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Object Detection: 2D vs 3D

Video (Chen et al. 2015)
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3D Object Detection: Motivation

• 2D bounding boxes are not sufficient

• Lack of 3D pose, Occlusion information, and 3D location

(Figure from Xiang et al. 2015)(Figure from Felzenszwalb et al. 2010)
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3D Object Detection: Challenge

• Occlusion/Truncation: Only a small portion of the surface is visible
• Leader board from KITTI website

Easy Moderate Hard

1 SubCNN 90.49% 87.88% 77.10%

2 DJML 90.67% 87.51% 76.33%

3 3DOP 91.44% 86.10% 76.52%

4 Mono3D 88.31% 85.66% 75.89%

5 3DVP 86.92% 74.59% 64.11%

Easy: Max. occlusion 15%
Moderate: Max. occlusion 30%
Hard: Max. occlusion 50%
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Outline

• Overview with contributions

• Main motivation

• Technical approach

• Experimental evaluation

• Discussion
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High-level Overview

• Propose a novel object representation: 3D Voxel Pattern (3DVP)
• Appearance, 3D shape, and occlusion masks

7
(Figure from Xiang et al. 2015)



High-level Overview

• Propose a novel object representation: 3D Voxel Pattern (3DVP)
• Appearance, 3D shape, and occlusion masks

• Train specialized 3DVP detectors which are capable of:
• 2D Object detection

• Segmentation mask, occlusion or truncation boundaries

• 3D localization, 3D pose
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High-level Overview

• Propose a novel object representation: 3D Voxel Pattern (3DVP)
• Appearance, 3D shape, and occlusion masks

• Train specialized 3DVP detectors which are capable of:
• 2D Object detection

• Segmentation mask, occlusion or truncation boundaries

• 3D localization, 3D pose

• Experiments on the KITTI benchmark and the OutdoorScene dataset
• Improve the state-of-the-art results on detection and pose estimation with 

notable margins (6% in difficult level of KITTI)
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Motivations

• What are the key challenges in this topic?
• Occlusion/Truncation

• Train partial object detectors for visible parts of objects (Wu and Nevatia 2005; Wojek et 
al. 2011; Xiang and Savarese 2013)

(Figure from Xiang et al. 2015)
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Motivations

• What are the key challenges in this topic?
• Occlusion/Truncation

• Shape variation: Intra-class changes should be modeled
• Discover and learn object sub-categories

(Figure from Xiang et al. 2015)
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Motivations

• What are the key challenges in this topic?
• Occlusion/Truncation

• Shape variation: Intra-class changes should be modeled

• Viewpoint: Multiview object detection in 3D
• Built from various 2D images (Yan et al. 2007; Glasner et al. 2011)

• Constructed using CAD models (Liebelt et al. 2008)

(Figure from Xiang et al. 2015)

12



Technical approach

• Training: Generate 3D Voxel Exemplars 
• A triplet of 2D image of the object, its 2D segmentation, and its 3D voxel model

(Figures from Xiang et al. 2015)
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Technical approach

• Training: Generate 3D Voxel Exemplars 
• 3D CAD model association and registration

• Project 3D CAD models to the image

• Label 2D segmentation mask and 3D voxel model

• Generate a 3D voxel exemplar

(Figures from Xiang et al. 2015) 14



Technical approach

• Training: Generate 3D Voxel Exemplars 
• A triplet of 2D image of the object, its 2D segmentation, and its 3D voxel model

(Figures from Xiang et al. 2015)
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Technical approach

• Training: Build a representative set of 3DVPs

(Figures from Xiang et al. 2015)
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Technical approach

• Training: Build a representative set of 3DVPs

(Figures from Xiang et al. 2015)
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Technical approach

• Training: Build a representative set of 3DVPs
• Define the 3D voxel exemplar feature vector � with dimension ��

• Encoding: 0 for empty voxels, 1 for visible voxels, 2 for self-occluded voxels, 3 for voxels 
occluded by other objects, and 4 for truncated voxels.

