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CS 2429 - Foundations of Communication Complexity

Lecturer: Toniann Pitassi

1 Applications of Communication Complexity

There are many applications of communication complexity. In our survey article, ”The Story of
Set Disjointness” we give many applications via reductions to set disjointness (both 2-party as well
as NOF model). Applications discussed in our survey article:

(1.) Streaming

(2.) Data Structures

(3.) Circuit Complexity

(4.) Proof Complexity

(5.) Game Theory

(6.) Quantum Computation

Below we discuss another application that is different than above. The essential difference
is that it relies on the communication complexity of computing a certain relation, rather than a
function.

1.1 Circuit Depth via Communication Complexity

In order to get circuit lower bounds, we need to extend our notion of 2-party communication
complexity so that it can compute relations.

Definition A relation R is a subset R ⊆ X × Y × Z

Given a relation R the cc problem associated with R follows:
Alice gets x ∈ X
Bob gets y ∈ Y
Alice and Bob must both compute (and output) some z s.t. (x, y, z) ∈ R

A protocol for relations is the same as a protocol for functions, in each step it must specifiy
which party sends a message and the value of that message.

Note that for a given relation there may be more than on z satisfying the above property, Alice
and Bob only need to give one such z. In general, lower bounds are harder to prove for relations
as we need to show it is hard for Alice and Bob to compute any z.

Definition For any boolean function f : {0, 1}n → {0, 1} and X = f−1(1), Y = f−1(0). We define
Rf ⊆ X × Y × {1, 2, ...n} to be the associated relation where,

• Rf = {(x, y, i)|x ∈ X, y ∈ Y, xi 6= yi}
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Rf is the set of all (x, y, i) where f(x) = 1, f(y) = 0 and x and y differ on bit i. Similarly if f is
monotone then

• Mf ⊆ X × Y ×{1, 2, ...n} is the set of all (x, y, i) such that x ∈ X, y ∈ Y and xi = 1, yi = 0.

(Recall that for a monotone boolean function f , f(x) = 1 implies that for all x′ where x′i ≥ xi on
every i, x′ is also a 1 of the function.)

Communication complexity lower bounds on Mf give bounds on monotone circuit depth of f
and lower bounds on Rf give circuit depth bounds for general circuits.

Let d(f) and dmonotone(f) denote the min depth of a circuit computing f over ∧, ∨, ¬, and the
min depth of a monotone circuit computing f over ∧, ∨ respectively. In both cases the circuits
must have bounded fan-in.

Theorem 1 (Karchmer and Widerson ’80s)

1. For every boolean function f : {0, 1}n → {0, 1}, cc(Rf ) = d(f)

2. For f monotone, cc(Mf ) = dmonotone(f).

For formulas it is known that 2d(f) = formula-size(f) so proving lower bounds on communication
complexity of relations is also equivalent to proving formula size lower bounds.

It is a major open problem to get even super log-depth lower bounds for the general case. But
for the monotone case the method above has been used to show that NCimonotone 6= NCi+1

monotone

for all i [see Theorem 2 and 3].

Proof of Theorem 1 “⇒”
Let C be a circuit for f , depth(C) = d. We can assume that all the negations in the circuit

are at the leaves. (If not, the negations can be pushed to the leaves without affecting depth in any
circuit by repeated application of DeMorgan’s laws.)

We want to use the circuit to obtain a protocol for Rf .

The protocol will involve Alice and Bob taking a particular path down the circuit with Alice,
deciding the branch to take at OR gates and Bob deciding at AND gates. As long as the two
parties maintain the invariant that at each subnode v Cv(x) = 1 while Cv(y) = 0 then the leaf
reached is a bit i where xi 6= yi.

The protocol follows:
Starting from the top of the circuit, for each each node v with children vL, vR

if the gate is an OR Alice says 0 if CvL(x) = 1 and 1 otherwise.
if the gate is an AND Bob says 0 CvL(y) = 1 and 1 otherwise.

At the end of the exchange, both Alice and bob recurse on vL if the message sent was 0 and vR
if the message sent was 1.

Clearly at the top of the circuit, for any inputs (x, y), C(x) 6= C(y). Suppose at some point
during the protocol Alice and Bob are at some inner node v where Cv(x) 6= Cv(y).

