CSC 411: Lecture 15: Support Vector Machine

Raquel Urtasun \& Rich Zemel

University of Toronto

Nov 11, 2015

Today

- Margin
- Max-margin classification

Logistic Regression

Recall logistic regression classifiers

Max margin classification

- Instead of fitting all the points, focus on boundary points
- Aim: learn a boundary that leads to the largest margin (buffer) from points on both sides

- Why: intuition; theoretical support; and works well in practice
- Subset of vectors that support (determine boundary) are called the support vectors

Linear SVM

- Max margin classifier: inputs in margin are of unknown class

$$
y= \begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x}+b \geq 1 \\ -1 & \text { if } \mathbf{w}^{T} \mathbf{x}+b \leq-1 \\ \text { Undefined } & \text { if }-1 \leq \mathbf{w}^{T} \mathbf{x}+b \leq 1\end{cases}
$$

Geometry of the Problem

- The vector \mathbf{w} is orthogonal to the +1 plane. If \mathbf{u} and \mathbf{v} are two points on that plane, then

$$
\mathbf{w}^{T}(\mathbf{u}-\mathbf{v})=0
$$

- Same is true for -1 plane
- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

Computing the Margin

- Also: for point \mathbf{x}_{+}on +1 plane and \mathbf{x}_{-}nearest point on -1 plane:

$$
\mathbf{x}_{+}=\lambda \mathbf{w}+\mathbf{x}_{-}
$$

$$
\begin{aligned}
& \mathbf{w}^{T} \mathbf{x}_{+}+b=1 \\
& \mathbf{w}^{T}\left(\lambda \mathbf{w}+\mathbf{x}_{-}\right)+b=1 \\
& \mathbf{w}^{T} \mathbf{x}_{-}+b+\lambda \mathbf{w}^{T} \mathbf{w}=1 \\
&-1+\lambda \mathbf{w}^{T} \mathbf{w}=1
\end{aligned}
$$

Therefore

$$
\lambda=\frac{2}{\mathbf{w}^{T} \mathbf{w}}
$$

Computing the Margin

- Define the margin M to be the distance between the +1 and -1 planes
- We can now express this in terms of \mathbf{w} to maximize the margin we minimize the length of \mathbf{w}

Learning a Margin-Based Classifier

- We can search for the optimal parameters (\mathbf{w} and b) by finding a solution that:

1. Correctly classifies the training examples: $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
2. Maximizes the margin (same as minimizing $\mathbf{w}^{\top} \mathbf{w}$)

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } \forall i \quad\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) t^{(i)} \geq 1,
\end{array}
$$

- This is call the primal formulation of Support Vector Machine (SVM)
- Can optimize via projective gradient descent, etc.
- Apply Lagrange multipliers: formulate equivalent problem

