Semantic Segmentation

Prepared for CSC2541: Visual Perception for Autonomous Driving Stefania Raimondo March 15, 2015

Semantic segmentation

• Pixel-level classification

(Badrinarayanan, Kendall, & Cipolla, 2015)

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

Previously...

- Hand-engineered features, various classifiers
- Deep Convolutional Neural Nets
 - Success at other *high-level* vision tasks (abstract representations)
- DCNN hurdles for low-level tasks:
 - Signal down-sampling ---> reduced signal resolution
 - Spatial invariance ---> limits spatial accuracy
 - In general hard to train

#1 "DeepLab" (2014)

Semantic image segmentation with deep convolutional nets and fully connected crfs – Chen et al., 2014

Idea

Overcome the two hurdles of DCNNs using the "atrous" algorithm (downsampling issue) and CRFs (spatial insensitivity)

Do not rely on front-end segmentation systems

DeepLab

- Deeper (more max-pooling)...
 - ... increased invariance and large receptive fields
 - ... loss of spatial accuracy
- Previous solutions:
 - Segmentation 2 stage approaches
 - Harness information from multiple layers
- DeepLab Alternative: CRF

DeepLab DCNN

- Modify ImageNet pre-trained VGG-16 (Simonyan & Zisserman, 2014)
 - fully convolutional
 - dense features
 - Upsampling by bilinear interpolation

(image modified from Badrinarayanan, Kendall, & Cipolla, 2015)

DeepLab CRF

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

(equations from Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

DeepLab Variations

- DeepLab (no CRF)
- DeepLab-CRF
- DeepLab-MSc (CRF)
- DeepLab-7x7 (CRF)
- DeepLab-4x4 (CRF)
- DeepLab-LargeFOV (CRF/ MSc)

(image modified from Badrinarayanan, Kendall, & Cipolla, 2015)

DeepLab Results

- PASCAL VOC 2012
 - 20 classes + background
 - ~1.5k images for testing/training/validation
 - ~10.5k extra training annotations
 - Performance: IOU averaged across classes
- Most results/experiments provided on 'val' set

Method	mean IOU (%)
DeepLab	59.80
DeepLab-CRF	63.74
DeepLab-MSc	61.30
DeepLab-MSc-CRF	65.21
DeepLab-7x7	64.38
DeepLab-CRF-7x7	67.64
DeepLab-LargeFOV	62.25
DeepLab-CRF-LargeFOV	67.64
DeepLab-MSc-LargeFOV	64.21
DeepLab-MSc-CRF-LargeFOV	68.70
(a)	•

Method	mean IOU (%)
MSRA-CFM	61.8
FCN-8s	62.2
TTI-Zoomout-16	64.4
DeepLab-CRF	66.4
DeepLab-MSc-CRF	67.1
DeepLab-CRF-7x7	70.3
DeepLab-CRF-LargeFOV	70.3
DeepLab-MSc-CRF-LargeFOV	71.6

(b)

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

DeepLab Results

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

DeepLabResults

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

(a) FCN-8s vs. DeepLab-CRF

(b) TTI-Zoomout-16 vs. DeepLab-CRF

(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014)

DeepLab Summary + Future Work...

- State-of-the-art on Pascal Segmentation
- Fast 8fps DCNN, 0.5s CRF
- Step away from relying on segmentation
 - ...but still requires post-processing of NN output
 - ...but still not trained end-to-end
- Future work:
 - End-to-end training of CNN + CRF
 - Apply to video, depth maps...
 - Training with weakly supervised annotations

#2 SegNet (2015)

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation – Badrinarayanan et al. 2015

Idea:

Performance boosting support algorithms should not be used to hide deficiencies in core network performance

Should train end-to-end

Focus on decoding architecture

SegNet Contributions

- Efficient architecture (memory + computation time)
 - Upsampling reusing max-pooling indices
- Reasonable results without performance boosting addition
- Comparison to FCN

SegNet Architecture

SegNet Evaluation

- Pascal VOC 2012
 - Lots of background favors methods using weakly labelled data
 - Same objects with different backgrounds
- CamVid for variants
 - 11 classes, day and dusk, ~300 testing/training images
- SUN RGB-D
 - 37 indoor scene classes, ~5000 training/testing images

SegNet Evaluation

- Measures
 - Global accuracy (G)- % pixels correctly classified
 - Class average accuracy (C) mean accuracy over all classes
 - Mean intersection over union (I/U)
 - Penalizes false positives, not optimized for

SegNet Decoders

(Badrinarayanan, Kendall, & Cipolla, 2015)

