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Today

Multi-layer Perceptron

Forward propagation

Backward propagation

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 2 / 62



Motivating Examples
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http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
https://www.instapainting.com/ai-painter


Are You Excited about Deep Learning?
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Limitations of Linear Classifiers

Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features xi

Many decisions involve non-linear functions of the input

Canonical example: do 2 input elements have the same value?

0,1 

0,0 1,0 

1,1 

output =1 output =0 

The positive and negative cases cannot be separated by a plane

What can we do?
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How to Construct Nonlinear Classifiers?

We would like to construct non-linear discriminative classifiers that utilize
functions of input variables

Use a large number of simpler functions

I If these functions are fixed (Gaussian, sigmoid, polynomial basis
functions), then optimization still involves linear combinations of (fixed
functions of) the inputs

I Or we can make these functions depend on additional parameters →
need an efficient method of training extra parameters
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Inspiration: The Brain

Many machine learning methods inspired by biology, e.g., the (human) brain

Our brain has ∼ 1011 neurons, each of which communicates (is connected)
to ∼ 104 other neurons

Figure : The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]
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Mathematical Model of a Neuron

Neural networks define functions of the inputs (hidden features), computed
by neurons

Artificial neurons are called units

Figure : A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]
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Activation Functions

Most commonly used activation functions:

Sigmoid: σ(z) = 1
1+exp(−z)

Tanh: tanh(z) = exp(z)−exp(−z)
exp(z)+exp(−z)

ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)
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Neuron in Python

Example in Python of a neuron with a sigmoid activation function

Figure : Example code for computing the activation of a single neuron

[http://cs231n.github.io/neural-networks-1/]
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Neural Network Architecture (Multi-Layer Perceptron)

Network with one layer of four hidden units:

output units 

input units 

Figure : Two different visualizations of a 2-layer neural network. In this example: 3
input units, 4 hidden units and 2 output units

Each unit computes its value based on linear combination of values of units
that point into it, and an activation function

[http://cs231n.github.io/neural-networks-1/]
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Neural Network Architecture (Multi-Layer Perceptron)

Network with one layer of four hidden units:

output units 

input units 

Figure : Two different visualizations of a 2-layer neural network. In this example: 3
input units, 4 hidden units and 2 output units

Naming conventions; a 2-layer neural network:
I One layer of hidden units
I One output layer

(we do not count the inputs as a layer)

[http://cs231n.github.io/neural-networks-1/]
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Neural Network Architecture (Multi-Layer Perceptron)

Going deeper: a 3-layer neural network with two layers of hidden units

Figure : A 3-layer neural net with 3 input units, 4 hidden units in the first and second
hidden layer and 1 output unit

Naming conventions; a N-layer neural network:

I N − 1 layers of hidden units
I One output layer

[http://cs231n.github.io/neural-networks-1/]
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Representational Power

Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

The capacity of the network increases with more hidden units and more
hidden layers

Why go deeper? Read e.g.,: Do Deep Nets Really Need to be Deep? Jimmy Ba,
Rich Caruana, Paper: paper]

[http://cs231n.github.io/neural-networks-1/]
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Neural Networks

We only need to know two algorithms

I Forward pass: performs inference

I Backward pass: performs learning
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Forward Pass: What does the Network Compute?

Output of the network can be written as:

hj(x) = f (vj0 +
D∑
i=1

xivji )

ok(x) = g(wk0 +
J∑

j=1

hj(x)wkj)

(j indexing hidden units, k indexing the output units, D number of inputs)

Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU)

σ(z) =
1

1 + exp(−z)
, tanh(z) =

exp(z)− exp(−z)

exp(z) + exp(−z)
, ReLU(z) = max(0, z)
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Forward Pass in Python

Example code for a forward pass for a 3-layer network in Python:

Can be implemented efficiently using matrix operations

Example above: W1 is matrix of size 4× 3, W2 is 4× 4. What about biases
and W3?

[http://cs231n.github.io/neural-networks-1/]
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Special Case

What is a single layer (no hiddens) network with a sigmoid act. function?

Network:
ok(x) =

1

1 + exp(−zk)

zk = wk0 +
J∑

j=1

xjwkj

Logistic regression!
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Example Application

Classify image of handwritten digit (32x32 pixels): 4 vs non-4

How would you build your network?

