CSC 411: Lecture 06: Decision Trees

Richard Zemel, Raquel Urtasun and Sanja Fidler
University of Toronto

Today

- Decision Trees
- entropy
- information gain

Another Classification Idea

- We learned about linear classification (e.g., logistic regression), and nearest neighbors. Any other idea?
- Pick an attribute, do a simple test
- Conditioned on a choice, pick another attribute, do another test
- In the leaves, assign a class with majority vote
- Do other branches as well

Another Classification Idea

- Gives axes aligned decision boundaries

Decision Tree: Example

Decision Tree: Classification

Test example

width $>6.5 \mathrm{~cm}$?

height $>9.5 \mathrm{~cm}$? height $>6.0 \mathrm{~cm}$?

Example with Discrete Inputs

- What if the attributes are discrete?

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=$ No
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y e s$
x_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_{5}=N_{0}$
x_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y e s$
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y e s$
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{o}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10}=N_{0}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{0}$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y$ es

Attributes:

| 1. | Alternate: whether there is a suitable alternative restaurant nearby. |
| ---: | :--- | :--- |
| 2. | Bar: whether the restaurant has a comfortable bar area to wait in. |
| 3. | Fri/Sat: true on Fridays and Saturdays. |
| 4. | Hungry: whether we are hungry. |
| 5. | Patrons: how many people are in the restaurant (values are None, Some, and Full). |
| 6. | Price: the restaurant's price range (\$, $\$ \$, \$ \$ \$$). |
| 7. | Raining: whether it is raining outside. |
| 8. | Reservation: whether we made a reservation. |
| 9. | Type: the kind of restaurant (French, Italian, Thai or Burger). |
| 10. | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). |

Decision Tree: Example with Discrete Inputs

- The tree to decide whether to wait (T) or not (F)

Decision Trees

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (class assignments)

Decision Tree: Algorithm

- Choose an attribute on which to descend at each level
- Condition on earlier (higher) choices
- Generally, restrict only one dimension at a time
- Declare an output value when you get to the bottom
- In the orange/lemon example, we only split each dimension once, but that is not required

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}
- Classification tree:
- discrete output
- leaf value y^{m} typically set to the most common value in

$$
\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}
$$

- Regression tree:
- continuous output
- leaf value y^{m} typically set to the mean value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$

Note: We will only talk about classification
[Slide credit: S. Russell]

Expressiveness

- Discrete-input, discrete-output case:
- Decision trees can express any function of the input attributes
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Continuous-input, continuous-output case:
- Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Need some kind of regularization to ensure more compact decision trees

How do we Learn a DecisionTree?

- How do we construct a useful decision tree?

Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil \& Rivest'76]

- Resort to a greedy heuristic:
- Start from an empty decision tree
- Split on next best attribute
- Recurse
- What is best attribute?
- We use information theory to guide us
[Slide credit: D. Sontag]

Choosing a Good Attribute

- Which attribute is better to split on, X_{1} or X_{2} ?

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty

Choosing a Good Attribute

- Which attribute is better to split on, X_{1} or X_{2} ?
- Deterministic: good (all are true or false; just one class in the leaf)
- Uniform distribution: bad (all classes in leaf equally probable)
- What about distributons in between?

Note: Let's take a slight detour and remember concepts from information theory
[Slide credit: D. Sontag]

We Flip Two Different Coins

Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$? 16

Quantifying Uncertainty

Entropy H:

$$
H(X)=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

$$
-\frac{8}{9} \log _{2} \frac{8}{9}-\frac{1}{9} \log _{2} \frac{1}{9} \approx \frac{1}{2} \quad-\frac{4}{9} \log _{2} \frac{4}{9}-\frac{5}{9} \log _{2} \frac{5}{9} \approx 0.99
$$

- How surprised are we by a new value in the sequence?
- How much information does it convey?