SegNet Decoder Evaluation

- SegNet-Basic
 - 4 enc. + 4 dec., all max-pooling, no RELU, 7x7 kernel
- SegNet-Basic-SingleChannelDecoder
 - decoder only convolve their corresponding upsampled feature map
- FCN Basic
 - fully convolutional decoding technique
- FCN Basic-NoAddition
 - skips the addition step (space)
- Bilinear-Interpolation no learning for upsampling

SegNet Decoder Evaluation

			Median frequency bala					cing	Nat	ural f	reque	ency balancing			
		Encoder	Infer	Test		Train		l	Test			Train		n	
Variant	Params (M)	storage (MB)	time (ms)	G	С	I/U	G	С	I/U	G	С	I/U	G	С	I/U
Fixed upsampling															
Bilinear-Interpolation	0.625	0	24.2	77.9	61.1	43.3	89.1	90.2	82.7	82.7	52.5	43.8	93.5	74.	1 59.9
Upsampling using max-pooling indices															
SegNet-Basic	1.425	1x	52.6	82.7	62.0	47.7	94.7	96. 2	92.7	84.0	54.6	46.3	96.1	83.9	9 73.3
SegNet-Basic-EncoderAddition	1.425	64x	53.0	83.4	63.6	48.5	94.3	95.8	92.0	84.2	56.5	47.7	95.3	80.9	9 68.9
SegNet-Basic-SingleChannelDecoder	0.625	1x	33.1	81.2	60.7	46.1	93.2	94.8	90.3	83.5	53.9	45.2	92.6	68.4	4 52.8
	Learnii	ng to upsample	e (bilinear	initia	lisatic	on)									
FCN-Basic	0.65	11x	24.2	81.7	62.4	47.3	92.8	93.6	88.1	83.9	55.6	45.0	92.0	66.8	8 50.7
FCN-Basic-NoAddition	0.65	n/a	23.8	80.5	58.6	44.1	92.5	93.0	87.2	82.3	53.9	44.2	93.1	72.8	8 57.6
FCN-Basic-NoDimReduction	1.625	64x	44.8	84.1	63.4	50.1	95.1	96.5	93.2	83.5	57.3	47.0	97.2	91.	7 84.8
FCN-Basic-NoAddition-NoDimReduction	1.625	0	43.9	80.5	61.6	45.9	92.5	94.6	89.9	83.7	54.8	45.5	95.0	80.2	2 67.8
													-		

SegNet Evaluation

- SUN RGB-D Results complex indoor scenes
- CamVid out-door road scenes
- Pascal VOC 2012 few classes, varying backgrounds
- Demo
 - <u>http://mi.eng.cam.ac.uk/projects/segnet/#demo</u>

SegNet CamVid Results

SegNet-Basic with only local contrast normalized RGB as input (median freq. balancing)

SegNet with only local contrast normalized RGB as input (pre-trained encoder, median freq. balancing)

SegNet with only local contrast normalized RGB as input (pretrained encoder, median freq. balancing + large training set)

SegNet CamVid Results

Method	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Side-walk	Bicyclist	Class avg.	Global avg.	Mean I/U
SfM+Appearance [26]	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	53.0	69.1	n/a
Boosting [27]	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4	n/a
Dense Depth Maps [30]	85.3	57.3	95.4	69.2	46.5	98.5	23.8	44.3	22.0	38.1	28.7	55.4	82.1	n/a
Structured Random Forests [29]		n/a											72.5	n/a
Neural Decision Forests [60]						n/a						56.1	82.1	n/a
Local Label Descriptors [61]	80.7	61.5	88.8	16.4	n/a	98.0	1.09	0.05	4.13	12.4	0.07	36.3	73.6	n/a
Super Parsing [31]	87.0	67.1	96.9	62.7	30.1	95.9	14.7	17.9	1.7	70.0	19.4	51.2	83.3	n/a
SegNet-Basic	81.3	72.0	93.0	81.3	14.8	93.3	62.4	31.5	36.3	73.7	42.6	62.0	82.7	47.7
SegNet-Basic (layer-wise training [12])	75.0	84.6	91.2	82.7	36.9	93.3	55.0	37.5	44.8	74.1	16.0	62.9	84.3	n/a
SegNet	88.8	87.3	92.4	82.1	20.5	97.2	57.1	49.3	27.5	84.4	30.7	65.2	88.5	55.6
SegNet (3.5K dataset training)	73.9	90.6	90.1	86.4	69.8	94.5	86.8	67.9	74.0	94.7	52.9	80.1	86.7	60.4
			С	RF base	d appro	aches								
Boosting + pairwise CRF [27]	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13.0	79.3	23.1	59.9	79.8	n/a
Boosting+Higher order [27]	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	59.2	83.8	n/a
Boosting+Detectors+CRF [28]	81.5	76.6	96.2	78.7	40.2	93.9	43.0	47.6	14.3	81.5	33.9	62.5	83.8	n/a