For example, use one hidden layer and the sigmoid activation function:

ok(x) =
1

1 + exp(−zk)

zk = wk0 +
J∑

j=1

hj(x)wkj

How can we train the network, that is, adjust all the parameters w?
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Training Neural Networks

Find weights:

w∗ = argmin
w

N∑
n=1

loss(o(n), t(n))

where o = f (x;w) is the output of a neural network

Define a loss function, eg:

I Squared loss:
∑

k
1
2 (o

(n)
k − t

(n)
k )2

I Cross-entropy loss: −
∑

k t
(n)
k log o

(n)
k

Gradient descent:

wt+1 = wt − η ∂E
∂wt

where η is the learning rate (and E is error/loss)
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Useful Derivatives

name function derivative

Sigmoid σ(z) = 1
1+exp(−z) σ(z) · (1− σ(z))

Tanh tanh(z) = exp(z)−exp(−z)
exp(z)+exp(−z) 1/ cosh2(z)

ReLU ReLU(z) = max(0, z)

{
1, if z > 0

0, if z ≤ 0
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Training Neural Networks: Back-propagation

Back-propagation: an efficient method for computing gradients needed to
perform gradient-based optimization of the weights in a multi-layer network

Training neural nets:

Loop until convergence:

I for each example n

1. Given input x(n) , propagate activity forward (x(n) → h(n) → o(n))
(forward pass)

2. Propagate gradients backward (backward pass)
3. Update each weight (via gradient descent)

Given any error function E, activation functions g() and f (), just need to
derive gradients
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Key Idea behind Backpropagation

We don’t have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

I Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

I Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be
combined

I We can compute error derivatives for all the hidden units efficiently
I Once we have the error derivatives for the hidden activities, its easy to

get the error derivatives for the weights going into a hidden unit

This is just the chain rule!
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Computing Gradients: Single Layer Network

Let’s take a single layer network

and draw it a bit differently
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Computing Gradients: Single Layer Network

Error gradients for single layer network:

∂E

∂wki
=

∂E

∂ok

∂ok
∂zk

∂zk
∂wki

Error gradient is computable for any continuous activation function g(), and
any continuous error function
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Computing Gradients: Single Layer Network

Error gradients for single layer network:

∂E

∂wki
=

∂E

∂ok︸︷︷︸
δok

∂ok
∂zk

∂zk
∂wki
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Computing Gradients: Single Layer Network

Error gradients for single layer network:

∂E

∂wki
=
∂E

∂ok

∂ok
∂zk

∂zk
∂wki

= δok
∂ok
∂zk

∂zk
∂wki
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Computing Gradients: Single Layer Network

Error gradients for single layer network:

∂E

∂wki
=
∂E

∂ok

∂ok
∂zk

∂zk
∂wki

= δok ·
∂ok
∂zk︸ ︷︷ ︸
δzk

∂zk
∂wki
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∂zk
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Gradient Descent for Single Layer Network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k := δok

Using logistic activation functions:

o
(n)
k = g(z

(n)
k ) = (1 + exp(−z (n)

k ))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k )

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 30 / 62



Gradient Descent for Single Layer Network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k := δok

Using logistic activation functions:

o
(n)
k = g(z

(n)
k ) = (1 + exp(−z (n)

k ))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k )

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 30 / 62



Gradient Descent for Single Layer Network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k := δok

Using logistic activation functions:

o
(n)
k = g(z

(n)
k ) = (1 + exp(−z (n)

k ))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k )

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 30 / 62



Gradient Descent for Single Layer Network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k := δok

Using logistic activation functions:

o
(n)
k = g(z

(n)
k ) = (1 + exp(−z (n)

k ))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k )

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 30 / 62



Gradient Descent for Single Layer Network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k := δok

Using logistic activation functions:

o
(n)
k = g(z

(n)
k ) = (1 + exp(−z (n)

k ))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k )

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
=

wki − η
N∑

n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 30 / 62



Gradient Descent for Single Layer Network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k := δok

Using logistic activation functions:

o
(n)
k = g(z

(n)
k ) = (1 + exp(−z (n)

k ))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k )

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k )o

(n)
k (1− o

(n)
k )x

(n)
i

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 30 / 62



Multi-layer Neural Network
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Back-propagation: Sketch on One Training Case

Convert discrepancy between each output and its target value into an error
derivative

E =
1

2

∑
k

(ok − tk)2;
∂E

∂ok
= ok − tk

Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on wkj)]

Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.
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Gradient Descent for Multi-layer Network

The output weight gradients for a
multi-layer network are the same as for a
single layer network

∂E

∂wkj
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wkj
=

N∑
n=1

δ
z,(n)
k h

(n)
j

where δk is the error w.r.t. the net input
for unit k

Hidden weight gradients are then computed via back-prop:

