T} \mathbf{h}^{1}+b_{2}\right)
\end{aligned}
$$

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

- Do it in a compositional way

$$
\begin{aligned}
\mathbf{h}^{1} & =\max \left(0, W_{1}^{\top} \mathbf{x}+b_{1}\right) \\
\mathbf{h}^{2} & =\max \left(0, W_{2}^{T} \mathbf{h}^{1}+b_{2}\right) \\
\mathbf{y} & =W_{3}^{\top} \mathbf{h}^{2}+b_{3}
\end{aligned}
$$

Learning

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions
- Collect a training set of input-output pairs $\left\{\mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right\}$

Learning

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions
- Collect a training set of input-output pairs $\left\{\mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right\}$
- For classification: Encode the output with 1-K encoding $\mathbf{t}=[0, . ., 1, . ., 0]$

Learning

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions
- Collect a training set of input-output pairs $\left\{\mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right\}$
- For classification: Encode the output with $1-\mathrm{K}$ encoding $\mathbf{t}=[0, . ., 1, . ., 0]$
- Define a loss per training example and minimize the empirical risk

$$
\mathcal{L}(\mathbf{w})=\frac{1}{N} \sum_{n} \ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)
$$

with N number of examplesand \mathbf{w} contains all parameters

Loss Function: Classification

$$
\mathcal{L}(\mathbf{w})=\frac{1}{N} \sum_{n} \ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)
$$

Loss Function: Classification

$$
\mathcal{L}(\mathbf{w})=\frac{1}{N} \sum_{n} \ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)
$$

- Probability of class k given input (softmax):

$$
p\left(c_{k}=1 \mid \mathbf{x}\right)=\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)}
$$

Loss Function: Classification

$$
\mathcal{L}(\mathbf{w})=\frac{1}{N} \sum_{n} \ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)
$$

- Probability of class k given input (softmax):

$$
p\left(c_{k}=1 \mid \mathbf{x}\right)=\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)}
$$

- Cross entropy is the most used loss function for classification

$$
\ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)=-\sum_{k} t_{k}^{(n)} \log p\left(c_{k} \mid \mathbf{x}\right)
$$

Loss Function: Classification

$$
\mathcal{L}(\mathbf{w})=\frac{1}{N} \sum_{n} \ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)
$$

- Probability of class k given input (softmax):

$$
p\left(c_{k}=1 \mid \mathbf{x}\right)=\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)}
$$

- Cross entropy is the most used loss function for classification

$$
\ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)=-\sum_{k} t_{k}^{(n)} \log p\left(c_{k} \mid \mathbf{x}\right)
$$

- Use gradient descent to train the network

$$
\min _{\mathbf{w}} \frac{1}{N} \sum_{n} \ell\left(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}\right)
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

Backpropagation

- Efficient computation of the gradients by applying the chain rule $\mathbf{x} \rightarrow \max \left(0, W_{1}^{\top} \mathbf{x}+b^{1}\right) \stackrel{\mathbf{h}^{1}}{\rightarrow} \max \left(0, W_{2}^{\top} \mathbf{h}^{1}+b^{2}\right) \stackrel{\mathbf{h}^{2}}{\rightarrow} W_{3}^{\top} \mathbf{h}^{2}+b^{3}$

$$
p\left(c_{k}=1 \mid \mathbf{x}\right)=\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\mathbf{x} \rightarrow \max \left(0, W_{1}^{\top} \mathbf{x}+b^{1}\right) \stackrel{\mathbf{h}^{1}}{\rightarrow} \max \left(0, W_{2}^{\top} \mathbf{h}^{1}+b^{2}\right) \stackrel{\mathbf{h}^{2}}{\rightarrow} W_{3}^{\top} \mathbf{h}^{2}+b^{3} \underset{\mathbf{y}}{\frac{\partial \ell}{\partial y}} \leftarrow \mathbf{y}
$$