Quantifying Uncertainty

$$
H(X)=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

Entropy

- "High Entropy":
- Variable has a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable
- "Low Entropy"
- Distribution of variable has many peaks and valleys
- Histogram has many lows and highs
- Values sampled from it are more predictable

This slide seems wrong
[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

$$
\begin{aligned}
H(X, Y) & =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(x, y) \\
& =-\frac{24}{100} \log _{2} \frac{24}{100}-\frac{1}{100} \log _{2} \frac{1}{100}-\frac{25}{100} \log _{2} \frac{25}{100}-\frac{50}{100} \log _{2} \frac{50}{100} \\
& \approx 1.56 \text { bits }
\end{aligned}
$$

Specific Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness Y, given that it is raining?

$$
\begin{aligned}
H(Y \mid X=x) & =-\sum_{y \in Y} p(y \mid x) \log _{2} p(y \mid x) \\
& =-\frac{24}{25} \log _{2} \frac{24}{25}-\frac{1}{25} \log _{2} \frac{1}{25} \\
& \approx 0.24 \mathrm{bits}
\end{aligned}
$$

- We used: $p(y \mid x)=\frac{p(x, y)}{p(x)}$, and $p(x)=\sum_{y} p(x, y) \quad$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- The expected conditional entropy:

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(y \mid x)
\end{aligned}
$$

Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =\frac{1}{4} H(\text { cloudy } \mid \text { is raining })+\frac{3}{4} H(\text { cloudy } \mid \text { not raining }) \\
& \approx 0.75 \text { bits }
\end{aligned}
$$

Conditional Entropy

- Some useful properties:
- H is always non-negative
- Chain rule: $H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)$
- If X and Y independent, then X doesn't tell us anything about Y : $H(Y \mid X)=H(Y)$
- But Y tells us everything about $Y: H(Y \mid Y)=0$
- By knowing X, we can only decrease uncertainty about Y : $H(Y \mid X) \leq H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- How much information about cloudiness do we get by discovering whether it is raining?

$$
\begin{aligned}
I G(Y \mid X) & =H(Y)-H(Y \mid X) \\
& \approx 0.25 \text { bits }
\end{aligned}
$$

- Also called information gain in Y due to X
- If X is completely uninformative about $Y: I G(Y \mid X)=0$
- If X is completely informative about $Y: I G(Y \mid X)=H(Y)$
- How can we use this to construct our decision tree?

Constructing Decision Trees

- I made the fruit data partitioning just by eyeballing it.
- We can use the information gain to automate the process.
- At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node
2. split examples into groups based on attribute value
3. for each group:

- if no examples - return majority from parent
- else if all examples in same class - return class
- else loop to step 1

Back to Our Example

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$8	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N_{0}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y$ es
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y$ es
x_{5}	Yes	No	Yes	No	Full	\$\$8	No	Yes	French	>60	$y_{5}=N_{o}$
\mathbf{x}_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y$ Yes
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$	Yes	Yes	Thai	0-10	$y_{8}=Y e s$
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{o}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$8	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{0}$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Attributes:

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, $\$ \$, \$ \$ \$)$.
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attribute Selection

Yes

$$
I G(Y)=H(Y)-H(Y \mid X)
$$

$$
I G(\text { type })=1-\left[\frac{2}{12} H(Y \mid \text { Fr. })+\frac{2}{12} H(Y \mid \text { It. })+\frac{4}{12} H(Y \mid \text { Thai })+\frac{4}{12} H(Y \mid \text { Bur. })\right]=0
$$

$$
I G(\text { Patrons })=1-\left[\frac{2}{12} H(0,1)+\frac{4}{12} H(1,0)+\frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right)\right] \approx 0.541
$$

Which Tree is Better?

No

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Computational efficiency (avoid redundant, spurious attributes)
- Avoid over-fitting training examples
- Occam's Razor: find the simplest hypothesis (smallest tree) that fits the observations
- Inductive bias: small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- In practice, one often regularizes the construction process to try to get small but highly-informative trees
- Decision trees can also be used for regression on real-valued outputs, but it requires a different formalism

Comparison to k-NN

K-Nearest Neighbors

- Decision boundaries: piece-wise linear
- Test complexity: non-parametric, few parameters besides (all?) training examples

Decision Trees

- Decision boundaries: axis-aligned, tree structured
- Test complexity: attributes and splits

Applications of Decision Trees: XBox!

- Decision trees are in XBox

[J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake. Real-Time Human Pose

Applications of Decision Trees: XBox!

- Decision trees are in XBox: Classifying body parts

Applications of Decision Trees: XBox!

- Trained on million(s) of examples

Applications of Decision Trees: XBox!

- Trained on million(s) of examples

- Results:

Applications of Decision Trees

- Can express any Boolean function, but most useful when function depends critically on few attributes
- Bad on: parity, majority functions; also not well-suited to continuous attributes
- Practical Applications:
- Flight simulator: 20 state variables; 90 K examples based on expert pilot's actions; auto-pilot tree
- Yahoo Ranking Challenge
- Random Forests: Microsoft Kinect Pose Estimation

