

ImageNet Classification with Deep
Convolutional Neural Networks

Alex Krizhevsky
Ilya Sutskever

Geoffrey Hinton

University of Toronto

Presented at UAIG

Main idea
Architecture

Technical details

Neural Networks

● A neuron

● One neuron can implement logical gates (and
a lot more)

f(x)

w
1

w
2

w
3

y
1

y
2

y
3

x is called the total input
to the neuron, and f(x)
is its output

x = w
1
y

1
 + w

2
y

2
 + w

3
y

y = f(x)

Neural Networks

● Neural Networks are
circuits

Output

input

● They can compute
lots of complicated
functions

● The connections
determine the function

● Connections are
slowly adjusted by a
learning algorithm to
reduce error on
training cases

Training Neural Networks

x

prediction

x

target
error

● Do until convergence
● Pick a training case
● Compare prediction to target
● Update parameters to slightly

reduce error

● This process will converge to weights
should make sensible predictions on
all training cases

● These weights implement a circuit
whose operation reflects deep facts
about the data

● Training method is simple, resulting
neural network is extremely complex

● Slowly change the weights to improve performnace

Random training case

Repeat:

Generalization

● How does the network “know” the correct answer
on previously unseen examples?

● The network's ability to memorize random patterns
is limited
– With enough training data, train error=test error

● If we are lucky, the network is capable of
representing a good function, so training will find it
– Otherwise our error will be large

Generalization

Neural network space

Training cases are like constraints
Learning is like solving an equation

Constraint imposed by
one training case

Convolutional neural networks
● Apply neural networks to images

– Images are very large, so networks are huge
● One convolution: apply the same weight to every

image-patch

All nodes compute
the same function of
the nodes below
them

This is one layer.
The input is either an
image or an
intermediate layer

Advantages of conv:
 - less connections
 - much less parameters

Convolutional neural networks

● Many “maps” go to many “maps”

● GPU-friendly

● Key operation

Each edge is a
a convolution

All edges are different
In this figure!

Overview of our model

● Deep: 7 hidden weight layers
● Learned: all feature extractors initialized

with Gaussian noise and learned from the
data

● Entirely supervised
● More data = good

Image

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

Overview of our model

● Trained with stochastic gradient descent on
two NVIDIA GPUs for about a week

● 650,000 neurons
● 60,000,000 parameters
● 630,000,000 connections
● Final feature layer: 4096-dimensional

Image

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

96 learned low-level filters

Main idea

Architecture
Technical details

Training
F

or
w

ar
d

pa
ss

Local convolutional filters

Fully-connected filters

B
ackw

a rd pass

Using stochastic gradient descent and the
backpropagation algorithm (just repeated
application of the chain rule)

Make millions of small changes to the
network's weights

Image Image

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

Main idea
Architecture

Technical details

Input representation

● Centered (0-mean) RGB values.

An input image (256x256) The mean input imageMinus sign

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Data augmentation

● Our neural net has 60M real-valued
parameters and 650,000 neurons

● It overfits a lot. Therefore we train on 224x224
patches extracted randomly from 256x256
images, and also their horizontal reflections.

Testing

● Average predictions made at five 224x224
patches and their horizontal reflections (four
corner patches and center patch)

● Logistic regression has the nice property that it
outputs a probability distribution over the class
labels

● Therefore no score normalization or calibration
is necessary to combine the predictions of
different models (or the same model on
different patches), as would be necessary with
an SVM.

Dropout

● Independently set each hidden unit activity to
zero with 0.5 probability

● We do this in the two globally-connected
hidden layers at the net's output

A hidden unit
turned off by
dropout

A hidden unit
unchanged

A hidden layer's activity on a given training image

Implementation

● The only thing that needs to be stored on disk
is the raw image data

● We stored it in JPEG format. It can be loaded
and decoded entirely in parallel with training.

● Therefore only 27GB of disk storage is needed
to train this system.

● Uses about 2GB of RAM on each GPU, and
around 5GB of system memory during
training.

Implementation

● Written in Python/C++/CUDA
● Sort of like an instruction pipeline, with the

following 4 instructions happening in parallel:
– Train on batch n (on GPUs)

– Copy batch n+1 to GPU memory

– Transform batch n+2 (on CPU)

– Load batch n+3 from disk (on CPU)

Comparison to monkey brain

● Some researchers showed images to macaques and
recorded the firing rates of 128 of their neurons

● Compare to other systems in recognizing “hard images”
– Lots of rotations, change in illumination

● Our neural network's 4096 neurons beat the 128
macaque's neurons
– Although more of the macaque's neurons may outperform our

system

● All other computer vision methods did much worse than
the macaque neurons

Monkey vs machine

Place a big electrode in the
right part of the visual cortex
and record from 128 neurons

Get
128
dims

Get
4096
dims

other methods Get
lots
of dims

?

?

?

Validation classification

Validation classification

Validation classification

Validation localizations

Validation localizations

Retrieval experiments
First column contains query images from ILSVRC-2010 test set, remaining
columns contain retrieved images from training set.

Retrieval experiments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