• Define the similarity metric ：
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Technical approach

• Training: Build a representative set of 3DVPs
• Define the 3D voxel exemplar feature vector � with dimension ��

• Encoding: 0 for empty voxels, 1 for visible voxels, 2 for self-occluded voxels, 3 for voxels 
occluded by other objects, and 4 for truncated voxels.

• Define the similarity metric ：

• Employ clustering algorithms
• K-means

• Affinity Propagation (AP) (Frey and Dueck 2007)

(Video from http://www.psi.toronto.edu/affinitypropagation/) 19



Technical approach

• Training: Train 3DVP Detectors
• SVM-based detectors for KITTI (Malisiewicz et al. 2011)

• Boosting detector for KITTI 

• Aggregated Channel Features (ACF) (Dollár et al. 2014)

(Figures from Xiang et al. 2015)
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Technical approach

• Training: Train 3DVP Detectors
• SVM-based detectors for KITTI (Malisiewicz et al. 2011)

• Boosting detector for KITTI 

• Aggregated Channel Features (ACF) (Dollár et al. 2014)

(Images from Dollár et al. 2014)
21



Technical approach

• Training: Train 3DVP Detectors
• SVM-based detectors for KITTI (Malisiewicz et al. 2011)

• Boosting detector for KITTI 

• Aggregated Channel Features (ACF) (Dollár et al. 2014)

• A trick: Incorporate the appearance of the occluder

(Figures from Xiang et al. 2015)
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Technical approach

• Testing: Get 2D detection bounding boxes

(Figures from Xiang et al. 2015)
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Technical approach

• Testing: Transfer the meta-data associated with the 3DVPs

(Figures from Xiang et al. 2015)
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Technical approach

• Testing: Transfer the meta-data associated with the 3DVPs
• Energy-based conditional random field model

• �� = ��
� + ��

�+��
� (visible, occluded, and truncated)
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Technical approach

• Testing: Transfer the meta-data associated with the 3DVPs
• Energy-based conditional random field model

• �� = ��
� + ��

�+��
� (visible, occluded, and truncated)

• Implementation: Greedy algorithm

26



Technical approach

• Testing: Transfer the meta-data associated with the 3DVPs
• Non –Maximum Suppression (NMS) (Felzenszwalb et al. 2010)

• Sort the results, and pick the one with largest score

• Computes the overlap between two bounding boxes by 

• Greedily suppress detections that have larger than 0.5 overlap with selected ones

• Noted by “NMS.5” in this paper

• Intersection over Union (IoU) with 0.6 threshold 
• NMS-based, but keep more occluded detection hypotheses 

• Noted by “INMS.6” in this paper

27



Experimental evaluation

• Datasets
• KITTI: 

• 7481 images (28,612 cars)

• Split the training set into training set and validation set

• OutdoorScene: 
• 200 images (focus on the presence of severe occlusions)

• Only for testing
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Experimental evaluation

• Evaluation metrics (threshold based metrics)
• Object detection: Average Precision (AP) (Everingham et al. 2011)

• Object orientation: Average Orientation Similarity (AOS) (Geiger et al. 2012)

where                                                                                             ∈ [0,1]

29



Experimental evaluation

• Evaluation metrics (threshold based metrics)
• Object detection: Average Precision (AP) (Everingham et al. 2011)

• Object orientation: Average Orientation Similarity (AOS) (Geiger et al. 2012)

where                                                                                             ∈ [0,1]
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Experimental evaluation

• Evaluation metrics (threshold based metrics)
• Object detection: Average Precision (AP) (Everingham et al. 2011)

• Object orientation: Average Orientation Similarity (AOS) (Geiger et al. 2012)

where                                                                                             ∈ [0,1]

• 2D segmentation: Average Segmentation Accuracy (ASA)

• 3D localization: Average Localization Precision (ALP)
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Experimental evaluation

• Result: 2D clustering vs 3D clustering

(Table from Xiang et al. 2015)
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Experimental evaluation

• Result: Occlusion(Energy-based) vs NMS.5 vs INMS.6
• DPM: baselines (Felzenszwalb et al. 2010)

(Table from Xiang et al. 2015)
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Experimental evaluation

