CSC 2515 Tutorial: Optimization for Machine
Learning

Shenlong Wang?!

January 20, 2015

'Modified based on Jake Snell’s tutorial, with additional contents
borrowed from Kevin Swersky and Jasper Snoek

Outline

Overview

v

Gradient descent
Checkgrad

Convexity

v

v

v

v

Stochastic gradient descent

An informal definition of optimization

Minimize (or maximize) some quantity.

Applications

» Engineering: Minimize fuel consumption of an automobile

» Economics: Maximize returns on an investment

» Supply Chain Logistics: Minimize time taken to fulfill an order
» Life: Maximize happiness

More formally

Goal: find 6* = argmingf(0), (possibly subject to constraints on 6).

» 0 € R". optimization variable
» f:R” — R: objective function

Maximizing f(0) is equivalent to minimizing —f(6), so we can
treat everything as a minimization problem.

Optimization is a large area of research

The best method for solving the optimization problem depends on
which assumptions we want to make:

vV v VY

Is 6 discrete or continuous?

What form do constraints on 6 take? (if any)

Are the observations noisy or not?

Is f “well-behaved”? (linear, differentiable, convex,
submodular, etc.)

Some are specialized for the problem at hand (e.g. Dijkstra’s
algorithm for shortest path). Others are general black-box
solutions for general algorithms (e.g. simplex algorithm).

Optimization for machine learning

Often in machine learning we are interested in learning model
parameters 6 with the goal of minimizing error.
Goal: minimize some loss function.
» For example, if we have some data (x, y), we may want to
maximize P(y|x,).
» Equivalently, we can minimize — log P(y|x, 6).
> We can also minimize other sorts of loss functions
Note:

» log can help for numerical reasons

Gradient descent

Review

H . of oOf of
» Gradient: ng: (379178702”"’879;(

Gradient descent

From calculus, we know that the minimum of f must lie at a point
where afa(z) — 0.

» Sometimes, we can solve this equation analytically for 6.
» Most of the time, we are not so lucky and must resort to
iterative methods.

Informal version:

> Start at some initial setting of the weights 6.

» Until convergence or reaching maximum number of
iterations, repeatedly compute the gradient of our objective
and move along that direction.

» Convergence can be measured by the norm of the gradient (0
at ‘optimal’ solution).

Gradient descent algorithm

Where 7 is the learning rate and T is the number of iterations:

> Initialize 0y randomly
>» fort=1:T:

> 51‘ <— —nVetflf
> 0 < 01+ 6

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)

Gradient descent with line-search

Where 7 is the learning rate and T is the number of iterations:

> Initialize 8y randomly

> fort=1:T:
» Finding a step size 1, such that f(0; — 7:Ve,_,) < f(6;)
> 51_» “— —ﬂtVOHf
> 0 — 0,1+

Require a line-search step in each iteration.

Gradient descent with momentum

We can introduce a momentum coefficient « € [0, 1) so that the
updates have “memory”:

> Initialize #p randomly
» Initialize g to the zero vector
» fort=1:T:

> 0 < —n((1 = B)Vo,_,f+50:-1)
> gt — 01-71 + (5,_»

Momentum is a nice trick that can help speed up convergence.
Generally we choose « between 0.8 and 0.95, but this is problem
dependent

Convergence

Where 7 is the learning rate and T is the number of iterations:

» Initialize 8y randomly
» Do:

> 6y < —nVe,_, f
> gt — 91.,1 + 61—

» Until convergence

Setting a convergence criteria.

Some convergence criteria

» Change in objective function value is close to zero:
[F(Oes1) — F(02)] <€
» Gradient norm is close to zero: |Vyf|| < €
» Validation error starts to increase (this is called early stopping)

Checkgrad

» When implementing the gradient computation for machine
learning models, it's often difficult to know if our
implementation of f and Vf is correct.

» We can use finite-differences approximation to the gradient to
help:

g,\, f((01,...,0,-+e,...,0,,))—f((@l,...,e,-—e,...,en))
90; ~ 2¢

» Usually 1073 < € < 1070 is sufficient.
Why don't we always just use the finite differences approximation?

