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Today

Decision Trees

I entropy
I information gain
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Another Classification Idea

We learned about linear classification (e.g., logistic regression), and nearest
neighbors. Any other idea?

Pick an attribute, do a simple test

Conditioned on a choice, pick another attribute, do another test

In the leaves, assign a class with majority vote

Do other branches as well
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Another Classification Idea

Gives axes aligned decision boundaries
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Decision Tree: Example

Yes No 

Yes No Yes No 
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Decision Tree: Classification
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Example with Discrete Inputs

What if the attributes are discrete?

Attributes:
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Decision Tree: Example with Discrete Inputs

The tree to decide whether to wait (T) or not (F)
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Decision Trees

Yes No 

Yes No Yes No 

Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (class assignments)
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Decision Tree: Algorithm

Choose an attribute on which to descend at each level

Condition on earlier (higher) choices

Generally, restrict only one dimension at a time

Declare an output value when you get to the bottom

In the orange/lemon example, we only split each dimension once, but that is
not required
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Decision Tree: Classification and Regression

Each path from root to a leaf defines a region Rm of input space

Let {(x (m1), t(m1)), . . . , (x (mk ), t(mk ))} be the training examples that fall into
Rm

Classification tree:

I discrete output
I leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk )}

Regression tree:

I continuous output
I leaf value ym typically set to the mean value in {t(m1), . . . , t(mk )}

Note: We will only talk about classification

[Slide credit: S. Russell]
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Expressiveness

Discrete-input, discrete-output case:
I Decision trees can express any function of the input attributes
I E.g., for Boolean functions, truth table row → path to leaf:

Continuous-input, continuous-output case:
I Can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set w/ one path
to leaf for each example (unless f nondeterministic in x) but it probably
won’t generalize to new examples

Need some kind of regularization to ensure more compact decision trees

[Slide credit: S. Russell]
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How do we Learn a DecisionTree?

How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you
are interested, check: Hyafil & Rivest’76]

Resort to a greedy heuristic:

I Start from an empty decision tree
I Split on next best attribute
I Recurse

What is best attribute?

We use information theory to guide us

[Slide credit: D. Sontag]
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Choosing a Good Attribute

Which attribute is better to split on, X1 or X2?

Idea: Use counts at leaves to define probability distributions, so we can measure
uncertainty

[Slide credit: D. Sonntag]
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Choosing a Good Attribute

Which attribute is better to split on, X1 or X2?

I Deterministic: good (all are true or false; just one class in the leaf)
I Uniform distribution: bad (all classes in leaf equally probable)
I What about distributons in between?

Note: Let’s take a slight detour and remember concepts from information theory

[Slide credit: D. Sontag]
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We Flip Two Different Coins

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

Entropy H:

H(X ) = −
∑
x∈X

p(x) log2 p(x)

0	 1	

8/9 

1/9 

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9 

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

How surprised are we by a new value in the sequence?

How much information does it convey?
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Quantifying Uncertainty

H(X ) = −
∑
x∈X

p(x) log2 p(x)
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probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy
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Entropy

“High Entropy”:

I Variable has a uniform like distribution
I Flat histogram
I Values sampled from it are less predictable

“Low Entropy”

I Distribution of variable has many peaks and valleys
I Histogram has many lows and highs
I Values sampled from it are more predictable

This slide seems wrong

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits
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Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = x) = −
∑
y∈Y

p(y |x) log2 p(y |x)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

We used: p(y |x) = p(x,y)
p(x) , and p(x) =

∑
y p(x , y) (sum in a row)
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Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(y |x)
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Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(cloudy|is raining) +

3

4
H(cloudy|not raining)

≈ 0.75 bits
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Conditional Entropy

Some useful properties:

I H is always non-negative

I Chain rule: H(X ,Y ) = H(X |Y ) + H(Y ) = H(Y |X ) + H(X )

I If X and Y independent, then X doesn’t tell us anything about Y :
H(Y |X ) = H(Y )

I But Y tells us everything about Y : H(Y |Y ) = 0

I By knowing X , we can only decrease uncertainty about Y :
H(Y |X ) ≤ H(Y )
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Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much information about cloudiness do we get by discovering whether it
is raining?

IG (Y |X ) = H(Y )− H(Y |X )

≈ 0.25 bits

Also called information gain in Y due to X

If X is completely uninformative about Y : IG (Y |X ) = 0

If X is completely informative about Y : IG (Y |X ) = H(Y )

How can we use this to construct our decision tree?
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Constructing Decision Trees

Yes No 

Yes No Yes No 

I made the fruit data partitioning just by eyeballing it.

We can use the information gain to automate the process.

At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision! (choose attribute that gives the highest gain)
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Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node

2. split examples into groups based on attribute value

3. for each group:

I if no examples – return majority from parent
I else if all examples in same class – return class
I else loop to step 1
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Back to Our Example

Attributes:
[from: Russell & Norvig]
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Attribute Selection

IG (Y ) = H(Y )− H(Y |X )

IG (type) = 1−
[

2

12
H(Y |Fr.) +

2

12
H(Y |It.) +

4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG (Patrons) = 1−
[

2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,

4

6
)

]
≈ 0.541
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Which Tree is Better?
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions in
data

Not too big:

I Computational efficiency (avoid redundant, spurious attributes)
I Avoid over-fitting training examples

Occam’s Razor: find the simplest hypothesis (smallest tree) that fits the
observations

Inductive bias: small trees with informative nodes near the root
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Decision Tree Miscellany

Problems:

I You have exponentially less data at lower levels
I Too big of a tree can overfit the data
I Greedy algorithms don’t necessarily yield the global optimum

In practice, one often regularizes the construction process to try to get small
but highly-informative trees

Decision trees can also be used for regression on real-valued outputs, but it
requires a different formalism
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Comparison to k-NN

K-Nearest Neighbors

Decision boundaries: piece-wise
linear

Test complexity:
non-parametric, few parameters
besides (all?) training examples

Decision Trees

Decision boundaries:
axis-aligned, tree structured

Test complexity: attributes and
splits
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Applications of Decision Trees: XBox!

Decision trees are in XBox

[J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake. Real-Time Human Pose

Recognition in Parts from a Single Depth Image. CVPR’11]Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 35 / 39



Applications of Decision Trees: XBox!

Decision trees are in XBox: Classifying body parts
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Applications of Decision Trees: XBox!

Trained on million(s) of examples
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Applications of Decision Trees: XBox!

Trained on million(s) of examples

Results:

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 38 / 39



Applications of Decision Trees

Can express any Boolean function, but most useful when function depends
critically on few attributes

Bad on: parity, majority functions; also not well-suited to continuous
attributes

Practical Applications:

I Flight simulator: 20 state variables; 90K examples based on expert
pilot’s actions; auto-pilot tree

I Yahoo Ranking Challenge
I Random Forests: Microsoft Kinect Pose Estimation
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