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CS 2429 - Foundations of Communication Complexity

Lecturer: Toniann Pitassi

1 The Discrepancy Method — Cont’d

In the previous lecture we’ve outlined the discrepancy method, which is a method for getting lower
bounds on randomized communication complexity given upper bounds on the discrepancy of the
matrix Mf corresponding to the function in question. We showed how to bound the discrepancy
using the largest eigenvalue of Mf . Today we will first give the BNS lemma which is another way
of bounding the discrepancy of Mf .

We denote the discrepancy of f (with respect to the uniform distribution) and a rectangle A×B
by disc(f,A×B). All our results can be generalized to arbitrary distributions by multiplying each
entry of Mf by the probability of the corresponding cell.

Recall that Boolean functions can be considered as taking values in either {0, 1} or {+1,−1}.
In this section, we will use the ±1 convention when describing the matrices and rectangles.

We use the notation 1A for the characteristic vector of A, which contains 1 in positions corre-
sponding to the elements of A, and 0’s elsewhere.

1.1 The BNS Method

The BNS method is another way to bound the discrepancy, and will furnish us with yet another
proof of the upper bound on disc(IPn). The method first appeared in a paper by Babai, Nisan and
Szegedy.

The method is given by the following lemma:

Lemma 1 (BNS) The discrepancy of a function f : X × Y → Z2 can be bounded as follows:

disc(f,A×B)2 ≤ E
y,y′

∣∣∣E
x
Mf (x, y)Mf (x, y′)

∣∣∣ ,
where x, y, y′ are chosen independently and uniformly at random, x from X and y, y′ from Y .

Proof Recall the definition of discrepancy.

disc(f,A×B) =
∑

x∈A,y∈B
Mf (x, y)/22n.

The discrepancy can be written using expectations as

disc(f,A×B) =

∣∣∣∣Ex,y 1A(x)1B(y)Mf (x, y)

∣∣∣∣ .
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We can recast the Cauchy-Schwarz inequality in the form E[Z]2 ≤ E[Z2]. Thus we can obtain:

disc(f,A×B)2 =

(
E
x

1A(x)E
y

1B(y)Mf (x, y)

)2

≤ E
x

(
1A(x)E

y
1B(y)Mf (x, y)

)2

≤ E
x

(
E
y

1B(y)Mf (x, y)

)2

= E
x

(
E
y,y′

1B(y)1B(y′)Mf (x, y)Mf (x, y′)

)
= E

y,y′
1B(y)1B(y′)

(
E
x
Mf (x, y)Mf (x, y′)

)
≤ E

y,y′

∣∣∣E
x
Mf (x, y)Mf (x, y′)

∣∣∣ .
The bound we get does not depend on the sizes of A and B, and so it is slightly inferior to bounds
which do (like Lindsey’s lemma). In practice, the difference is usually insignificant (but is the
subject of the final question in the first assignment!).

We illustrate the method by proving yet again the upper bound on the discrepancy of the inner
product function:

Lemma 2 We have disc(IPn, A×B) ≤ 2−n/2.

Proof The matrix corresponding to IPn is Hn. The rows of Hn are orthogonal and so

E
x
Hn(x, y)Hn(x, z) =

{
0 if y 6= z,

1 if y = z.

Using the BNS bound,

disc(IPn, A×B)2 ≤ E
y,z

∣∣∣E
x
Hn(x, y)Hn(x, z)

∣∣∣ = Pr[y = z] = 2−n.

The above theorem can also be proven with respect to an arbitrary distribution λ. The more
general theorem is as follows.

Theorem 3 Let F be a function from X × Y to {−1, 1}. Then

Discλ(F )2

|X|2 × |Y |2
≤ Ey,y′ |Exf(x, y)f(x, y′)λ(x, y)λ(x, y′)|.

2 Degree/Discrepancy Method

The Degree/Discrepancy method, due to Sherstov, is a way to come up with other functions having
high randomized communication complexity. The basic idea is to start with some other function
(the “base” function) which is difficult under some other complexity measure, and to “lift” it to
a function which is difficult in the randomized communication complexity model. Sherstov’s main
contribution is using polynomial complexity measures to quantify the difficulty of the base function.
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2.1 Polynomial Complexity Measures

We will consider several different complexity measures for the base function. All of them try to
capture the notion of being hard to approximate by a polynomial over the real numbers.

Consider a Boolean function f(x1, . . . , xq). We will assume that the inputs and outputs are the
usual 0/1 (rather than ±1). This function can be represented as a real polynomial by following
the following steps:

1. Present f as a logical formula, e.g. conjunctive normal form.

2. Convert the formula to a polynomial using the following rules:

¬(x) = 1− x,
x ∧ y = xy,

x ∨ y = x+ y − xy.