» slow: we need to recompute f twice for each parameter in our
model.

» numerical issues

Demo

> Linear regression
» Logistic regression

Definition of convexity

A function f is convex if for any two points #; and 6, and any
te[0,1],

f(t01 + (1 — t)02) < tf(01) + (1 — t)F(02)

We can compose convex functions such that the resulting function
is also convex:

» If f is convex, then so is af for a« >0

» If f; and f> are both convex, then sois f; +

> etc., see
http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for
more

Why do we care about convexity?

> Any local minimum is a global minimum.

» This makes optimization a lot easier because we don't have to
worry about getting stuck in a local minimum.

» Many standard problems in machine learning are convex.

Examples of convex functions

Quadratics

In [6]:

out[6]:

import matplotlib.pyplot as plt
plt.xked()

theta = linspace(-5, 5)

£ = theta**2

plt.plot(theta, f)

[<matplotlib.lines.Line2D at 0x3ceae90>]

25

20|=

15|=

10/=

Slide Type

Examples of convex functions

Negative logarithms

In [8]: Slide Type | -
import matplotlib.pyplot as plt
plt.xked()
theta = linspace(0.1, 5)
f = -np.log(theta)
plt.plot(theta, f)

Out[8]: [<matplotlib.lines.Line2D at Ox3ef4al0>]

Convexity for logistic regression

Cross-entropy objective function for logistic regression is also
convex!

f(0) = -, tMlog p(y = 1[x(M, 0)+(1—t(") log p(y = 0|x(", §)
Plot of —log o (0)

In [15]: Slide Type | -
def sigmoid(x):
return 1 / (1 + np.exp(-x))

theta = linspace(-5, 5)
f = -np.log(sigmoid(theta))
plt.plot(theta, f)

Out[15]: [<matplotlib.lines.Line2D at 0x4c453d0>]

6 T T 1 T T |
5= -
4|-

3]- =l
2=

1|- -
A N B Jmar

Stochastic gradient descent

The methods presented earlier have a few limitations.

» They require a full pass through the data to compute the
gradient.

» When the dataset is large, computing the exact gradient is
expensive.

Stochastic gradient descent

Let's recall gradient descent:
» Step size 7, gradient function df, initial weight 6y, data
{xn}N_,, number of iterations T.
> fort=1:T:
> O *UVOr_lf({Xn}nNzl)
> 91» — 0t—1 + §t

Stochastic gradient descent

Stochastic gradient descent:

> Step size n, gradient function Jf, initial weight 6y, data
{xn}N_;, number of iterations T.
> fort=1:T:
» Randomly choose a training case x,, n € {1,..., N}
> O — —nVQHf(x,,)
> 0 01+ 0

Stochastic gradient descent

Now the function is noisy (even if it wasn't before) so it will
take more iterations to converge.

v

v

But each iteration is N times cheaper.

v

On the whole this tends to give a huge win in terms of
computation time, especially on large datasets.

v

Mini-batch is a compromise.

More on optimization

» Convex Optimization by Boyd & Vandenberghe
Book available for free online at
http://www.stanford.edu/~boyd/cvxbook/

» Numerical Optimization by Nocedal & Wright
Electronic version available from UofT Library

Resources for MATLAB

> Tutorials are available on the course website at
http://www.cs.toronto.edu/~zemel/inquiry/matlab.php

http://www.cs.toronto.edu/~zemel/inquiry/matlab.php

Resources for Python

» Official tutorial: http://docs.python.org/2/tutorial /

» Google's Python class:
https://developers.google.com /edu/python/

» Zed Shaw's Learn Python the Hard Way:
http://learnpythonthehardway.org/book/

NumPy/SciPy/Matplotlib

» Scientific Python bootcamp (with video!):
http://register.pythonbootcamp.info/agenda
» SciPy lectures: http://scipy-lectures.github.io/index.html

Questions?

