
CSC 411: Lecture 11: Neural Networks II

Raquel Urtasun & Rich Zemel

University of Toronto

Oct 16, 2015

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 1 / 36

Today

Forward propagation

Backward propagation

Deep learning

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 2 / 36

Neural Nets for Object Recognition

People are very good at recognizing shapes

I Intrinsically difficult, computers are bad at it

Some reasons why it is difficult:

I Segmentation: Real scenes are cluttered
I Invariances: We are very good at ignoring all sorts of variations that do

not affect shape
I Deformations: Natural shape classes allow variations (faces, letters,

chairs)
I A huge amount of computation is required

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 3 / 36

How to deal with large Input Spaces

Images can have millions of pixels, i.e., x is very high dimensional

Prohibitive to have fully-connected layer

We can use a locally connected layer

This is good when the input is registered

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 4 / 36

34

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

Ranzato

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 5 / 36

The invariance problem

Our perceptual systems are very good at dealing with invariances

I translation, rotation, scaling
I deformation, contrast, lighting, rate

We are so good at this that its hard to appreciate how difficult it is

I Its one of the main difficulties in making computers perceive
I We still don’t have generally accepted solutions

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 6 / 36

35

STATIONARITY? Statistics is similar at
different locations

Ranzato

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 7 / 36

The replicated feature approach

The red connections all
have the same weight.

5

Adopt approach apparently used in
monkey visual systems

Use many different copies of the same
feature detector.

I Copies have slightly different
positions.

I Could also replicate across scale and
orientation.

I Tricky and expensive

I Replication reduces number of free
parameters to be learned.

Use several different feature types, each
with its own replicated pool of detectors.

I Allows each patch of image to be
represented in several ways.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 8 / 36

Convolutional Neural Net

Idea: statistics are similar at different locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight across
space

This is called a convolution layer and the network is a convolutional network

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 9 / 36

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 10 / 36

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 11 / 36

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 12 / 36

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 13 / 36

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 14 / 36

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 15 / 36

Backpropagation with weight constraints

It is easy to modify the backpropagation algorithm to incorporate linear
constraints between the weights

To constrain: w1 = w2

we need: ∆w1 = ∆w2

We compute the gradients as usual, and then modify the gradients so that
they satisfy the constraints.

compute: ∂E
∂w1

and ∂E
∂w1

use: ∂E
∂w1

+ ∂E
∂w2

for w1 and w2

So if the weights started off satisfying the constraints, they will continue to
satisfy them.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 16 / 36

54

Learn multiple filters.

E.g.: 200x200 image
 100 Filters
 Filter size: 10x10

 10K parameters

Ranzato

Convolutional Layer

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 17 / 36

61

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 18 / 36

Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 19 / 36

67

Ranzato

Pooling Layer: Receptive Field Size

Conv.
layer

hn−1 hn

Pool.
layer

hn1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 20 / 36

Now let’s make this very deep to get a real state-of-the-art object
recognition system

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 21 / 36

Convolutional Neural Networks (CNN)

Remember from your image processing / computer vision course about
filtering?

If our filter was [−1, 1], we got a vertical edge detector

Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter.

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

Keep adding a few layers. Any idea what’s the purpose of more layers? Why
can’t we just have a full bunch of filters in one layer?

In the end add one or two fully (or densely) connected layers. In this layer,
we don’t do convolution we just do a dot-product between the “filter” and
the output of the previous layer.

Add one final layer: a classification layer. Each dimension of this vector tells
us the probability of the input image being of a certain class.

The trick is to not hand-fix the weights, but to train them. Train them such
that when the network sees a picture of a dog, the last layer will say “dog”.

Or when the network sees a picture of a cat, the last layer will say “cat”.

Or when the network sees a picture of a boat, the last layer will say
“boat”... The more pictures the network sees, the better.