• Result: 2D segmentation
• Lack of ground truth: projecting registered 3D CAD models

(Table from Xiang et al. 2015)
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Experimental evaluation

• Result: 2D segmentation
• Qualitative result: 

(Images from Xiang et al. 2015)
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Experimental evaluation

• Result: 3D localization

(Table from Xiang et al. 2015)
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Experimental evaluation

• Result: 3D localization
• Qualitative result: 

(Images and videos from Xiang et al. 2015)
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Experimental evaluation

• Result: KITTI test set evaluation
• Use the whole training set to generate the 3DVPs

(Table from Xiang et al. 2015) 38



Experimental evaluation

• Result: OutdoorScene dataset evaluation
• 3DVP detectors are generalizable to other scenarios

(Table from Xiang et al. 2015)
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Discussion

• Strength of the approach
• Estimate detailed properties of objects beyond 2D bounding boxes

• Weakness of the approach
• Running time: not mentioned in this paper

• KITTI website
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Discussion

• Strength of the approach
• Estimate detailed properties of objects beyond 2D bounding boxes

• Weakness of the approach
• Running time: not mentioned in this paper

• KITTI website: 

• Future direction
• Be able to adapt to different problems using different CAD models (e.g., 

Cyclists, Pedestrians)

(Screenshot from KITTI website: Geiger et al. 2012) 41



Discussion

• Strength of the approach
• Estimate detailed properties of objects beyond 2D bounding boxes

• Weakness of the approach
• Running time: not mentioned in this paper

• KITTI website

• Future direction
• Be able to adapt to different problems using different CAD models (e.g., 

Cyclists, Pedestrians)
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High-level Overview

• Propose a new object proposal approach: 3D object proposals (3DOP) 
• In the context of autonomous driving

• Exploits stereo imagery to place 3D bounding boxes

• Complete the full pipeline combing 3DOP and CNN

(Images from Chen et al. 2015) 44



High-level Overview

• Propose a new object proposal approach: 3D object proposals (3DOP) 
• In the context of autonomous driving

• Exploits stereo imagery to place 3D bounding boxes

• Complete the full pipeline combing 3DOP and CNN

• Experiments on KITTI benchmark
• Outperforms all existing approaches on all three categories (cars, cyclists, and 

pedestrians)
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Motivation

• Why generating the proposal before object detection?
• Proposals: at least a few accurately cover the ground-truth objects

• Split the system into two phases:
• i) generate the image proposals and ii) classify each proposal

• Combine with other algorithm like R-CNN
• Challenging conditions in autonomous driving
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Motivation

• Why generating the proposal before object detection?
• Proposals: at least a few accurately cover the ground-truth objects

• Split the system into two phases:
• i) generate the image proposals and ii) classify each proposal

• Combine with other algorithm like R-CNN
• Challenging conditions in autonomous driving

• Inspired by previous work
• Selective Search (Van de Sande et al. 2011)

• Contours-based method (Zitnick and Dollár 2014)
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Motivation

• Challenges
• High computational complexity of sliding windows

• Produce perfect recall with fewer proposals
• Trade-off between recall rate and precision rate

• Exploit the stereo imagery to improve the performance
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Technical approach

• Proposal Generation as Energy Minimization

• �: point cloud

• �: tuple (�, �, �, �, �, �)

• ��
�: class-specific weights
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Technical approach

• Proposal Generation as Energy Minimization

• Point cloud density

(Image from Chen et al. 2015)
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Technical approach

• Proposal Generation as Energy Minimization

• Free space

(Image from Chen et al. 2015)
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Technical approach

• Proposal Generation as Energy Minimization

• Height prior
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Technical approach

• Proposal Generation as Energy Minimization

• Height contrast
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Technical approach

• Proposal Generation as Energy Minimization

• Inference

• Get N diverse proposals
• Sort the values of E(x,y) for all y 

• Greedy inference: pick top scoring proposal, perform NMS (Felzenszwalb et al. 2010), 
and iterate
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Technical approach

• Proposal Generation as Energy Minimization

• Speed up tricks
• Integral image (summed area table)