3. Use the identity x2 = x to reduce any repeated variables in the monomials.

The result is some polynomial whose degree is at most q, if f is a q-CNF formula.
This prompts the following definition:

Definition The degree (also polynomial degree) of a function f , written deg(f), is the minimal
degree of a real polynomial P such that f(x1, . . . , xq) = P (x1, . . . , xq) on all Boolean inputs.

In general, it is difficult to represent functions exactly by polynomials, and so the fact that
a function has high polynomial degree isn’t strong enough for our purposes. A rather lenient
alternative is the following:

Definition The sign degree (sometimes polynomial threshold degree) of a function f , written
sign-deg(f), is the minimal degree of a real polynomial P such that for all Boolean inputs x1, . . . , xq:

• If f(x1, . . . , xq) = 1 then P (x1, . . . , xq) > 0.

• If f(x1, . . . , xq) = 0 then P (x1, . . . , xq) < 0.

This definition is so permissive that it is hard to prove lower bounds on the sign degree. Here
are two examples of functions for which a lower bound is known:

• The parity function on q inputs has the maximal sign degree q.

• The Minsky-Papert “tribes” function
∨m
i=1

∧4m2

j=1 xij has sign degree m = 3
√
q/4.

Lower bounding the sign degree can be difficult simply because a function with high polynomial
degree can be sign-represented by a very low degree polynomial. An extreme example is the
OR function (the logical inclusive or of all inputs). This function is sign-represented by the linear
polynomial

∑
xi− 1

2 , but an exact representation necessitates a degree q polynomial. This prompts
the need for some sort of an interpolation between these two extreme definitions.

The following definition generalizes both previous ones:
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Definition [ε-Approximation Degree] Given a real 0 ≤ ε ≤ 1
2 , the ε-degree (more officially, ε-

approximation degree) of a function f , written ε-deg(f), is the minimal degree of a real polynomial P
such that for all Boolean inputs,

|f(x1, . . . , xq)− P (x1, . . . , xq)| ≤ ε.

If ε = 0 this reduces to the regular degree, while if ε = 1
2 then this (almost) reduces to the sign

degree. Clearly the ε-degree is monotone decreasing in ε, and so for general 0 < ε < 1
2 we have

0 ≤ sign-deg(f) ≤ ε-deg(f) ≤ deg(f) ≤ q.

As an example, the OR function, whose sign-degree is 1 and whose polynomial degree is q, has
ε-degree O(

√
q) for ε = 1/8.

Nisan and Szegedy related the ε-degree to decision tree complexity, defined as follows:

Definition A decision tree for a Boolean function is a binary tree whose inner vertices are labelled
by input variables, and whose leaves are labelled by 0/1. The computation outlined by the tree
proceeds from the root by querying the labelled variable, taking the left branch if the respective
variable is 0, the right branch if it is 1. Upon reaching a leaf, its label is output.

The decision tree complexity of a function f , written DTC(f), is the depth of the shallowest
decision tree which represents it.

Using the method outlined above for converting a formula into a real polynomial, one sees that the
decision tree complexity upper bounds the polynomial degree. In particular, ε-deg(f) ≤ DTC(f).
Nisan and Szegedy proved a matching upper bound:

ε-deg(f) ≤ DTC(f) ≤ ε-deg(f)8.

Formulated differently, we have log ε-deg(f) = Θ (log DTC(f)).

3 Discrepancy and Duality of Sign Degree

Theorem 4 (Duality of sign degree) Let f : {−1, 1}n d ≥ 0

Then sign-deg(f) is at least d if and only if there exists a distribution µ over {−1, 1}n such that

Ex∼µ [f(x) · χS(x)] = 0 ∀S, |S| < d

That is to say, “f is orthogonal to χS for small s”, where χS is the parity function over the indices
in S

Theorem 5 (Duality of approximation degree) (Sherstov, Shi-Zhu)
Fix ε ≥ 0. Let f : {−1, 1}n → {−1, 1}, degε(f) = d ≥ 1.
Then ∃g : {−1, 1}n → {−1, 1} and a distribution µ over {−1, 1}n such that:

(1) Ex∼µ [g(x)χS(x)] = 0 ∀S |S| ≤ d

(2) corrµ(f, g) > ε (corrµ(f, g) = Ex∼µ[f(x)g(x)])
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Proof (Duality of sign degree) This is an instance of the “Gordon Transposition Lemma”
Let A be a matrix of dimension m× n. Then ∃~u s.t. ~uTA > 0 iff ∃~v > 0 s.t. A~v = 0

We want a polynomial f ′ which sign-approximates f . We look for coefficients αs, |S| < d to
produce f ′ =

∑
S αsχs

Fix ρ. If f(ρ) = 1
∑

S αsχs > 0, and if f(ρ) = −1
∑

S αsχs < 0. So,
∑
αsχsf(ρ) > 0, that is

to say, they match in sign.

