CSC 411: Lecture 04: Logistic Regression

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

Today

- Key Concepts:
- Logistic Regression
- Regularization
- Cross validation
(note: we are still talking about binary classification)

Logistic Regression

- An alternative: replace the $\operatorname{sign}(\cdot)$ with the sigmoid or logistic function
- We assumed a particular functional form: sigmoid applied to a linear function of the data

$$
y(\mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)
$$

where the sigmoid is defined as

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

- The output is a smooth function of the inputs and the weights. It can be seen as a smoothed and differentiable alternative to $\operatorname{sign}(\cdot)$

Logistic Regression

- We assumed a particular functional form: sigmoid applied to a linear function of the data

$$
y(\mathbf{x})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right)
$$

where the sigmoid is defined as

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

- One parameter per data dimension (feature) and the bias
- Features can be discrete or continuous
- Output of the model: value $y \in[0,1]$
- Allows for gradient-based learning of the parameters

Shape of the Logistic Function

- Let's look at how modifying w changes the shape of the function
- 1D example:

$$
y=\sigma\left(w_{1} x+w_{0}\right)
$$

$w_{0}=0, w_{1}=1$
$w_{0}=0, w_{1}=0.5$
$w_{0}=-2, w_{1}=1$

- Demo

Probabilistic Interpretation

- If we have a value between 0 and 1 , let's use it to model class probability

$$
p(C=0 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right) \quad \text { with } \quad \sigma(z)=\frac{1}{1+\exp (-z)}
$$

- Substituting we have

$$
p(C=0 \mid \mathbf{x})=\frac{1}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}
$$

- Suppose we have two classes, how can I compute $p(C=1 \mid \mathbf{x})$?
- Use the marginalization property of probability

$$
p(C=1 \mid \mathbf{x})+p(C=0 \mid \mathbf{x})=1
$$

- Thus

$$
p(C=1 \mid \mathbf{x})=1-\frac{1}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}=\frac{\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}
$$

- Demo

Decision Boundary for Logistic Regression

- What is the decision boundary for logistic regression?
- $p(C=1 \mid \mathbf{x}, \mathbf{w})=p(C=0 \mid \mathbf{x}, \mathbf{w})=0.5$
- $p(C=0 \mid \mathbf{x}, \mathbf{w})=\sigma\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)=0.5$, where $\sigma(z)=\frac{1}{1+\exp (-z)}$
- Decision boundary: $\mathbf{w}^{T} \mathbf{x}+w_{0}=0$
- Logistic regression has a linear decision boundary

Logistic Regression vs Least Squares Regression

Example

- Problem: Given the number of hours a student spent learning, will (s)he pass the exam?
- Training data (top row: $x^{(i)}$, bottom row: $t^{(i)}$)

Hours	0.50	0.75	1.00	1.25	1.50	1.75	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass	0	0	0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	1	1

- Learn w for our model, i.e., logistic regression (coming up)
- Make predictions:

Hours of study	Probability of passing exam
$\mathbf{1}$	0.07
2	0.26
3	0.61
4	0.87
5	0.97

Learning?

- When we have a d-dim input $\mathbf{x} \in \Re^{d}$
- How should we learn the weights $\mathbf{w}=\left(w_{0}, w_{1}, \cdots, w_{d}\right)$?
- We have a probabilistic model
- Let's use maximum likelihood

Conditional Likelihood

- Assume $t \in\{0,1\}$, we can write the probability distribution of each of our training points $p\left(t^{(1)}, \cdots, t^{(N)} \mid \mathbf{x}^{(1)}, \cdots \mathbf{x}^{(N)} ; \mathbf{w}\right)$
- Assuming that the training examples are sampled IID: independent and identically distributed, we can write the likelihood function:

$$
L(\mathbf{w})=p\left(t^{(1)}, \cdots, t^{(N)} \mid \mathbf{x}^{(1)}, \cdots \mathbf{x}^{(N)} ; \mathbf{w}\right)=\prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)
$$

- We can write each probability as (will be useful later):

$$
\begin{aligned}
p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right) & =p\left(C=1 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)^{t^{(i)}} p\left(C=0 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)^{1-t^{(i)}} \\
& =\left(1-p\left(C=0 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)\right)^{t^{(i)}} p\left(C=0 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)^{1-t^{(i)}}
\end{aligned}
$$