∂E

∂h
(n)
j

=
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Choosing Activation and Loss Functions

When using a neural network for regression, sigmoid activation and MSE as
the loss function work well

For classification, if it is a binary (2-class) problem, then cross-entropy error
function often does better (as we saw with logistic regression)

E = −
N∑

n=1

t(n) log o(n) + (1− t(n)) log(1− o(n))

o(n) = (1 + exp(−z (n))−1

We can then compute via the chain rule

∂E

∂o
= (o − t)/(o(1− o))

∂o

∂z
= o(1− o)

∂E

∂z
=
∂E

∂o

∂o

∂z
= (o − t)
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Multi-class Classification

For multi-class classification problems, use
cross-entropy as loss and the softmax
activation function

E = −
∑
n

∑
k

t
(n)
k log o

(n)
k

o
(n)
k =

exp(z
(n)
k )∑

j exp(z
(n)
j )

And the derivatives become

∂ok
∂zk

= ok(1− ok)

∂E

∂zk
=

∑
j

∂E

∂oj

∂oj
∂zk

= (ok − tk)ok(1− ok)
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Example Application

Now trying to classify image of
handwritten digit: 32x32 pixels

10 output units, 1 per digit

Use the softmax function:

ok =
exp(zk)∑
j exp(zj)

zk = wk0 +
J∑

j=1

hj(x)wkj

What is J ?
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Ways to Use Weight Derivatives

How often to update

I after a full sweep through the training data (batch gradient descent)

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

∂E (o(n), t(n);w)

∂wki

I after each training case (stochastic gradient descent)
I after a mini-batch of training cases

How much to update

I Use a fixed learning rate
I Adapt the learning rate
I Add momentum

wki ← wki − v

v ← γv + η
∂E

∂wki
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I after each training case (stochastic gradient descent)
I after a mini-batch of training cases

How much to update

I Use a fixed learning rate

I Adapt the learning rate
I Add momentum

wki ← wki − v

v ← γv + η
∂E

∂wki
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Comparing Optimization Methods

[http://cs231n.github.io/neural-networks-3/, Alec Radford]
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Monitor Loss During Training

Check how your loss behaves during training, to spot wrong
hyperparameters, bugs, etc

Figure : Left: Good vs bad parameter choices, Right: How a real loss might look
like during training. What are the bumps caused by? How could we get a more
smooth loss?

[http://cs231n.github.io/neural-networks-3/]
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Monitor Accuracy on Train/Validation During Training

Check how your desired performance metrics behaves during training

[http://cs231n.github.io/neural-networks-3/]
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Why ”Deep”?

3

Supervised Learning: Examples

Ranzato

Denoising

“dog”

Classification

OCR

“2 3 4 5”

classific
ation

regression

stru
ctured 

prediction

4

Supervised Deep Learning
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Classification
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[Picture from M. Ranzato]
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Neural Networks

Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

Note: a composite of linear functions is linear!

Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as
nonlinearity

x max(0,WT
1 x + b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

I x is the input
I y is the output (what we want to predict)
I hi is the i-th hidden layer
I Wi are the parameters of the i-th layer
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Evaluating the Function

Assume we have learn the weights and we want to do inference

Forward Propagation: compute the output given the input

x max(0,WT
1 x + b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

Do it in a compositional way,

h1 = max(0,W T
1 x + b1)
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Evaluating the Function

Assume we have learn the weights and we want to do inference

Forward Propagation: compute the output given the input

x max(0,WT
1 x + b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

Do it in a compositional way

h1 = max(0,W T
1 x + b1)

h2 = max(0,W T
2 h1 + b2)

y = W T
3 h2 + b3

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 48 / 62



Learning

x max(0,WT
1 x + b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

Collect a training set of input-output pairs {x(n), t(n)}

For classification: Encode the output with 1-K encoding t = [0, .., 1, .., 0]

Define a loss per training example and minimize the empirical risk

L(w) =
1

N

∑
n

`(w, x(n), t(n))

with N number of examplesand w contains all parameters
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Loss Function: Classification

L(w) =
1

N

∑
n

`(w, x(n), t(n))

Probability of class k given input (softmax):

p(ck = 1|x) =
exp(yk)∑C
j=1 exp(yj)

Cross entropy is the most used loss function for classification

`(w, x(n), t(n)) = −
∑
k

t
(n)
k log p(ck |x)

Use gradient descent to train the network

min
w

1

N

∑
n

`(w, x(n), t(n))
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Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x+ b1)

h1

max(0,W T
2 h1 + b2)

h2

W T
3 h2 + b3 y

∂`
∂y

p(ck = 1|x) =
exp(yk)∑C
j=1 exp(yj)