$$
\begin{aligned}
p\left(c_{k}=1 \mid \mathbf{x}\right) & =\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)} \\
\ell\left(\mathbf{x}^{(n)}, \mathbf{t}^{(n)}, \mathbf{w}\right) & =-\sum_{k} t_{k}^{(n)} \log p\left(c_{k} \mid \mathbf{x}\right)
\end{aligned}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\begin{aligned}
p\left(c_{k}=1 \mid \mathbf{x}\right) & =\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)} \\
\ell\left(\mathbf{x}^{(n)}, \mathbf{t}^{(n)}, \mathbf{w}\right) & =-\sum_{k} t_{k}^{(n)} \log p\left(c_{k} \mid \mathbf{x}\right)
\end{aligned}
$$

- Compute the derivative of loss w.r.t. the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\begin{aligned}
p\left(c_{k}=1 \mid \mathbf{x}\right) & =\frac{\exp \left(y_{k}\right)}{\sum_{j=1}^{C} \exp \left(y_{j}\right)} \\
\ell\left(\mathbf{x}^{(n)}, \mathbf{t}^{(n)}, \mathbf{w}\right) & =-\sum_{k} t_{k}^{(n)} \log p\left(c_{k} \mid \mathbf{x}\right)
\end{aligned}
$$

- Compute the derivative of loss w.r.t. the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Note that the forward pass is necessary to compute $\frac{\partial \ell}{\partial y}$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\frac{\partial \ell}{\partial W_{3}}=
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\frac{\partial \ell}{\partial W_{3}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_{3}}=
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\frac{\partial \ell}{\partial W_{3}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_{3}}=(p(c \mid \mathbf{x})-t)\left(\mathbf{h}^{2}\right)^{T}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\begin{aligned}
\frac{\partial \ell}{\partial W_{3}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_{3}}=(p(c \mid \mathbf{x})-t)\left(\mathbf{h}^{2}\right)^{T} \\
\frac{\partial \ell}{\partial \mathbf{h}^{2}} & =
\end{aligned}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\begin{aligned}
\frac{\partial \ell}{\partial W_{3}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_{3}}=(p(c \mid \mathbf{x})-t)\left(\mathbf{h}^{2}\right)^{T} \\
\frac{\partial \ell}{\partial \mathbf{h}^{2}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=
\end{aligned}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\begin{aligned}
\frac{\partial \ell}{\partial W_{3}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_{3}}=(p(c \mid \mathbf{x})-t)\left(\mathbf{h}^{2}\right)^{T} \\
\frac{\partial \ell}{\partial \mathbf{h}^{2}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
\end{aligned}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

- We have computed the derivative of loss w.r.t the output

$$
\frac{\partial \ell}{\partial y}=p(c \mid \mathbf{x})-t
$$

- Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$
\begin{aligned}
\frac{\partial \ell}{\partial W_{3}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_{3}}=(p(c \mid \mathbf{x})-t)\left(\mathbf{h}^{2}\right)^{T} \\
\frac{\partial \ell}{\partial \mathbf{h}^{2}} & =\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
\end{aligned}
$$

- Need to compute gradient w.r.t. inputs and parameters in each layer

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\frac{\partial \ell}{\partial \mathbf{h}^{2}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
$$

- Given $\frac{\partial \ell}{\partial \mathbf{h}^{2}}$ if we can compute the Jacobian of each module

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\frac{\partial \ell}{\partial \mathbf{h}^{2}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
$$

- Given $\frac{\partial \ell}{\partial \mathrm{h}^{2}}$ if we can compute the Jacobian of each module

$$
\frac{\partial \ell}{\partial W_{2}}=
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\frac{\partial \ell}{\partial \mathbf{h}^{2}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
$$

- Given $\frac{\partial \ell}{\partial \mathbf{h}^{2}}$ if we can compute the Jacobian of each module

$$
\frac{\partial \ell}{\partial W_{2}}=\frac{\partial \ell}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}^{2}}{\partial W_{2}}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\frac{\partial \ell}{\partial \mathbf{h}^{2}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
$$