+ V

SegNet SUN RGB-D Results

SegNet Pascal Results

Method	Encoder size (M)	Decoder size (M)	Total size (M)	Class avg. acc.	Inference 500×500 pixels	Inference 224×224 pixels
DeepLab [14] (validation set)	n/a	n/a	< 134.5	58	n/a	n/a
FCN-8 [2] (multi-stage training)	134	0.5	134.5	62.2	210ms	n/a
Hypercolumns [43] (object proposals)	n/a	n/a	> 134.5	62.6	n/a	n/a
DeconvNet [9] (object proposals)	138.35	138.35	276.7	69.6	n/a	92ms (× 50)
CRF-RNN [10] (multi-stage training)	n/a	n/a	> 134.5	69.6	n/a	n/a
SegNet	14.725	14.725	29.45	59.1	94ms	28ms
					1	

(Badrinarayanan, Kendall, & Cipolla, 2015)

-10%

SegNet Summary + Future Work

- Reasonable results w/out support methods
- Comparison of FCN decoding method
- Some failures:
 - Lacks smoothness on large objects
 - Cannot handle clutter
- Future work:
 - Estimate labelling uncertainty
 - Real-time application
 - Dropout during training and testing

#3 Joint Seg + 3D Reconstruction

Joint Semantic Segmentation and 3D Reconstruction from Monocular Video – Kundu et al. 2014

Idea

Structural and semantic information is necessary for some applications and can benefit from each other

Method

Contributions

- Method for simultaneous 3D structure and semantics
 - ...but not the first to use 3D features to improve 2D segmentation
 - ...and not the first to use 2D segmentation to improve 3D depth estimation
- Benefits of this approach
 - Temporally consistent
 - Monocular
 - Does not require dense depth maps
 - Efficient for real-time applications
- First 3D reconstruction of monocular Camvid

CRF Model

$$\begin{split} m_i \in \mathcal{M} & \longleftarrow \text{ voxel i's semantic label} \quad \mathcal{L}_{\mathcal{M}} = \{Free, Road, Car, \dots\} \\ \mathcal{D} = \{ \mathbf{z}_{1:P}^r, \mathbf{z}_{1:Q}^s, \mathbf{g}_{1:T} \} & \longleftarrow \text{ input data/measurements} \\ & \bigwedge & \bigwedge & \text{ camera trajectory per image} \\ \text{with-depth} & \text{ semantic-only} \\ \begin{cases} \text{pixel + pose} \\ \text{2D label} \\ \text{depth} \end{cases} & \begin{cases} \text{pixel + pose} \\ \text{2D label} \\ \text{depth} \end{cases} \end{split}$$

CRF Model

 $\mathcal{M}^* = \arg \max_{\mathcal{M}} P(\mathcal{M}|\mathcal{D}) \iff$ probability of voxel assignments given measurements

$$P(\mathcal{M}|\mathcal{D}) = \frac{1}{Z(\mathcal{D})} \prod_{i} \psi_{u}^{i}(m_{i}) \prod_{i,j \in \mathcal{N}} \psi_{p}(m_{i},m_{j}) \prod_{R \in \mathcal{R}} \psi_{h}(\mathbf{m}_{R})$$

Unary potentials

$$\psi_u^i(m_i) = \left[\psi_{\text{MISS}}(m_i)\right]^{N_M} \prod_{l \in \mathcal{L}_{\mathcal{I}} \setminus Sky} \left[\psi_{\text{HIT}}^l(m_i)\right]^{N_{Hl}}$$

(Kundu, Li, Dellaert, Li, & Rehg, 2014)

Updating Potentials

- 1) With-depth measurement
- 2) Semantic-only measurements

$$\psi_u^i(m_i) = \left[\psi_{\text{MISS}}(m_i)\right]^{N_M} \prod_{l \in \mathcal{L}_{\mathcal{I}} \setminus Sky} \left[\psi_{\text{HIT}}^l(m_i)\right]^{N_{Hl}}$$

(image modified from Kundu, Li, Dellaert, Li, & Rehg, 2014)

Updating Potentials (Semantic-on

- Depth statistics (per grid cell)
- For low-depth-uncertainty categories:
 - Same as with-depth, add unary factors
- For high-depth-uncertainty categories:
 - Add a higher order factor
 - Joins voxels along the ray bwtn min-max depth

(image modified from Kundu, Li, Dellaert, Li, & Rehg, 2014)

 $\psi_h(\mathbf{m}_R) = \begin{cases} \alpha & \text{if at least one of } \mathbf{m}_R \text{ is } \neg Free \\ \beta & \text{if all of } \mathbf{m}_R \text{ is } Free \end{cases}$

Updating Potentials

- Pairwise potentials
 - Neighbors in each direction are treated differently
 - Ex. road more likely in the horizontal direction
 - Lower cost for free neighbor

Implementation details...