- We can learn the model by maximizing the likelihood

$$
\max _{\mathbf{w}} L(\mathbf{w})=\max _{\mathbf{w}} \prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)
$$

- Easier to maximize the \log likelihood $\log L(\mathbf{w})$

Loss Function

$$
\begin{aligned}
L(\mathbf{w}) & =\prod_{i=1}^{N} p\left(t^{(i)} \mid \mathbf{x}^{(i)}\right) \quad \text { (likelihood) } \\
& =\prod_{i=1}^{N}\left(1-p\left(C=0 \mid \mathbf{x}^{(i)}\right)\right)^{t^{(i)}} p\left(C=0 \mid \mathbf{x}^{(i)}\right)^{1-t^{(i)}}
\end{aligned}
$$

- We can convert the maximization problem into minimization so that we can write the loss function:

$$
\begin{aligned}
\ell_{\log }(\mathbf{w}) & =-\log L(\mathbf{w}) \\
& =-\sum_{i=1}^{N} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}\right) \\
& =-\sum_{i=1}^{N} t^{(i)} \log \left(1-p\left(C=0 \mid \mathbf{x}^{(i)}, \mathbf{w}\right)\right)-\sum_{i=1}^{N}\left(1-t^{(i)}\right) \log p\left(C=0 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)
\end{aligned}
$$

- Is there a closed form solution?
- It's a convex function of \mathbf{w}. Can we get the global optimum?

Gradient Descent

$$
\min _{\mathbf{w}} \ell(\mathbf{w})=\min _{\mathbf{w}}\left\{-\sum_{i=1}^{N} t^{(i)} \log \left(1-p\left(C=0 \mid \mathbf{x}^{(i)}, \mathbf{w}\right)\right)-\sum_{i=1}^{N}\left(1-t^{(i)}\right) \log p\left(C=0 \mid \mathbf{x}^{(i)}, \mathbf{w}\right)\right\}
$$

- Gradient descent: iterate and at each iteration compute steepest direction towards optimum, move in that direction, step-size λ

$$
w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\lambda \frac{\partial \ell(\mathbf{w})}{\partial w_{j}}
$$

- You can write this in vector form

$$
\nabla \ell(\mathbf{w})=\left[\frac{\partial \ell(\mathbf{w})}{\partial w_{0}}, \cdots, \frac{\partial \ell(\mathbf{w})}{\partial w_{k}}\right]^{T}, \quad \text { and } \quad \triangle(\mathbf{w})=-\lambda \nabla \ell(\mathbf{w})
$$

- But where is \mathbf{w} ?

$$
p(C=0 \mid \mathbf{x})=\frac{1}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}, \quad p(C=1 \mid \mathbf{x})=\frac{\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}
$$

Let's Compute the Updates

- The loss is

$$
\ell_{\log -\operatorname{loss}}(\mathbf{w})=-\sum_{i=1}^{N} t^{(i)} \log p\left(C=1 \mid \mathbf{x}^{(i)}, \mathbf{w}\right)-\sum_{i=1}^{N}\left(1-t^{(i)}\right) \log p\left(C=0 \mid \mathbf{x}^{(i)}, \mathbf{w}\right)
$$

where the probabilities are

$$
p(C=0 \mid \mathbf{x}, \mathbf{w})=\frac{1}{1+\exp (-z)} \quad p(C=1 \mid \mathbf{x}, \mathbf{w})=\frac{\exp (-z)}{1+\exp (-z)}
$$

and $z=\mathbf{w}^{T} \mathbf{x}+w_{0}$

- We can simplify

$$
\begin{aligned}
\ell(\mathbf{w})_{\log -\operatorname{loss}} & =\sum_{i} t^{(i)} \log \left(1+\exp \left(-z^{(i)}\right)\right)+\sum_{i} t^{(i)} z^{(i)}+\sum_{i}\left(1-t^{(i)}\right) \log \left(1+\exp \left(-z^{(i)}\right)\right) \\
& =\sum_{i} \log \left(1+\exp \left(-z^{(i)}\right)\right)+\sum_{i} t^{(i)} z^{(i)}
\end{aligned}
$$

- Now it's easy to take derivatives

Updates

$$
\ell(\mathbf{w})=\sum_{i} t^{(i)} z^{(i)}+\sum_{i} \log \left(1+\exp \left(-z^{(i)}\right)\right)
$$