2



CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014

Case 1 v is an or node.
Then Cv(y) = 0 implies that both CvL(y) and CvR(y) are also 0. By choosing the subcircuit for

which her input evaluates to 1, Alice ensures that the recursion continues on a subcircuit where
the two inputs differ.

Case 2 v is an and node.
Likewise, Cv(x) = 1⇒ CvL(x) = CvR(x) = 1 so by choosing the subcircuit for which his input

evaluates to 0 Bob can also maintain the above invariant.
By induction, when the protocol reaches a leaf, both A and B know an i at which their inputs

differ. The total number of bits sent is bounded by the depth of the circuit. If C was monotone
the same protocol reaches a left where xi = 1.

Example

OR

OR

AND

OR

x3x2

!x4

AND

c5x3

AND

AND

x3x1

OR

!x2x1

Suppose Alice and Bob have inputs (01101) and (01010) respectively. Then on the circuit above
the sequence of bits sent would be.

Alice : 0 (go right)
Bob : 1(go left)
Alice : 0 (go left)

At which point they reach x3 a bit on which they differ.

Proof of Theorem 1 “⇐”
Given a protocol for Rf we can construct a circuit computing f of bounded depth.
Consider a protocol tree T for Rf . Convert T into a circuit as follows:

1. For each node where the message is sent by Alice, replace the node with an OR gate

2. For each node where the message is sent by Bob, replace the node with an AND gate

3. At each leaf of the protocol tree, with associated monochromatic rectangle A×B and input
bit i
Claim Exactly one of the following hold
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(a) ∀α ∈ A, αi = 1 and ∀β ∈ B, βi = 0

(b) ∀α ∈ A, αi = 0 and ∀β ∈ B, βi = 1

Assign the leaves in case (a) to be zi and and the leaves in case (b) to be z̄i.

Given the claim we can prove by induction that the circuit thus constructed calculates f(z).

Proof of Claim
Let α ∈ A, αi = σ. Then for every β ∈ B, βi = σ̄ which in turn implies that ∀α ∈ A, αi = σ.

Theorem 2 (KW)
The monotone depth of st-connectivity is Ω(log2 n).

Theorem 2 separates monotone NC1 from monotone NC2. A similar lower bound proved for
clique separates monotone− P from monotone−NP .

Theorem 3 Theorem(Raz, McKenzie)
For every i there exists a monotone function in monotone-NCi+1 but not in monotone-NCi.

2 Analyzing Communication Complexity Lower Bound Methods
via Linear Programs

For the rest of this lecture, we will discuss the Jain and Klauck paper. Quantities of interest:

• Discripancy and Generalized discrepancy. (Generalized discrepancy: give a discrepancy
bound for a function g that is close to f .)

• Rectangle bound. (This is the same as corruption.) and smooth rectangle bound. (Smooth:
give a rectangle bound for a function g that is close to f .)

• (NEW) Partition bound

• Info theoretic techniques

They show that the smooth rectangle bound subsumes discrepancy bound, generalized discrep-
ancy, and rectangle bound. So it subsumes all but the info theoretic techniques. IMPORTANT
NOTE: In previous lectures we we defined discrepancy to be the inverse of the definition of dis-
crepancy defined here. (This is just for notational convenience, so we can more easily compare the
communication complexity with rectangle/discrepancy measures.)

So we have
exp(R(f)) ≥ prtε(f) ≥ srecε(f) ≥ recε(f).

reczε (f) ≥ (1/2− ε)discλ(f)− 1/2

Where prt is the partition bound, srec is smooth rectangle bound, and rec is the rectangle
bound. The second inequality says that the rectangle bound dominates the discrepancy bound;
thus the smooth rectangle bound also dominates the smooth-discrepancy bound.
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2.1 LPs Primal and Dual Refresher

Recall that an LP is defined as follows. A is an m-by-n matrix, and ~y, ~b are n-dimensional vectors.

min ~b~y

AT~y ≥ c
~y ≥ 0

The dual is as follows, where ~x and ~c are m-dimensional vectors.

max ~c~x

A~x ≤ ~b
~x ≥ 0

2.2 Rectangle Bound

The ε-rectangle bound of f , denoted by recε(f) is max{reczε (f) : z = 0, 1} where reczε(f) is the
optimal value of the following linear program.