• Skipping configurations which do not overlap with the point cloud

• Place all our bounding boxes on the road plane

• Sample additional proposal boxes at large locations: � =  ����� ± �����
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Technical approach

• Proposal Generation as Energy Minimization

• Learn the weights ��
� using structured SVM (Tsochantaridis et al. 2004)

• Given N ground truth input-output pairs �(�), �(�)
���,…,�

, solve the optimization 

problem:
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Technical approach

• Object Detection and Orientation Estimation Network
• 3DOP is combined with Fast R-CNN (Girshick 2015)

(Figure from Girshick 2015)
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Technical approach

• Object Detection and Orientation Estimation Network
• 3DOP is combined with Fast R-CNN (Girshick 2015)

• A context branch after the last convolutional layer
• Enlarging the candidate regions by a factor of 1.5 (Zhu et al. 2015)

(Figures from Chen et al. 2015)
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Technical approach

• Object Detection and Orientation Estimation Network
• 3DOP is combined with Fast R-CNN (Girshick 2015)

• A context branch after the last convolutional layer
• Enlarging the candidate regions by a factor of 1.5 (Zhu et al. 2015)

• Orientation regression loss
• Jointly learn object location and orientation

• Smooth �� loss: Less sensitive to outliers than L2 loss used in R-CNN (Girshick et al. 2014) 
and SPPnet (He et al. 2015)
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Technical approach

• Object Detection and Orientation Estimation Network
• 3DOP is combined with Fast R-CNN (Girshick 2015)

• A context branch after the last convolutional layer
• Enlarging the candidate regions by a factor of 1.5 (Zhu et al. 2015)

• Orientation regression loss
• Jointly learn object location and orientation

• Smooth �� loss: Less sensitive to outliers than L2 loss used in R-CNN (Girshick et al. 2014) 
and SPPnet (He et al. 2015)

• Initialization of weights on CNN
• Use OxfordNet (Simonyan and Zisserman 2014) trained on ImageNet
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Technical approach

• Object Detection and Orientation Estimation Network

(Figures from Chen et al. 2015)
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Experimental evaluation

• Dataset: KITTI
• 7481 training images, which contains three classes: Car, Pedestrian, and 

Cyclist

• Three regimes based on the occlusion levels: Easy, Moderate, and Hard

• Split the training set into training set and validation set

• Evaluation metric: Oracle recall (Van de Sande et al. 2011; Hosang et 
al. 2015)
• For each ground truth (GT) object we found the proposal that overlaps the 

most in Intersection over Union (IoU)

• Then we say it is recalled if IoU exceeds 70% for cars and 50% for pedestrians 
and cyclists
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Experimental evaluation

• Results: Recall as a function of the number of candidates

(Figures from Chen et al. 2015) 63



Experimental evaluation

• Results: Recall as a function of the number of candidates

(Figures from Chen et al. 2015) 64



Experimental evaluation

• Results: Recall vs IoU for 500 proposals

(Figures from Chen et al. 2015) 65



Experimental evaluation

• Results: Running time

(Table from Chen et al. 2015)
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Experimental evaluation

• Results: Full object detection pipeline 

v

v
(Table from Chen et al. 2015)
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Experimental evaluation

• Results: Full object orientation estimation pipeline 

v

v

(Table from Chen et al. 2015)
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Experimental evaluation

• Results: Full object orientation estimation pipeline 

3rd : 3DOP (this paper), Dec 2015, NIPS.

5th: 3DVP (previous paper), June 2015, CVPR.

(Screenshot from KITTI website: Geiger et al. 2012) 69



Discussion

• Strength of the approach
• Generating proposals

• 3DOP achieves higher recall rate on challenging KITTI benchmark
• Full object detection/orientation estimation pipeline

• 3DOP + Fast R-CNN outperforms state-of-the-art methods on KITTI testing set

• Weakness of the approach
• Rely on stereo images
• Still not a real-time algorithm (1.2 seconds for proposals, 3 seconds for full pipeline)

• Future work
• Implement monocular 3D Object Detection
• Improve efficiency by reducing spurious false positives
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