- Given $\frac{\partial \ell}{\partial \mathbf{h}^{2}}$ if we can compute the Jacobian of each module

$$
\begin{aligned}
\frac{\partial \ell}{\partial W_{2}} & =\frac{\partial \ell}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}^{2}}{\partial W_{2}} \\
\frac{\partial \ell}{\partial \mathbf{h}^{1}} & =
\end{aligned}
$$

Backpropagation

- Efficient computation of the gradients by applying the chain rule

$$
\frac{\partial \ell}{\partial \mathbf{h}^{2}}=\frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^{2}}=\left(W_{3}\right)^{T}(p(c \mid \mathbf{x})-t)
$$

- Given $\frac{\partial \ell}{\partial \mathbf{h}^{2}}$ if we can compute the Jacobian of each module

$$
\begin{aligned}
\frac{\partial \ell}{\partial W_{2}} & =\frac{\partial \ell}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}^{2}}{\partial W_{2}} \\
\frac{\partial \ell}{\partial \mathbf{h}^{1}} & =\frac{\partial \ell}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}^{2}}{\partial \mathbf{h}^{1}}
\end{aligned}
$$

Toy Code (Matlab): Neural Net Trainer

```
% F-PROP
for i = 1 : nr_layers - 1
    [h{i} jac{i}] = nonlinearity(W{i} * h{i-1} + b{i});
end
h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});
```

\% CROSS ENTROPY LOSS
loss = - sum(sum(log(prediction) .* target)) / batch_size;
\% B-PROP
dh\{1-1\} $=$ prediction - target;
for $i=n r _l a y e r s-1$: -1 : 1
Wgrad\{i\} $=\operatorname{dh}\{i\} * h\{i-1\}$ ';
bgrad\{i\} $=\operatorname{sum}(d h\{i\}, 2)$;
$\operatorname{dh}\{i-1\}=(W\{i\} ' * \operatorname{dh}\{i\}) \quad . *$ jac\{i-1\};
end
\% UPDATE
for $i=1$: nr_layers - 1
$W\{i\}=W\{i\}-\left(l r / b a t c h _s i z e\right) \quad * W g r a d\{i\} ;$
b\{i\} $=\mathrm{b}\{\mathrm{i}\}$ - (lr / batch_size) * bgrad\{i\};
end

This code has a few bugs with indices...

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
- The target values may be unreliable.

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
- The target values may be unreliable.
- There is sampling error: There will be accidental regularities just because of the particular training cases that were chosen

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
- The target values may be unreliable.
- There is sampling error: There will be accidental regularities just because of the particular training cases that were chosen
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
- The target values may be unreliable.
- There is sampling error: There will be accidental regularities just because of the particular training cases that were chosen
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
- So it fits both kinds of regularity.

Overfitting

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
- The target values may be unreliable.
- There is sampling error: There will be accidental regularities just because of the particular training cases that were chosen
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
- So it fits both kinds of regularity.
- If the model is very flexible it can model the sampling error really well. This is a disaster.

Preventing Overfitting

- Use a model that has the right capacity:

Preventing Overfitting

- Use a model that has the right capacity:
- enough to model the true regularities

Preventing Overfitting

- Use a model that has the right capacity:
- enough to model the true regularities
- not enough to also model the spurious regularities (assuming they are weaker)

Preventing Overfitting

- Use a model that has the right capacity:
- enough to model the true regularities
- not enough to also model the spurious regularities (assuming they are weaker)
- Standard ways to limit the capacity of a neural net:

Preventing Overfitting

- Use a model that has the right capacity:
- enough to model the true regularities
- not enough to also model the spurious regularities (assuming they are weaker)
- Standard ways to limit the capacity of a neural net:
- Limit the number of hidden units.

Preventing Overfitting

- Use a model that has the right capacity:
- enough to model the true regularities
- not enough to also model the spurious regularities (assuming they are weaker)
- Standard ways to limit the capacity of a neural net:
- Limit the number of hidden units.
- Limit the norm of the weights.