PRIMAL

min :
∑
R

wR

∀(x, y) ∈ f−1(z) :
∑

R:(x,y)∈R

wR ≥ 1− ε

∀(x, y) ∈ f−1 − f−1(z) :
∑

R:(x,y)∈R

wR ≤ ε

∀R : wR ≥ 0

DUAL

max :
∑

(x,y)∈f−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

∀R :
∑

(x,y)∈f−1(z)∩R

µx,y −
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1

∀(x, y) : µx,y ≥ 0

We will now show how a small probabilistic communication complexity protocol implies a small
value of the above primal program. That is, exp(R(F )) ≥ recε(f). Suppose that we have a c-bit
probabilistic protocol for f . For each choice r of the public random bits, we have a partition of
Mf into rectangles. Let Pf,r denote the partition of Mf induced by the coin tosses r. Note that
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Pf,r partitions Mf into at most 2c rectangles. We will define wz,R to be the probability over all
coin tosses of rectangle R appearing, where R is a z-rectangle. That is, wz,R will be equal to the
number of copies of R over all partitions Pf,r divided by the number of coin tosses (where R is a
z-rectangle). Then

∑
R wz,R will be equal to the total number of z-rectangles over all partitions

divided by the number of coin tosses, which is at most 2c. It is left to show that our definition of
wR satisfies the constraints. First, by definition, ∀z∀R : wz,R ≥ 0. Secondly, since the protocol has
error at most ε on all inputs in f−1, we have:

∀(x, y) ∈ f−1 :
∑

R:(x,y)∈R

wf(x),R ≥ 1− ε.

Finally, since for every (x, y), and for every choice of random bits r, the protocol always outputs
some z, we have:

∀(x, y) :
∑
z

∑
R:(x,y)∈R

wz,R = 1.

Thus we have shown that exp(R(f)) ≥ prtε(f).

2.2.1 Smooth (Generalized) Rectangle

The ε-rectangle bound of f , denoted by recε(f) is max{reczε (f) : z = 0, 1} where reczε(f) is the
optimal value of the following linear program.

PRIMAL

min :
∑
R

wR

∀(x, y) ∈ f−1(z) :
∑

R:(x,y)∈R

wR ≥ 1− ε

∀(x, y) ∈ f−1(z) :
∑

R:(x,y)∈R

wR ≤ 1

∀(x, y) ∈ f−1 − f−1(z) :
∑

R:(x,y)∈R

wR ≤ ε

∀R : wR ≥ 0

DUAL

max :
∑

(x,y)∈f−1(z)

((1− ε)µx,y − φx,y)−
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

∀R :
∑

(x,y)∈f−1(z)∩R

(µx,y − φx,y)−
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1

∀(x, y) : µx,y ≥ 0, φx,y ≥ 0

It is not hard to see that any solution satisfying the primal of the above smooth rectangle LP
also satisfies the primal of the rectangle LP, since there are more constraints above. This it is easy
to see that srecε(f) ≥ recε(f).
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2.3 Discrepancy Bound

The (inverse of) the natural definition of discrepancy, denoted by disc(f) is:

disc(f) = max{discλ(f) : λ a distribution on X × Y }

discλ(f) = min{ 1

|
∑

(x,y)∈R(−1)f(x,y)λx,y|
: R ∈ R}

This is equivalent to the optimal value of the following linear program.

PRIMAL

min :
∑
R

wR + vR

∀(x, y) ∈ f−1(1) :
∑

R:(x,y)∈R

wR − vR ≥ 1

∀(x, y) ∈ f−1(0) :
∑

R:(x,y)∈R

vR − wR ≥ 1

∀R : wR, vR ≥ 0

DUAL

max :
∑

(x,y)∈f−1µx,y

∀R :
∑

(x,y)∈f−1(1)∩R

µx,y −
∑

(x,y)∈f−1(0)∩R

µx,y ≤ 1

∀R :
∑

(x,y)∈f−1(0)∩R

µx,y −
∑

(x,y)∈f−1(1)∩R

µx,y ≤ 1

∀(x, y) : µx,y ≥ 0

To see the equivalence, let λ be the distribution giving the largest discrepancy. Then for all
R,

∑
(x,y)∈R(−1)f(x,y)λx,y ≤ 1/k. Define µx,y to be kλx,y. Then the dual LP for disc(f) will have

value k, and it is easy to see that the constraints are satisfied.
We will now show the following Lemma, which shows that the rectangle bound dominates

discrepancy (is greater than or equal to, more or less).