- Now it's easy to take derivatives
- Remember $z=\mathbf{w}^{T} \mathbf{x}+w_{0}$

$$
\frac{\partial \ell}{\partial w_{j}}=\sum_{i}\left(t^{(i)} x_{j}^{(i)}-x_{j}^{(i)} \cdot \frac{\exp \left(-z^{(i)}\right)}{1+\exp \left(-z^{(i)}\right)}\right)
$$

- What's $x_{j}^{(i)}$? The j-th dimension of the i-th training example $\mathbf{x}^{(i)}$
- And simplifying

$$
\frac{\partial \ell}{\partial w_{j}}=\sum_{i} x_{j}^{(i)}\left(t^{(i)}-p\left(C=1 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)\right)
$$

- Don't get confused with indices: j for the weight that we are updating and i for the training example

Gradient Descent

- Putting it all together (plugging the update into gradient descent): Gradient descent for logistic regression:

$$
w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\lambda \sum_{i} x_{j}^{(i)}\left(t^{(i)}-p\left(C=1 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)\right)
$$

where:

$$
p\left(C=1 \mid \mathbf{x}^{(i)} ; \mathbf{w}\right)=\frac{\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-w_{0}\right)}=\frac{1}{1+\exp \left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)}
$$

- This is all there is to learning in logistic regression. Simple, huh?

Regularization

- We can also look at

$$
p(\mathbf{w} \mid\{t\},\{\mathbf{x}\}) \propto p(\{t\} \mid\{\mathbf{x}\}, \mathbf{w}) p(\mathbf{w})
$$

with $\{t\}=\left(t^{(1)}, \cdots, t^{(N)}\right)$, and $\{\mathbf{x}\}=\left(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}\right)$

- We can define priors on parameters \mathbf{w}
- This is a form of regularization
- Helps avoid large weights and overfitting

$$
\max _{\mathbf{w}} \log \left[p(\mathbf{w}) \prod_{i} p\left(t^{(i)} \mid \mathbf{x}^{(i)}, \mathbf{w}\right)\right]
$$

- What's $p(\mathbf{w})$?

Regularized Logistic Regression

- For example, define prior: normal distribution, zero mean and identity covariance $p(\mathbf{w})=\mathcal{N}\left(0, \alpha^{-1} \mathbf{I}\right)$
- Show the form of this prior on matlab, and show the formula, perhaps also the log
- This prior pushes parameters towards zero (why is this a good idea?)
- Including this prior the new gradient is

$$
w_{j}^{(t+1)} \leftarrow w_{j}^{(t)}-\lambda \frac{\partial \ell(\mathbf{w})}{\partial w_{j}}-\lambda \alpha w_{j}^{(t)}
$$

where t here refers to iteration of the gradient descent

- The parameter α is the importance of the regularization, and it's a hyper-parameter
- How do we decide the best value of α (or a hyper-parameter in general)?

Use of Validation Set

Tuning hyper-parameters:

- Never use test data for tuning the hyper-parameters
- We can divide the set of training examples into two disjoint sets: training and validation
- Use the first set (i.e., training) to estimate the weights \mathbf{w} for different values of α
- Use the second set (i.e., validation) to estimate the best α, by evaluating how well the classifier does on this second set
- This tests how well it generalizes to unseen data

Cross-Validation

- Leave-p-out cross-validation:
- We use p observations as the validation set and the remaining observations as the training set.
- This is repeated on all ways to cut the original training set.
- It requires \mathcal{C}_{n}^{p} for a set of n examples
- Leave-1-out cross-validation: When $p=1$, does not have this problem
- k-fold cross-validation:
- The training set is randomly partitioned into k equal size subsamples.
- Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining $k-1$ subsamples are used as training data.
- The cross-validation process is then repeated k times (the folds).
- The k results from the folds can then be averaged (or otherwise combined) to produce a single estimate

Cross-Validation (with Pictures)

Train your model:

- Leave-one-out cross-validation:
- k-fold cross-validation:

Zemel, Urtasun, Fidler (UofT)

Logistic Regression wrap-up

Advantages:

- Easily extended to multiple classes (thoughts?)
- Natural probabilistic view of class predictions
- Quick to train
- Fast at classification
- Good accuracy for many simple data sets
- Resistant to overfitting
- Can interpret model coefficients as indicators of feature importance

Less good:

- Linear decision boundary (too simple for more complex problems?)
[Slide by: Jeff Howbert]