- Octree data structure
 - Unused voxels are uninitialized
 - Minimal storage/computation
 - Pairwise/higher order are static across all voxels
 - Only store factor values, not the measruements
- Clamping
 - High probability (0.98) voxels are treated like evidence
 - 3D support for clamped voxels
 - Extra hit unaries for neighbors
 - Including free-space boundaries
- Improving SLAM
 - Reject matches if they lie on different semantic categories
 - Bundle adjustment (minimize re-projection errors)

Results

- Camvid, Leuven, KITTI
 - Fast forward-moving datasets
- Video
 - <u>http://www.cc.gatech.edu/~akundu7/projects/JointSegRec/</u>
- Qualitative 3D reconstruction results
- Quantitative 2D segmentation results
 - Label accuracy
 - Temporal consistency (entropy)

Results

• 2D segmentation results...

Camvid	Buil	lding	Road		Car		Sidewalk		Sky		Tree		Fence		All	
seq05VD	H(bits)	Acc(%) H(bits) Acc(%) H(bits) Acc(%)		Acc(%)	H(bits) Acc(%)		H(bits) Acc(%)		$\rm H(bits) \ Acc(\%)$		H(bits) Acc(%)		H(bits) Acc(%)			
Ours [20] [24] [31]	0.0 0.114 0.114 0.025	98.30 98.52 94.78 95.01	0.0 0.024 0.016 0.004	97.77 95.99 98.85 98.97	0.0 0.231 0.106 0.046	95.75 89.41 99.69 99.87	0.0 0.177 0.184 0.062	98.33 96.53 94.11 73.17	NA NA NA	99.27 99.81 99.21 99.26	0.0 0.168 0.173 0.037	83.63 83.02 80.34 74.08	0.0 0.299 0.249 0.107	73.74 75.59 39.06 4.38	0.095 0.084 0.019	95.51 94.58 92.41 87.88
LEUVEN	EN Building		$\frac{Road}{H(hito) Acc(\%)} \frac{Car}{H(hito) Acc(\%)}$		Sidewalk		$\frac{Sky}{H(bits) Acc(\%)}$		Bike		Pedestrian		All			
Ours [19]	0.0 0.046	96.51 95.84	0.0 0.116	99.40 98.75	0.0 0.150	91.78 91.42	0.0 0.429	66.97 74.89	NA NA	95.30 93.29	0.0 0.264	83.82 84.68	0.0 0.686	NA 61.76	0.094	95.74 95.24
KITTI	Kumm Building		Building Road Car		ar	Sidewalk		Sky		Tree		Fence		Α	11	
seq05	H(bits)	Acc(%)	H(bits)	Acc(%)	H(bits)	Acc(%)	H(bits)	Acc(%)	H(bits)	Acc(%)	H(bits)	Acc(%)	H(bits)	Acc(%)	H(bits)	Acc(%)
Ours [20]	0.0 0.165	98.90 97.47	0.0 0.113	98.72 87.85	0.0 0.203	96.95 98.14	<mark>0.0</mark> 0.158	98.35 96.00	NA NA	99.37 99.75	0.0 0.129	96.45 97.47	0.0 0.220	<mark>96.34</mark> 91.55	0.0 0.163	97.20 95.15

(Kundu, Li, Dellaert, Li, & Rehg, 2014)

3D+Seg Summary

- CRF based method
- Dense reconstruction
- Temporally consistent
- "Tractable for large outdoor environments"
- Future work:
 - Real-time application
 - Incorporating multi-camera information (already done)

Overall Summary

- Semantic Segmentation pixel-level
 - Need dense output
 - Need to preserve spatial details
- CRF (and other methods) can boost accuracy of NN models
- DCNN models may be able to stand on their own
 - If given sufficient training data and proper architecture
- Use 3D information to augment 2D segmentation

References

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. *arXiv:1511.00561 [cs]*. Retrieved from http://arxiv.org/abs/1511.00561

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. *arXiv:1412.7062* [cs]. Retrieved from http://arxiv.org/abs/1412.7062

Kundu, A., Li, Y., Dellaert, F., Li, F., & Rehg, J. (2014). Joint Semantic Segmentation and 3D Reconstruction from Monocular Video. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), *Computer Vision – ECCV 2014* (Vol. 8694, pp. 703–718). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-10599-4_45