Lemma 4 recε(f) ≥ (1/2− ε)discλ(f)− 1/2.

Proof To prove this we will show that a solution to the dual LP for discλ(f) of cost k implies a
solution to the dual LP for recε(f) of cost at least k. The basic idea is that the rectangle bound
looks at the worst case discrepancy over the 0-rectangles and also over the 1-rectangles. So if there
exists a distribution that induces large 0-discrepancy, then the overall discrepancy is also large.
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Let k = discλ(f). Take the solution µx,y to the dual discrepancy LP to be the solution to the
dual rectangle LP. (So set µx,y to be equal to µx,y.) The discrepancy constraints in the dual LP
clearly imply the constraints for the rectangle dual LP.

It is left to show that the value of this LP is at least (1/2− ε)k − 1/2. We have

reczε (f) ≥
∑

(x,y)∈f−1(z)

(1− ε)µx,y −
∑

(x,y)∈f−1−f−1(z)

εµx,y

= k(
∑

(x,y)∈f−1(z)

(1− ε)λx,y −
∑

(x,y)∈f−1−f−1(z)

ελx,y)

= k(
∑

(x,y)∈f−1(z)

λx,y − ε)

≥ k(
1

2
− 1

2k
− ε)

= (
1

2
− ε)k − 1

2

The last inequality follows because by the definition of discrepancy, if we choose R to be the
entire matrix, then we have (1− 2

∑
(x,y)∈f−1(z) λx,y) ≥ 1/k, and thus

∑
(x,y)∈f−1(z) λx,y ≤

1
2 −

1
2k .

2.3.1 Smooth (Generalized) Discrepancy

The generalized discrepancy of Boolean function, disc(f) is given by the optimal value of the
following linear program.

PRIMAL

min :
∑
R

wR + vR

∀(x, y) ∈ f−1(1) : 1 + ε ≥
∑

R:(x,y)∈R

wR − vR ≥ 1

∀(x, y) ∈ f−1(0) : 1 + ε ≥
∑

R:(x,y)∈R

vR − wR ≥ 1

∀R : wR, vR ≥ 0

DUAL

max :
∑

(x,y)∈f−1µx,y−(1+ε)φx,y

∀R :
∑

(x,y)∈f−1(1)∩R

(µx,y − φx,y)−
∑

(x,y)∈f−1(0)∩R

(µx,y − φx,y) ≤ 1

∀R :
∑

(x,y)∈f−1(0)∩R

(µx,y − φx,y)−
∑

(x,y)∈f−1(1)∩R

(µx,y − φx,y) ≤ 1

∀(x, y) : µx,y ≥ 0, φx,y ≥ 0
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2.4 Partition Bound

PRIMAL

min :
∑
z

∑
R

wz,R

∀(x, y) ∈ f−1 :
∑

R:(x,y)∈R

wf(x,y),R ≥ 1− ε

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1

∀z∀R : wz,R ≥ 0

DUAL

max :
∑

(x,y)∈f−1

(1− ε)µx,y +
∑
x,y

φx,y

∀z∀R :
∑

(x,y)∈f−1(z)∩R

µx,y +
∑

(x,y)∈R

φx,y ≤ 1

∀(x, y)µx,y ≥ 0, φx,y ∈ R

We wil now show that prtε(f) ≥ srecε(f). To show this we wil show that a solution to the
primal LP for prtε(f) of cost c implies a solution to the primal LP for srecε(f) of cost at most c.

Fix z′ ∈ Z. Let {wz,R : z ∈ Z,R ∈ R} be an optimal solution of the primal for prtε(f). We
define ∀R : wR to be equal to wz′,R. Thus we have:

∀(x, y) ∈ f−1(z′) :
∑

R:(x,y)∈R

wz′,R ≥ 1− ε →
∑

R:(x,y)∈R

wR ≥ 1− ε

∀(x, y) ∈ f−1 − f−1(z′) :
∑

R:(x,y)∈R

wf(x,y),R ≥ 1− ε →
∑

R:(x,y)∈R

wR ≤ ε

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1 →
∑

R:(x,y)∈R

wR ≤ 1

Thus wR forms a feasible solution to the primal for sreczε as desired.

2.4.1 Epsilon-Partition Bound

Laplante et al define a slight relaxation of the partition bound...
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