CS 2429

Communication Complexity, Information Complexity and Privacy ASSIGNMENT \# 1

Due: October 31, 2012

1. Let f be a boolean function on $X \times Y$. prove that if all of the rows of M_{f} are distinct, then $D(f) \geq \log \log |X|$. Prove that $D(f) \leq \operatorname{rank}(f)+1$.
2. $\operatorname{MED}(x, y)$ is defined to be the median of the multiset $x \cup y$. (Here we are viewing x and y as n-bit binary strings each representing subsets of $[n]$.) Using binary search, one can show that $D(M E D)=O\left(\log ^{2} n\right)$. Give an $O(\log n)$-bit protocol for MED.
3. $G T(x, y)$, the greater-than function, is 1 if and only if $x>y$ (viewing x and y as numbers expressed in binary, each as n-bit numbers). What is the communication comlexity of the greater-than function?
(a) Prove a lower bound of n on the deterministic communication complexity of $G T$.
(b) Given an upper bound of $O\left(\log ^{2} n\right)$ on the randomized complexity.
4. For $x, y \in\{0,1\}^{n}$, let $d(x, y)$ denote the Hamming distance between x and y, that is, the number of indices i such that $x_{i} \neq y_{i}$. Let R be a relation consisting of all triples (x, y, m) such that $|m-d(x, y)| \leq n / 3$. That is, computing R is the problem of approximating the Hamming distance between x and y. Prove that $D(R)=\Omega(n)$. (Observe that computing the Hamming distance exactly is as hard as computing the equality function.)