We construct a matrix with columns representing values for ρ and rows representing values for
s, that is, subsets of 1..n of size ≤ d. For each value we fill in χs(ρ)f(ρ). Then the rows of our
matrix are the values for αs, which is ~uT in the above lemma, and ~v is a distribution over our
columns.

Using duality of sign degree we can prove 2-party communication complexity lower bounds. The
outline of the argument is as follows.

(1) We start with a base function f : {−1, 1}n with large sign degree d. For example, f(x) =∨m
i=1

∧4m2

j=1 xij has sign-degree m, or the parity function, with sign degree n.

(2) Use the pattern matrix method to ”lift” f to obtain a 2-player communication complexity
problem F (x̄, ȳ) |x̄| = N and |ȳ| = log

(
N
n

)
, N = O(nk). F (x̄, ȳ) = f((̄x)|ȳ), which is read “f

of x̄, restricted to the bits specified by ȳ”
That is, Alice has N bits (N will be chosen to be polynomial in n), and Bob has log

(
N
n

)
many bits. We interpret Bob’s input as pointing to n locations of Alice’s string. They want
to compute the function f on these n (consecutive) bits.

(3) By duality of sign degree, there exists a distribution µ over {−1, 1}n such that f is orthogonal
to all χS , |S| < d, with respect to µ. Extend µ to a distribution λ over the domain of F
in the natural way. Then by orthogonality, the BNS Lemma will imply small discrepancy
(discrepancy less than 2−d) for F with respect to λ.

Using the above plan, we will prove the following theorem:

Theorem 6 (Sherstov) Let f be boolean over x1..xn with sign degree ≥ d.
Then disc(F ) ≤ (4en2

Nd )
d
2 where e has its usual meaning as the base of the natural logarithm.

We set N = 16en2

d so that disc ≤ 2−d. See Sherstov, Seperating AC0 from depth-2 majority
circuits, and Sherstov, Pattern Matrix Method.

Proof (Proof of Sherstov’s theorem) We rename y, y′ V and W .

Extending µ to λ: λ is a distribution on X × Y induced by µ. To obtain λ we pick V ∈ Y
uniformly at random. We choose x|V according to µ. Then we set the rest of the bits of x
uniformly at random. So we have:

λ(x, V ) = 2−N+nµ(x|V )/

(
N

n

)
.
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By the BNS lemma,

discλ(F )2

|X|2 × |Y |2
≤ EV,W |Ex[f(x|V )f(x|W )λ(x, V )λ(x,W )]|

Rewriting in terms of µ we get

discλ(F )2 ≤ 4nEV,W |Ex[f(x|V )f(x|W )µ(x|V )µ(x|W )]|.

Let Γ(V,W ) denote Ex[f(x|V )f(x|W )µ(x|V )µ(x|W )].

Claim 1 When |V ∩W | ≤ d− 1 then Γ(V,W ) = 0.

Claim 2 When |V ∩W | = i, |Γ(V,W )| ≤ 2i−2n.

By these claims,

discλ(F )2 ≤
n∑
k=d

2kPr [|V ∩W | = k]

Pr [|V ∩W | = k] =

(
n
k

)(
N−n
n−k

)(
N
n

) ≤
(
en2

Nk

)k
(The above inequality uses

(
n
k

)
≤ (en/k)k.)

discλ(F )2 ≤
n∑
k=d

2k
(
en2

Nk

)k
=

n∑
k=d

(
2en2

Nk

)k
≤
(

4en2

Nd

)d
.

Proof of Claim 1 The basic idea here will be that by orthogonality, the expectation is zero. Let
V be x1...xn (for notational convenience).

Γ(V,W ) = Ex [µ(x1...xn)f(x1...xn)µ(x|W )f(x|W )]

Γ(V,W ) =
1

2N

∑
x1..xn

µ(x1..xn)f(x1..xn)
∑

xn+1..xN

µ(x|W )f(x|W )

Γ(V,W ) =
1

2N
Ex1..xn∼µf(x1..xn)

 ∑
xn+1..xN

µ(x|W )f(x|W )


