CSC 411: Lecture 01: Introduction

Raquel Urtasun & Rich Zemel

University of Toronto

Sep 14, 2015

- Administration details
- Why is machine learning so cool?

- Liberal wrt waiving pre-requisites
 - But it is up to you to determine if you have the appropriate background
- Tutorials:
 - Fridays, same hour as lecture, same place
- Do I have the appropriate background?
 - Linear algebra: vector/matrix manipulations, properties
 - Calculus: partial derivatives
 - Probability: common distributions; Bayes Rule
 - Statistics: mean/median/mode; maximum likelihood
 - Sheldon Ross: A First Course in Probability
- Webpage of the course:

http://www.cs.toronto.edu/~urtasun/courses/CSC411/CSC411_
Fall15.html

- Christopher Bishop: "Pattern Recognition and Machine Learning", 2006
- Other Textbooks:
 - ▶ Kevin Murphy: "Machine Learning: a Probabilistic Perspective"
 - David Mackay: "Information Theory, Inference, and Learning Algorithms"
 - Ethem Alpaydin: "Introduction to Machine Learning", 2nd edition, 2010.

• Do the readings!

• Assignments:

- ► Three assignments, first two worth 12.5% each, last one worth 15%, for a total of 40%
- Programming: take Matlab/Python code and extend it
- Derivations: pen(cil)-and-paper
- Mid-term:
 - One hour exam on Oct. 26th
 - Worth 25% of course mark
- Final:
 - Focus on second half of course
 - Worth 35% of course mark

More on Assigments

- Collaboration on the assignments is not allowed. Each student is responsible for his/her own work. Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results. Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.
- The schedule of assignments is included in the syllabus. Assignments are due at the beginning of class/tutorial on the due date.
- Assignments handed in late but before 5 pm of that day will be penalized by 5% (i.e., total points multiplied by 0.95); a late penalty of 10% per day will be assessed thereafter.
- Extensions will be granted only in special situations, and you will need a Student Medical Certificate or a written request approved by the instructor at least one week before the due date.
- Final assignment is a bake-off: competition between ML algorithms. We will give you some data for training a ML system, and you will try to develop the best method. We will then determine which system performs best on unseen test data.

Urtasun & Zemel (UofT)

- Course on Piazza at piazza.com/utoronto.ca/fall2015/csc411/home
 - Register to have access at piazza.com/utoronto.ca/fall2015/csc411
 - Communicate announcements
 - Forum for discussion between students
 - Q/A for instructors/TAs and students: We will monitor as much as possible
- Office hours:
 - Ih/week per section
 - TBD exactly when
- Lecture notes, assignments, readings and some announcements will be available on the course webpage

Calendar

Date	Торіс	Assignments	Date	Topic	Assignments
Sep 14	Introduction		Oct 28	Clustering	Assit 2 Out
Sep 16	Linear Regression		Oct 30	Clustering	
Sep 18	Probability for ML & Linear regression		Nov 2	Mixture of Gaussians & EM	
Sep 21	Linear Classification		Nov 4	PCA & Autoencoders	
Sep 23	Logistic Regression		Nov 6	PCA Tutorial	
Sep 25	Optimization for ML		[Nov 9]	Mid-term break: No class	
Sep 28	Nonparametric Methods		Nov 11	Kernels and Margins	Asst 2 In
Sep 30	Decision Trees		Nov 13	SVM Tutorial	Asst3 Out
Oct 2	kNN & Decision Trees	Asst 1 Out	Nov 16	Support Vector Machines	
Oct 5	Multi-class Classification		Nov 18	Ensemble Methods I	
Oct7	Probabilistic Classifiers				
Oct 9			Nov 20	Bagging & Boosting	
[Oct 12]	Thanksgiving: No class		Nov 23	Ensemble Methods II	
Oct 14	Probabilistic Classifiers II		Nov 25	Bayesian Methods	
Oct 16	Naive Bayes and Gaussian Bayes Classifier		Nov 27		
Oct 19	Neural Networks I	Asst 1 In	Nov 30	Reinforcement Learning I	
Oct 21	Neural Networks II		Dec 2	Reinforcement Learning II	
Oct 23	Mid-term review		Dec 4		
Oct 26	MIDTERM		Dec 7	Final & Wrap-up	Ass 3 In

Urtasun & Zemel (UofT)

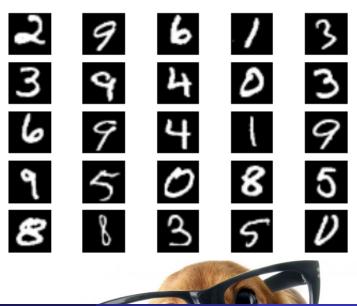
- How can we solve a specific problem?
 - As computer scientists we write a program that encodes a set of rules that are useful to solve the problem
 - In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image
- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - Examples of how they should behave
 - From trial-and-error experience trying to solve the problem
- Different than standard CS:
 - Want to implement unknown function, only have access to sample input-output pairs (training examples)
- Learning simply means incorporating information from the training examples into the system

Task that requires machine learning: What makes a 2?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?
- Instead of writing a program by hand, we collect examples that specify the correct output for a given input
- A machine learning algorithm then takes these examples and produces a program that does the job
 - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
 - If we do it right, the program works for new cases as well as the ones we trained it on.

1. Classification: Determine which discrete category the example is

Examples of Classification



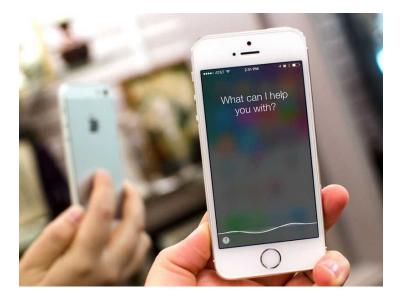
Urtasun & Zemel (UofT)

CSC 411: 01-Introduction

Sep 14, 2015 13 / 35

- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc

Examples of Recognizing patterns



- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc
- 3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon, Netflix).

