CSC 411: Lecture 03: Linear Classification

Raquel Urtasun \& Rich Zemel

University of Toronto

$$
\text { Sep 21, } 2015
$$

Today

- Linear Classification
- Key Concepts:
- Classification as regression
- Decision boundary
- Loss functions
- Metrics to evaluate classification

Classification vs Regression

- We are interested in mapping the input $\mathbf{x} \in \mathcal{X}$ to a label $t \in \mathcal{Y}$
- In regression typically $\mathcal{Y}=\Re$
- Now its a category
- Examples?

Examples of Classification

What digit is this?
How can I predict this? What are my input features?

Classification as Regression

- Can we do this task using what we have learned in previous lectures?
- Simple hack: Ignore that the input is categorical!
- Suppose we have a binary problem, $t \in\{-1,1\}$
- Assuming the standard model used for regression

$$
y=f(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\top} \mathbf{x}
$$

- How can we obtain w?
- Use least squares, $\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t}$. How is \mathbf{X} computed? and \mathbf{t} ?
- Which loss are we minimizing? Does it make sense?

$$
\ell_{\text {square }}(\mathbf{w}, t)=\frac{1}{N} \sum_{n=1}^{N}\left(t^{(n)}-\mathbf{w}^{T} \mathbf{x}^{(n)}\right)^{2}
$$

- How do I compute a label for a new example? Let's see an example

Classification as Regression

Decision Rules

- Our classifier has the form

$$
f(\mathbf{x}, \mathbf{w})=w_{o}+\mathbf{w}^{\top} \mathbf{x}
$$

- A reasonable decision rule is

$$
y= \begin{cases}1 & \text { if } f(\mathbf{x}, \mathbf{w}) \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

- How can I mathematically write this rule?

$$
y=\operatorname{sign}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}\right)
$$

- How does this function look like?

Decision Rules

- How can I mathematically write this rule?

$$
y=\operatorname{sign}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}\right)
$$

- This specifies a linear classifier: it has a linear boundary (hyperplane)

$$
w_{0}+\mathbf{w}^{T} \mathbf{x}=0
$$

which separates the space into two "half-spaces"

Example in 1D

- The linear classifier has a linear boundary (hyperplane)

$$
w_{0}+\mathbf{w}^{T} \mathbf{x}=0
$$

which separates the space into two "half-spaces"

- In 1D this is simply a threshold

Example in 2D

- The linear classifier has a linear boundary (hyperplane)

$$
w_{0}+\mathbf{w}^{T} \mathbf{x}=0
$$

which separates the space into two "half-spaces"

- In 2D this is a line

Example in 3D

- The linear classifier has a linear boundary (hyperplane)

$$
w_{0}+\mathbf{w}^{T} \mathbf{x}=0
$$

which separates the space into two "half-spaces"

- In 3D this is a plane
- What about higher-dimensional spaces?

Geometry

$\mathbf{w}^{T} \mathbf{x}=0$ a line passing though the origin and orthogonal to \mathbf{w} $\mathbf{w}^{\top} \mathbf{x}+w_{0}=0$ shifts it by w_{0}

Figure from G. Shakhnarovich

Learning Linear Classifiers

- Learning consists in estimating a "good" decision boundary
- We need to find \mathbf{w} (direction) and w_{0} (location) of the boundary
- What does "good" mean?
- Is this boundary good?

- We need a criteria that tell us how to select the parameters
- Do you know any?

Loss functions

- Classifying using a linear decision boundary reduces the data dimension to 1

$$
y(\mathbf{x})=\operatorname{sign}\left(w_{0}+\mathbf{w}^{T} \mathbf{x}\right)
$$

- What is the cost of being wrong?
- Loss function: $L(y, t)$ is the loss incurred for predicting y when correct answer is t
- For medical diagnosis: For a diabetes screening test is it better to have false positives or false negatives?
- For movie ratings: The "truth" is that Alice thinks E.T. is worthy of a 4. How bad is it to predict a 5? How about a 2?

Loss functions

- A possible loss to minimize is the zero/one loss

$$
L(y(\mathbf{x}), t)= \begin{cases}0 & \text { if } y(\mathbf{x})=t \\ 1 & \text { if } y(\mathbf{x}) \neq t\end{cases}
$$

- Is this minimization easy to do? why?

Other Loss functions

- Zero/one loss for a classifier

$$
L_{0-1}(y(\mathbf{x}), t)= \begin{cases}0 & \text { if } y(\mathbf{x})=t \\ 1 & \text { if } y(\mathbf{x}) \neq t\end{cases}
$$

- Asymmetric Binary Loss

$$
L_{A B L}(y(\mathbf{x}), t)= \begin{cases}\alpha & \text { if } y(\mathbf{x})=1 \wedge t=0 \\ \beta & \text { if } y(\mathbf{x})=0 \wedge t=1 \\ 0 & \text { if } y(\mathbf{x})=t\end{cases}
$$

- Squared (quadratic) loss

$$
L_{\text {squared }}(y(\mathbf{x}), t)=(t-y(\mathbf{x}))^{2}
$$

- Absolute Error

$$
L_{\text {quadratic }}(y(\mathbf{x}), t)=|t-y(\mathbf{x})|
$$

More complex Loss Functions

- What if the movie predictions are used for rankings? Now the predicted ratings don't matter, just the order that they imply.
- In what order does Alice prefer E.T., Amelie and Titanic?
- Possibilities:
- 0-1 loss on the winner
- Permutation distance
- Accuracy of top K movies.

Can we always separate the classes?

- If we can separate the classes, the problem is linearly separable

Can we always separate the classes?

Causes of non perfect separation:

- Model is too simple
- Noise in the inputs (i.e., data attributes)
- Simple features that do not account for all variations
- Errors in data targets (miss labelings)

Should we make the model complex enough to have perfect separation in the training data?

Metrics

How to evaluate how good my classifier is?

- Precision: is the fraction of retrieved instances that are relevant

$$
P=\frac{T P}{T P+F P}
$$

- Recall: is the fraction of relevant instances that are retrieved

$$
R=\frac{T P}{T P+F N}=\frac{T P}{P}
$$

- F1 score: harmonic mean of precision and recall

$$
F 1=2 \frac{P \cdot R}{P+R}
$$

More on Metrics

How to evaluate how good my classifier is?

- Precision: is the fraction of retrieved instances that are relevant
- Recall: is the fraction of relevant instances that are retrieved
- Precision Recall Curve

- Average Precision (AP): mean under the curve

