CSC 2515 FAQ for A2 $\,$

Shenlong Wang slwang@cs.toronto.edu

Please post a thread on piazza.com/utoronto.ca/winter2015/csc2515 if you have more questions. I will try to answer them on a daily basis.

1. Q: What exactly is wts, b, wts_grad, wts_inc, b_grad, b_inc, and input_grad supposed to be?

- A: Please see the following:
- wts: weights for each layer.
- b: bias for each layer.
- wts_grad: gradient for weights you calculated from back_prop for each layer.
- wts_inc: actual update you will do for wts in a SGD step for each layer.
- b_grad: gradient for bias you calculated from back_prop for each layer.
- b_inc: actual update you will do for b in a SGD step for each layer.
- act_grad in @layer/back_prop: gradient wrt activation function of this layer.
- input_grad in @layer/back_prop : gradients wrt the input of this layer.

2. Q: What do you expect us to implement?

- A: In general your task is to
 - 1. implement the following functions:
 - @nn/fwd_prop: perform a feedforward pass over all layers, and return a list of (cell in matlab) activations for each layer. You may want to call @layer/fwd_prop for each layer.
 - @nn/back_prop: perform a backpropagation, return self with updated gradient of weights and biases for all layers. You may want to call @layer/back_prop for each layer.
 - @nn/apply_gradients: perform stochastic gradient descent step. You may want to call @layer/apply_gradients for each layer.

- @layer/fwd_prop:perform a forward pass.
- @layer/back_prop: back propagate activation gradients and compute gradients for one layer. The output is a struct consisting of three parts, wts_grad, b_grad, input_grad. Please refer to Q1 for their meaning.
- @layer/compute_act_gradients_from_targets: compute the gradients wrt activations of *sigmoid* layer, the input are the current activations of this layer and the gradients wrt outputs of the sigmoid. This function is needed for *sigmoid* layer.
- @layer/compute_act_grad_from_output_grad: compute the gradients wrt activations of the *softmax* layer, given the targets and the outputs of the *softmax*, the inputs are the current activations of this layer and the target.
- @layer/apply_gradients: update wts_inc(b_inc) and use wts_inc(b_inc) to update the weight(bias). You may want to use the gradient wts_grad(b_grad) as well as momentum and learning rate.
- 2. choose proper hyper-parameters in train_nnet:
 - eps, learning rate for SGD
 - 12, coefficient for ℓ_2 regularizer
 - momentum, momentum for SGD
 - batch_size , batch size for SGD
- 3. implement stopping criterion in train_nnet. Consider how to control overfit.
- 4. apply pre-processing in creat_pred and train_nnet. You may want to use functions implemented in speech_data.

3. Q: Do we have to use both svd and eig in order to calculate PCA?

A: No. You may use either one of them. Try to think about the difference between two approaches.