
CSC 2515 Tutorial: Optimization for Machine
Learning

Shenlong Wang1

January 20, 2015

1Modified based on Jake Snell’s tutorial, with additional contents
borrowed from Kevin Swersky and Jasper Snoek

Outline

I Overview

I Gradient descent

I Checkgrad

I Convexity

I Stochastic gradient descent

An informal definition of optimization

Minimize (or maximize) some quantity.

Applications

I Engineering: Minimize fuel consumption of an automobile

I Economics: Maximize returns on an investment

I Supply Chain Logistics: Minimize time taken to fulfill an order

I Life: Maximize happiness

More formally

Goal: find θ∗ = argminθf (θ), (possibly subject to constraints on θ).

I θ ∈ Rn: optimization variable

I f : Rn → R: objective function

Maximizing f (θ) is equivalent to minimizing −f (θ), so we can
treat everything as a minimization problem.

Optimization is a large area of research

The best method for solving the optimization problem depends on
which assumptions we want to make:

I Is θ discrete or continuous?
I What form do constraints on θ take? (if any)
I Are the observations noisy or not?
I Is f “well-behaved”? (linear, differentiable, convex,

submodular, etc.)
I Some are specialized for the problem at hand (e.g. Dijkstra’s

algorithm for shortest path). Others are general black-box
solutions for general algorithms (e.g. simplex algorithm).

Optimization for machine learning

Often in machine learning we are interested in learning model
parameters θ with the goal of minimizing error.
Goal: minimize some loss function.

I For example, if we have some data (x , y), we may want to
maximize P(y |x , θ).

I Equivalently, we can minimize − logP(y |x , θ).
I We can also minimize other sorts of loss functions

Note:

I log can help for numerical reasons

Gradient descent

Review

I Gradient: ∇θf = (∂f∂θ1 ,
∂f
∂θ2
, ..., ∂f∂θk)

Gradient descent

From calculus, we know that the minimum of f must lie at a point
where ∂f (θ∗)

∂θ = 0.

I Sometimes, we can solve this equation analytically for θ.
I Most of the time, we are not so lucky and must resort to

iterative methods.

Informal version:

I Start at some initial setting of the weights θ0.
I Until convergence or reaching maximum number of

iterations, repeatedly compute the gradient of our objective
and move along that direction.

I Convergence can be measured by the norm of the gradient (0
at ‘optimal’ solution).

Gradient descent algorithm

Where η is the learning rate and T is the number of iterations:

I Initialize θ0 randomly
I for t = 1 : T :

I δt ← −η∇θt−1 f
I θt ← θt−1 + δt

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)

Gradient descent with line-search

Where η is the learning rate and T is the number of iterations:

I Initialize θ0 randomly
I for t = 1 : T :

I Finding a step size ηt such that f (θt − ηt∇θt−1) < f (θt)
I δt ← −ηt∇θt−1 f
I θt ← θt−1 + δt

Require a line-search step in each iteration.

Gradient descent with momentum

We can introduce a momentum coefficient α ∈ [0, 1) so that the
updates have “memory”:

I Initialize θ0 randomly
I Initialize δ0 to the zero vector
I for t = 1 : T :

I δt ← −η((1− β)∇θt−1 f +βδt−1)
I θt ← θt−1 + δt

Momentum is a nice trick that can help speed up convergence.
Generally we choose α between 0.8 and 0.95, but this is problem
dependent

Convergence

Where η is the learning rate and T is the number of iterations:

I Initialize θ0 randomly
I Do:

I δt ← −η∇θt−1 f
I θt ← θt−1 + δt

I Until convergence

Setting a convergence criteria.

Some convergence criteria

I Change in objective function value is close to zero:
|f (θt+1)− f (θt)| < ε

I Gradient norm is close to zero: ‖∇θf ‖ < ε
I Validation error starts to increase (this is called early stopping)

Checkgrad

I When implementing the gradient computation for machine
learning models, it’s often difficult to know if our
implementation of f and ∇f is correct.

I We can use finite-differences approximation to the gradient to
help:

∂f

∂θi
≈ f ((θ1, . . . , θi + ε, . . . , θn))− f ((θ1, . . . , θi − ε, . . . , θn))

2ε

I Usually 10−3 < ε < 10−6 is sufficient.

Why don’t we always just use the finite differences approximation?

I slow: we need to recompute f twice for each parameter in our
model.

I numerical issues

Demo

I Linear regression
I Logistic regression

Definition of convexity

A function f is convex if for any two points θ1 and θ2 and any
t ∈ [0, 1],

f (tθ1 + (1− t)θ2) ≤ tf (θ1) + (1− t)f (θ2)

We can compose convex functions such that the resulting function
is also convex:

I If f is convex, then so is αf for α ≥ 0
I If f1 and f2 are both convex, then so is f1 + f2
I etc., see

http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for
more

Why do we care about convexity?

I Any local minimum is a global minimum.
I This makes optimization a lot easier because we don’t have to

worry about getting stuck in a local minimum.
I Many standard problems in machine learning are convex.

Examples of convex functions

Quadratics

Examples of convex functions

Negative logarithms

Convexity for logistic regression
Cross-entropy objective function for logistic regression is also
convex!
f (θ) = −

∑
n t

(n) log p(y = 1|x (n), θ)+(1−t(n)) log p(y = 0|x (n), θ)
Plot of − log σ(θ)

Stochastic gradient descent

The methods presented earlier have a few limitations.

I They require a full pass through the data to compute the
gradient.

I When the dataset is large, computing the exact gradient is
expensive.

Stochastic gradient descent

Let’s recall gradient descent:

I Step size η, gradient function δf , initial weight θ0, data
{xn}Nn=1, number of iterations T .

I for t = 1 : T :

I δt ← −η∇θt−1 f ({xn}Nn=1)
I θt ← θt−1 + δt

Stochastic gradient descent

Stochastic gradient descent:

I Step size η, gradient function δf , initial weight θ0, data
{xn}Nn=1, number of iterations T .

I for t = 1 : T :

I Randomly choose a training case xn, n ∈ {1, ...,N}
I δt ← −η∇θt−1 f (xn)
I θt ← θt−1 + δt

Stochastic gradient descent

I Now the function is noisy (even if it wasn’t before) so it will
take more iterations to converge.

I But each iteration is N times cheaper.

I On the whole this tends to give a huge win in terms of
computation time, especially on large datasets.

I Mini-batch is a compromise.

More on optimization

I Convex Optimization by Boyd & Vandenberghe
Book available for free online at
http://www.stanford.edu/˜boyd/cvxbook/

I Numerical Optimization by Nocedal & Wright
Electronic version available from UofT Library

Resources for MATLAB

I Tutorials are available on the course website at
http://www.cs.toronto.edu/~zemel/inquiry/matlab.php

http://www.cs.toronto.edu/~zemel/inquiry/matlab.php

Resources for Python

I Official tutorial: http://docs.python.org/2/tutorial/
I Google’s Python class:

https://developers.google.com/edu/python/
I Zed Shaw’s Learn Python the Hard Way:

http://learnpythonthehardway.org/book/

NumPy/SciPy/Matplotlib

I Scientific Python bootcamp (with video!):
http://register.pythonbootcamp.info/agenda

I SciPy lectures: http://scipy-lectures.github.io/index.html

Questions?