[Slide Credit: Sanja Fidler]

[Slide Credit: Sanja Fidler]

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 22 / 36

Classification

Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

[Slide Credit: Sanja Fidler]

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 23 / 36

Classification Performance

Imagenet, main challenge for object classification: http://image-net.org/

1000 classes, 1.2M training images, 150K for test

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 24 / 36

http://image-net.org/

95

Architecture for Classification

CONV

LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category
prediction

input Ranzato
Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 25 / 36

96CONV

LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Total nr. params: 60M
4M

16M

37M

442K

1.3M

884K

307K

35K

Total nr. flops: 832M
4M

16M
37M

74M

224M

149M

223M

105M

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category
prediction

input Ranzato

Architecture for Classification

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 26 / 36

The 2012 Computer Vision Crisis

(Classification) (Detection)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 27 / 36

So Neural Networks are Great

So networks turn out to be great.

Everything is deep, even if it’s shallow!

Companies leading the competitions as they have more computational power

At this point Google, Facebook, Microsoft, Baidu “steal” most neural
network professors/students from academia

But to train the networks you need quite a bit of computational power (e.g.,
GPU farm). So what do you do?

Buy even more.And train more layers. 16 instead of 7 before. 144 million parameters.

[Slide Credit: Sanja Fidler]

[Slide Credit: Sanja Fidler]

Figure : K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv 2014

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 28 / 36

Overfitting

The training data contains information about the regularities in the mapping
from input to output. But it also contains noise

I The target values may be unreliable.
I There is sampling error. There will be accidental regularities just

because of the particular training cases that were chosen

When we fit the model, it cannot tell which regularities are real and which
are caused by sampling error.

I So it fits both kinds of regularity.
I If the model is very flexible it can model the sampling error really well.

This is a disaster.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 29 / 36

Preventing overfitting

Use a model that has the right capacity:

I enough to model the true regularities
I not enough to also model the spurious regularities (assuming they are

weaker)

Standard ways to limit the capacity of a neural net:

I Limit the number of hidden units.
I Limit the size of the weights.
I Stop the learning before it has time to overfit.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 30 / 36

Limiting the size of the weights

Weight-decay involves adding an extra term to the cost function that
penalizes the squared weights.

C = `+
λ

2

∑
i

w2
i

Keeps weights small unless they have big error derivatives.

∂C

∂wi
=

∂`

∂wi
+ λwi

w

C
when

∂C

∂wi
= 0, wi = − 1

λ

∂`

∂wi

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 31 / 36

The effect of weight-decay

It prevents the network from using weights that it does not need

I This can often improve generalization a lot.
I It helps to stop it from fitting the sampling error.
I It makes a smoother model in which the output changes more slowly as

the input changes.

But, if the network has two very similar inputs it prefers to put half the
weight on each rather than all the weight on one → other form of weight
decay?

w/2 w/2 w 0

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 32 / 36

Deciding how much to restrict the capacity

How do we decide which limit to use and how strong to make the limit?

I If we use the test data we get an unfair prediction of the error rate we
would get on new test data.

I Suppose we compared a set of models that gave random results, the
best one on a particular dataset would do better than chance. But it
won’t do better than chance on another test set.

So use a separate validation set to do model selection.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 33 / 36

Using a validation set

Divide the total dataset into three subsets:

I Training data is used for learning the parameters of the model.
I Validation data is not used for learning but is used for deciding what

type of model and what amount of regularization works best
I Test data is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data

We could then re-divide the total dataset to get another unbiased estimate
of the true error rate.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 34 / 36

Preventing overfitting by early stopping

If we have lots of data and a big model, its very expensive to keep
re-training it with different amounts of weight decay

It is much cheaper to start with very small weights and let them grow until
the performance on the validation set starts getting worse

The capacity of the model is limited because the weights have not had time
to grow big.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 35 / 36

Why early stopping works

outputs

inputs

When the weights are very small, every
hidden unit is in its linear range.

I So a net with a large layer of hidden
units is linear.

I It has no more capacity than a linear
net in which the inputs are directly
connected to the outputs!

As the weights grow, the hidden units
start using their non-linear ranges so the
capacity grows.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks II Oct 16, 2015 36 / 36

	Introduction