Preventing Overfitting

- Use a model that has the right capacity:
- enough to model the true regularities
- not enough to also model the spurious regularities (assuming they are weaker)
- Standard ways to limit the capacity of a neural net:
- Limit the number of hidden units.
- Limit the norm of the weights.
- Stop the learning before it has time to overfit.

Limiting the size of the Weights

- Weight-decay involves adding an extra term to the cost function that penalizes the squared weights.

$$
C=\ell+\frac{\lambda}{2} \sum_{i} w_{i}^{2}
$$

- Keeps weights small unless they have big error derivatives.

$$
\frac{\partial C}{\partial w_{i}}=\frac{\partial \ell}{\partial w_{i}}+\lambda w_{i}
$$

$$
\text { when } \frac{\partial C}{\partial w_{i}}=0, \quad w_{i}=-\frac{1}{\lambda} \frac{\partial \ell}{\partial w_{i}}
$$

The Effect of Weight-decay

- It prevents the network from using weights that it does not need

The Effect of Weight-decay

- It prevents the network from using weights that it does not need
- This can often improve generalization a lot.

The Effect of Weight-decay

- It prevents the network from using weights that it does not need
- This can often improve generalization a lot.
- It helps to stop it from fitting the sampling error.

The Effect of Weight-decay

- It prevents the network from using weights that it does not need
- This can often improve generalization a lot.
- It helps to stop it from fitting the sampling error.
- It makes a smoother model in which the output changes more slowly as the input changes.

The Effect of Weight-decay

- It prevents the network from using weights that it does not need
- This can often improve generalization a lot.
- It helps to stop it from fitting the sampling error.
- It makes a smoother model in which the output changes more slowly as the input changes.
- But, if the network has two very similar inputs it prefers to put half the weight on each rather than all the weight on one \rightarrow other form of weight decay?

Deciding How Much to Restrict the Capacity

- How do we decide which regularizer to use and how strong to make it?

Deciding How Much to Restrict the Capacity

- How do we decide which regularizer to use and how strong to make it?
- So use a separate validation set to do model selection.

Using a Validation Set

- Divide the total dataset into three subsets:

Using a Validation Set

- Divide the total dataset into three subsets:
- Training data is used for learning the parameters of the model.

Using a Validation Set

- Divide the total dataset into three subsets:
- Training data is used for learning the parameters of the model.
- Validation data is not used for learning but is used for deciding what type of model and what amount of regularization works best

Using a Validation Set

- Divide the total dataset into three subsets:
- Training data is used for learning the parameters of the model.
- Validation data is not used for learning but is used for deciding what type of model and what amount of regularization works best
- Test data is used to get a final, unbiased estimate of how well the network works. We expect this estimate to be worse than on the validation data

Using a Validation Set

- Divide the total dataset into three subsets:
- Training data is used for learning the parameters of the model.
- Validation data is not used for learning but is used for deciding what type of model and what amount of regularization works best
- Test data is used to get a final, unbiased estimate of how well the network works. We expect this estimate to be worse than on the validation data
- We could then re-divide the total dataset to get another unbiased estimate of the true error rate.

Preventing Overfitting by Early Stopping

- If we have lots of data and a big model, its very expensive to keep re-training it with different amounts of weight decay

Preventing Overfitting by Early Stopping

- If we have lots of data and a big model, its very expensive to keep re-training it with different amounts of weight decay
- It is much cheaper to start with very small weights and let them grow until the performance on the validation set starts getting worse

Preventing Overfitting by Early Stopping

- If we have lots of data and a big model, its very expensive to keep re-training it with different amounts of weight decay
- It is much cheaper to start with very small weights and let them grow until the performance on the validation set starts getting worse
- The capacity of the model is limited because the weights have not had time to grow big.

Why Early Stopping Works

- When the weights are very small, every hidden unit is in its linear range.
- So a net with a large layer of hidden units is linear.
- It has no more capacity than a linear net in which the inputs are directly connected to the outputs!
- As the weights grow, the hidden units start using their non-linear ranges so the capacity grows.

