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In this tutorial...

o We will focus on two examples of clustering

o | will try to limit the math and focus on building intuition
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@ In classification, we are given data with associated labels

@ What if we aren’t given any labels? Our data might still have
structure

@ We basically want to simultaneously label points and build a classifier
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Tomato sauce

@ A major tomato sauce company wants to tailor their brands to sauces
to suit their customers

@ They run a market survey where the test subject rates different sauces
@ After some processing they get the following data

@ Each point represents the preferred sauce characteristics of a specific
person

Shikhar Sharma (UofT) Unsupervised Learning October {27,29,30}, 2015 4 /29



Tomato sauce data
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More Sweet —

This tells us how much different customers like different flavors
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Some natural questions

@ How many different sauces should the company make?
@ How sweet/garlicy should these sauces be?

@ Idea: We will segment the consumers into groups (in this case 3), we
will then find the best sauce for each group

Shikhar Sharma (UofT) Unsupervised Learning October {27,29,30}, 2015 6 /29



Approaching k-means

@ Say | give you 3 sauces whose garlicy-ness and sweetness are marked
by X

More Garlic —
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Approaching k-means

@ We will group each customer by the sauce that most closely matches
their taste

More Garlic —
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Approaching k-means

@ Given this grouping, can we choose sauces that would make each
group happier on average?

sl
o

at %o
T 55
) L
= 3 0008
P
[g] + 2> &
(@) 2t g
o 2 O
o) s A
= +

or +

+
g 0 2 : 6 5 0

More Sweet —

Shikhar Sharma (UofT) Unsupervised Learning October {27,29,30}, 2015 9 /29



Approaching k-means

@ Given this grouping, can we choose sauces that would make each
group happier on average?

Yes |

More Garlic —
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Approaching k-means

@ Given these new sauces, we can regroup the customers

More Garlic —
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Approaching k-means

@ Given these new sauces, we can regroup the customers

More Garlic —
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T means algorithm

o Initialization: Choose k random points to act as cluster centers
@ lterate until convergence:

o Step 1: Assign points to closest center (forming k groups)
o Step 2: Reset the centers to be the mean of the points in their
respective groups
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Viewing k-means in action

e Demo...

@ Note: K-Means only finds a local optimum
@ Questions:
e How do we choose k?

o Couldn’t we just let each person have their own sauce? (Probably not
feasible...)

e Can we change the distance measure?
o Right now we're using Euclidean
o Why even bother with this when we can “see” the groups? (Can we
plot high-dimensional data?)
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A “simple” extension

@ Let’s look at the data again, notice how the groups aren't necessarily

circular?
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A “simple” extension

@ Also, does it make sense to say that points in this region belong to
one group or the other?
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Flaws of k-means

@ It can be shown that k-means assumes the data belong to spherical
groups, moreover it doesn't take into account the variance of the
groups (size of the circles)

o It also makes hard assignments, which may not be ideal for
ambiguous points

o This is especially a problem if groups overlap

@ We will look at one way to correct these issues
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Isotropic Gaussian mixture models

e K-means implicitly assumes each cluster is an isotropic (spherical)
Gaussian, it simply tries to find the optimal mean for each Gaussian

@ However, it makes an additional assumption that each point belongs
to a single group
@ We will correct this problem first by allowing each point to “belong to
multiple groups”
o More accurately, that it belongs to each group with probability p;,
where Y. pi=1
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Isotropic Gaussian mixture models

@ Demo isotropic GMM...
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Gaussian mixture models

@ Given a data point x with dimension D:

@ A multivariate isotropic Gaussian PDF is given by:
P(x) = (277)*%(02)*% e_ﬁ(x_“)T(X_“) (1)
@ A multivariate Gaussian in general is given by:
_D
2

P(x) = (2m) 2|z zem b= 0 )

@ We can try to model the covariance as well to account for elliptical
clusters
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Gaussian mixture models

@ Demo GMM with full covariance
@ Notice that now it takes much longer to converge

@ Can be much faster convergence by first initializing with k-meansThe
EM algorithm
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THE EM algorithm

@ What we have just seen is an instance of the EM algorithm

@ The EM algorithm is actually a meta-algorithm, it tells you the steps
needed in order to derive an algorithm to learn a model

@ The “E" stands for expectation, the "M" stands for maximization

@ We will look more closely at what this algorithm does, but won't go
into extreme detail
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EM for the Gaussian Mixture Model

@ Recall that we are trying to put the data into groups, while
simultaneously learning the parameters of that group
o If we knew the groupings in advance, the problem would be easy

o With k groups, we are just fitting k separate Gaussians
o With soft assignments, the data is simply weighted (i.e. we calculate
weighted means and covariances)
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EM for the Gaussian Mixture Model

@ Given initial parameters:

@ lterate until convergence
o E-step:
o Partition the data into different groups (soft assignments)
o M-step:
o For each group, fit a Gaussian to the weighted data belonging to that
group
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EM in general

We specify a model that has variables (x, z) with parameters 0,
denote this by P(x, z|0)
We want to optimize the log-likelihood of our data
o log(P(x|0)) = log(3_, P(x, z[0))
@ x is our data, z is some variable with extra information

o Cluster assignments in the GMM, for example

We don't know z, it is a “latent variable”

E-step: infer the expected value for z given x

M-step: maximize the “complete data log-likelihood" log(P(x, z|6))
with respect to 6
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A pictorial view of EM

@ The E-step constructs a lower bound on the log-probability of the data

Inp(X|6)

Bishop, 2006

g
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A pictorial view of EM

@ The M-step maximizes this lower bound

Inp(X|6)

Bishop, 2006
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A pictorial view of EM

@ We are guaranteed to converge to a local optimum, but it can be very
slow!

Inp(X|6)

Bishop, 2006
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The End
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