`(x(n), t(n),w) = −
∑
k

t
(n)
k log p(ck |x)

Compute the derivative of loss w.r.t. the output

∂`

∂y
= p(c |x)− t

Note that the forward pass is necessary to compute ∂`
∂y
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Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x+ b1)

h1

max(0,W T
2 h1 + b2) W T

3 h2 + b3

∂`
∂h2

y

∂`
∂y

We have computed the derivative of loss w.r.t the output

∂`

∂y
= p(c |x)− t

Given ∂`
∂y if we can compute the Jacobian of each module

∂`

∂W3
=
∂`

∂y

∂y

∂W3
= (p(c |x)− t)(h2)T

∂`

∂h2
=
∂`

∂y

∂y

∂h2
= (W3)T (p(c |x)− t)

Need to compute gradient w.r.t. inputs and parameters in each layer
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28

Toy Code (Matlab): Neural Net Trainer
% F-PROP
for i = 1 : nr_layers - 1
  [h{i}  jac{i}]  =  nonlinearity(W{i} * h{i-1} +  b{i});
end
h{nr_layers-1}  =  W{nr_layers-1} * h{nr_layers-2}  +   b{nr_layers-1};
prediction  =  softmax(h{l-1});

% CROSS ENTROPY LOSS
loss  =  -  sum(sum(log(prediction)  .*  target)) / batch_size;

% B-PROP
dh{l-1}  =  prediction  -  target;
for i = nr_layers – 1 : -1 : 1
  Wgrad{i}  =  dh{i} * h{i-1}';
  bgrad{i}  =  sum(dh{i}, 2);        
  dh{i-1}  =  (W{i}' * dh{i})  .*  jac{i-1};        
end

% UPDATE
for i = 1 : nr_layers - 1
  W{i}  =  W{i}  –  (lr / batch_size)  *  Wgrad{i}; 
  b{i}  =  b{i}  –  (lr / batch_size)  *  bgrad{i}; 
end

RanzatoThis code has a few bugs with indices...
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Overfitting

The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

I The target values may be unreliable.
I There is sampling error: There will be accidental regularities just

because of the particular training cases that were chosen

When we fit the model, it cannot tell which regularities are real and which
are caused by sampling error.

I So it fits both kinds of regularity.
I If the model is very flexible it can model the sampling error really well.

This is a disaster.
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Preventing Overfitting

Use a model that has the right capacity:

I enough to model the true regularities
I not enough to also model the spurious regularities (assuming they are

weaker)

Standard ways to limit the capacity of a neural net:

I Limit the number of hidden units.
I Limit the norm of the weights.
I Stop the learning before it has time to overfit.
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Limiting the size of the Weights

Weight-decay involves adding an extra term to the cost function that
penalizes the squared weights.

C = `+
λ

2

∑
i

w2
i

Keeps weights small unless they have big error derivatives.

∂C

∂wi
=

∂`

∂wi
+ λwi

w   

C 
when

∂C

∂wi
= 0, wi = − 1

λ

∂`

∂wi
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The Effect of Weight-decay

It prevents the network from using weights that it does not need

I This can often improve generalization a lot.
I It helps to stop it from fitting the sampling error.
I It makes a smoother model in which the output changes more slowly as

the input changes.

But, if the network has two very similar inputs it prefers to put half the
weight on each rather than all the weight on one → other form of weight
decay?

w/2 w/2 w 0 
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Deciding How Much to Restrict the Capacity

How do we decide which regularizer to use and how strong to make it?

So use a separate validation set to do model selection.
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Using a Validation Set

Divide the total dataset into three subsets:

I Training data is used for learning the parameters of the model.
I Validation data is not used for learning but is used for deciding what

type of model and what amount of regularization works best
I Test data is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data

We could then re-divide the total dataset to get another unbiased estimate
of the true error rate.
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Preventing Overfitting by Early Stopping

If we have lots of data and a big model, its very expensive to keep
re-training it with different amounts of weight decay

It is much cheaper to start with very small weights and let them grow until
the performance on the validation set starts getting worse

The capacity of the model is limited because the weights have not had time
to grow big.
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Why Early Stopping Works

outputs 

inputs 

When the weights are very small, every
hidden unit is in its linear range.

I So a net with a large layer of hidden
units is linear.

I It has no more capacity than a linear
net in which the inputs are directly
connected to the outputs!

As the weights grow, the hidden units
start using their non-linear ranges so the
capacity grows.
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