CSC2515 Tutorial 4

Feb 3 2015

Presented by Ali Punjani



Outline

* Neural Networks
— Regularization and Overfitting
— Capacity Restriction/Pruning
— Demo (MATLAB)



Preventing overfitting

* Use a model that has the right capacity:
— enough to model the true regularities

— not enough to also model the spurious regularities
(assuming they are weaker)

e Standard ways to limit the capacity of a neural
net:

— Limit the number of hidden units.
— Limit the size of the weights.
— Stop the learning before it has time to overfit.



Limiting the size of the weights

Weight-decay involves adding A 7
an extra term to the cost C=FE+ ) E Wi
function that penalizes the
squared weights. aC oF
— Keeps weights small p (9 T ;LW
unless they have big error Wi Wi
derivatives.
0C 1 OF
when — =0, w; =-
ow; A ow;




The effect of weight-decay

It prevents the network from using weights that it does not
need

— This can often improve generalization a lot.
— It helps to stop it from fitting the sampling error.

— |t makes a smoother model in which the output changes
more slowly as the input changes.

If the network has two very similar inputs it prefers to put half
the weight on each rather than all the weight on one.

@ @
S S



Weight-decay via noisy inputs

* Weight-decay reduces the effect of
noise in the inputs. )A/ _ E Wox; + E N(O, WiZOz'z)

— The noise variance is amplified > >
by the squared weight

* The amplified noise makes an
additive contribution to the
squared error.

— So minimizing the squared
error tends to minimize the @
squared weights when the
inputs are noisy.

* |t gets more complicated for non-
linear networks.



Other kinds of weight penalty

 Sometimes it works better to
penalize the absolute values of
the weights

— This makes some weights
equal to zero which helps
interpretation

 Sometimes it works better to
use a weight penalty that has
negligible effect on large
weights.




Pruning network weights II:
Optimal brain damage

Weight saliency: analytical prediction of effectiveness of particular
parameter wrt objective

Use Taylor series approximation to predict effect of perturbing
some parameter (under approx)

OF = ! E azEéw..

2 Yy
244w,

Algorithm:
— Train network to local minimum
— Use back-prop to compute diagonal second derivatives

— Delete some parameters with low saliency (little effect of
perturbing it on E)



Deciding how much to restrict the capacity

e How do we decide which limit to use and how
strong to make the limit?

— |If we use the test data we get an unfair prediction
of the error rate we would get on new test data.

— Suppose we compared a set of models that gave
random results, the best one on a particular
dataset would do better than chance. But it won’t
do better than chance on another test set.

* So use a separate validation set to do model
selection.



Using a validation set

 Divide the total dataset into three subsets:

— Training data is used for learning the parameters of
the model.

— Validation data is not used of learning but is used for
deciding what type of model and what amount of
regularization works best

— Test data is used to get a final, unbiased estimate of
how well the network works. We expect this estimate
to be worse than on the validation data

 We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.



Preventing overfitting by early stopping

* |f we have lots of data and a big model, its very
expensive to keep re-training it with different
amounts of weight decay

* Itis much cheaper to start with very small
weights and let them grow until the performance
on the validation set starts getting worse (but
don’ t get fooled by noise!)

* The capacity of the model is limited because the
weights have not had time to grow big.



Why early stopping works

When the weights are very small,
every hidden unitis in its linear

ranse. @ @ outputs

— So a net with a large layer of
hidden units is linear.

—

— It has no more capacity than a
linear net in which the inputs
are directly connected to the ‘ ‘ . ‘ ‘ ‘
outputs!

As the weights grow, the hidden
units start using their non-linear
ranges so the capacity grows. .

@ =

iInputs

12