∑

xn+1..xN
µ(x|W )f(x|W ) depends on ≤ d bits, so

Γ(V,W ) = 0

Proof of Claim 2 We want to show that if |V ∩W | = i, then |Γ(V,W )| ≤ 2i−2. Again for notational
convenience we will assume that V = {1, 2, . . . , n} and W = {1, 2, . . . , i} ∪ {n + 1, n + 2, . . . , n +
(n− i)}. Then we have:

|Γ(V,W )| ≤ Ex[|f(x|V )µ(x|V )f(x|W )µ(x|W )|]
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|Γ(V,W )| ≤ Ex1,...,x2n−i [µ(x1, . . . , xn)µ(x1, . . . , xi, xn+1, . . . , x2n−i]

|Γ(V,W )| ≤ Ex1,...,xn [µ(x1, . . . , xn)] ·maxx1,...,xiExn+1,...,x2n−i [µ(x1, . . . , xi, xn+1, . . . , x2n−i)]

The first quantity above, Ex1,...,xn [µ(x1, . . . , xn] is at most 2−n because µ is a probability distri-
bution, and similarly the second expectation in the last equation is at most 2−(n−i) again because
µ is a probability distribution.

4 Application to Circuits

In 1989, Allender proved the following theorem, showing that any AC0 function can be computed
by quasipolynomial-size depth-3 majority circuits.

Theorem 7 (Allender) Any AC0 function can be computed by a depth-3 majority circuit of
quasipolynomial (O(npolylog(n)) size.

An open question was whether or not his result could be improved. In particular, is it possible
to improve the depth, showing that every function in AC0 be computed by depth-2 majority-of-
threshold circuits of quasipolynomial size? A corollary to Sherstov’s theorem is a negative resolution
to this open problem:

Theorem 8 (Sherstov) ∃F ∈ AC0
3 (depth 3) whose computation requires majority of exponen-

tially many threshold gates.

It suffices to show an AC0 function with exponentially small discrepancy. We start with the
AC0

2 function:

f =
m∨
i=1

4m2∧
j=1

eij

We construct F(x,y) where F (x, y) = f(x|y), that is, f of the bits of x specified by y. F(x,y) is in
AC0

3 :

F (x, y) =
m∨
i=1

4m2∧
j=1

∨
α

(
yijα1 ∧ yijα2 ∧ ... ∧ yijαq ∧ xijα

)
because we can swap the order of the ∧’s within the brackets with the last

∨
and then merge them

with the middle
∧

.

By the degree/discrepancy theorem we know that because f requires a high degree polynomial
to compute, F(x,y) has low discrepancy. Each threshold gate can be computed by a O(log n) bit

probabilistic CC protocol with Rpubε (f) = O(log n+ log 1
ε ).

Suppose F has (low) discrepancy e−N
ε
. Then any randomized protocol requires N ε bits. Also

let F = MAJ(h1..hS) where each hi is a threshold circuit.

The players pick a random i ∈ [S]. They evaluate hi, using O(log n) bits and output the result.
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The probability of correctness of the threshold-computing protocol is 1− 1
4S if we set ε′ ∼ 1

S .

The total cost is O(log n) + logS bits. The probability of correctness is (1
2 + 1

2S )− 1
4S = 1

2 + 1
4S

on every input.

Since we know that F requires O(N ε) bits to compute, S must be exponentially large! And so
there is no polynomially-sized majority-of-threshold circuit to compute F ∈ AC0

3 .

5 Extensions of Sherstov

5.1 High approximation degree to high probabilistic communication complexity

First, the above theorem can be generalized to prove lower bounds on 2-party communication
complexity of lifted functions where the base function has high ε-approximate degree, rather than
high sign degree. The idea here is to replace the duality theorem for sign degree by the duality
theorm for approximate degree.

We follow the same three steps, showing that if f (the base function) has large approximate
degree, then there exists a function g that is highly correlated with f , and a distribution µ such
that g is orthogonal to all low degree characters with respect to µ. We then lift g to a two-
party communication complexity problem G, and lift µ to a distribution λ over G to show (using
orthogonality and BNS) that G has low discrepancy. Finally, since f is highly correlated with g,
F is highly correlated with G, and thus it follows that F also has high randomized communication
complexity.

5.2 NOF lower bounds

The above ideas can also be extended to prove lower bounds in the NOF model as well. The BNS
lemma stated above can be generalized straightforwardly to prove a similar lemma in the NOF
case. Its generalization for k = 3 looks like this:

disc(F )22 ≤ Ey1,y′1∈Y1Ey2,y′2∈Y2 |Ex∈Xf(x, y1, y2)f(x, y1, y
′
2)f(x, y′1, y2)f(x, y′1, y

′
2)|.

More generally for arbitrary k we will have a similar expression, but where the LHS is raised to
the power 2k−1. Using this stronger BNS lemma, one can prove a similar general theorem following
the basic outline that we presented.

Note that for k = log n players, the bound becomes trivial. It is a longstanding open problem
to prove a NOF communication complexity bound for an explicit function (say in NP ) for more
than log n many players.
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