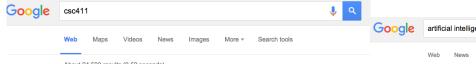
Examples of Recommendation systems

Urtasun & Zemel (UofT)

SI

(-

- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc
- 3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
- 4. Information retrieval: Find documents or images with similar content



About 24,500 results (0.52 seconds)

[PDF] CSC 411 MACHINE LEARNING and DATA MINING ...

www.cs.toronto.edu/~zemel/documents/411/svl.pdf •

CSC 411. MACHINE LEARNING and DATA MINING. Lectures: Monday, Wednesday 12-1 (section 1), 3-4 (section 2). Lecture Room: MP 134 (section 1); Bahen ...

Professor Richard Zemel - Department of Computer Science www.cs.toronto.edu/~zemel/ -

Image Question Answering: A Visual Semantic Embedding Model and a New Dataset . Mengye Ren, Ryan Kiros, Richard Zemel, ICML 2015 Deep Learning ... Course Offerings - Research Interests - Students & Post Docs - Contact Info

UofT Machine Learning | Course

learning.cs.toronto.edu/courses -

CSC 411, Machine Learning and Data Mining (Raguel Urtasun and Richard Zemel); STA 4513. Statistical models of networks, graphs, and other relational ...

CSC 411: Machine Learning and Data Mining

www.cs.utoronto.ca/~radford/csc411.F06/ -

CSC 411: Machine Learning and Data Mining (Sept-Dec 2006). Note: The test on December 8 at 3pm will be held in BA B024, not the usual lecture/tutorial room.

Robot

Urtasun & Zemel (UofT)

CSC 411: 01-Introduction

Sep 14, 2015

- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc
- 3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
- 4. Information retrieval: Find documents or images with similar content
- 5. Computer vision: detection, segmentation, depth estimation, optical flow, etc

Computer Vision

Urtasun & Zemel (UofT)

- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc
- 3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
- 4. Information retrieval: Find documents or images with similar content
- 5. Computer vision: detection, segmentation, depth estimation, optical flow, etc
- 6. Robotics: perception, planning, etc

Autonomous Driving

- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc
- 3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
- 4. Information retrieval: Find documents or images with similar content
- 5. Computer vision: detection, segmentation, depth estimation, optical flow, etc
- 6. Robotics: perception, planning, etc
- 7. Learning to play games

Playing Games: Atari

Urtasun & Zemel (UofT)

CSC 411: 01-Introduction

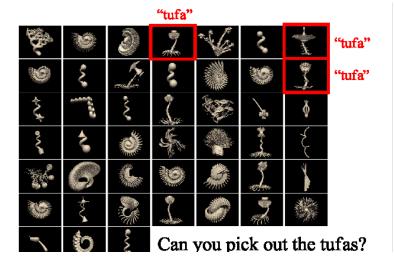
Playing Games: Super Mario

Urtasun & Zemel (UofT)

CSC 411: 01-Introduction

- 1. Classification: Determine which discrete category the example is
- 2. Recognizing patterns: Speech Recognition, facial identity, etc
- 3. Recommender Systems: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
- 4. Information retrieval: Find documents or images with similar content
- 5. Computer vision: detection, segmentation, depth estimation, optical flow, etc
- 6. Robotics: perception, planning, etc
- 7. Learning to play games
- 8. Recognizing anomalies: Unusual sequences of credit card transactions, panic situation at an airport
- 9. Spam filtering, fraud detection: The enemy adapts so we must adapt too
- 10. Many more!

Human Learning



Types of learning task

- Supervised: correct output known for each training example
 - Learn to predict output when given an input vector
 - Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - Regression: real-valued output (predicting market prices, customer rating)
- Unsupervised learning
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?
- Reinforcement learning
 - Learn action to maximize payoff
 - Not much information in a payoff signal
 - Payoff is often delayed

- Data-mining: Typically using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples
- Previously used in a negative sense misguided statistical procedure of looking for all kinds of relationships in the data until finally find one
- Now lines are blurred: many ML problems involve tons of data
- But problems with Al flavor (e.g., recognition, robot navigation) still domain of ML

- ML uses statistical theory to build models core task is inference from a sample
- A lot of ML is rediscovery of things statisticians already knew; often disguised by differences in terminology
- But the emphasis is very different:
 - Good piece of statistics: Clever proof that relatively simple estimation procedure is asymptotically unbiased.
 - Good piece of ML: Demo that a complicated algorithm produces impressive results on a specific task.
- Can view ML as applying computational techniques to statistical problems. But go beyond typical statistics problems, with different aims (speed vs. accuracy).

MACHINE LEARNING

- weights
- learning
- generalization
- supervised learning
- unsupervised learning
- large grant: \$1,000,000
- conference location: Snowbird, French Alps

STATISTICS

- parameters
- fitting
- test set performance
- regression/classification
- density estimation, clustering
- large grant: \$50,000
- conference location: Las Vegas in August

Please complete the following survey this week: https://docs.google.com/forms/d/ 106xRNnKp87GrDM74tkvOMhMIJmwz271TgWdYb6ZitK0/viewform?usp= send_form

- What grade will I get in this course?
- Data: entry survey and marks from previous years
- Process the data
 - Split into training set; test set
 - Determine representation of input features; output
- Choose form of model: linear regression
- Decide how to evaluate the system's performance: objective function
- Set model parameters to optimize performance
- Evaluate on test set: generalization