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Lecturer: Toniann Pitassi

1 Randomized Communication Complexity

1.1 Definitions

A (private coin) randomized protocol is a protocol where Alice and Bob have access to random
strings 74 and rp, respectively. These two strings are chosen independently, according to some
probability distribution. We can classify randomized protocols by considering different types of
€rror:

e zero-error protocol P:
vmvy Pr [7)('%.7TA7Z/7TB) = f(xvy)] =1

TATB

e c-error protocol P:
Vx,y Pr [73(9577%,1/,7”3) = f($7y)] >1—e€

TA"B
e one-sided e-error protocol P:

Vx,y : f(x7y) =0= PrrA,TB[P(x7TA7y7rB) = 0]
f(l‘,y) =1= PrTA,TB [73(3377‘Aay77"8) - ]-]

Due to randomization, the number of bits exchanged may differ in different executions of the
protocol on the same input (x,y). So, there are two natural choices for measuring the running time
of a randomized protocol:

1
1—c¢

AV

e The worst case running time P on input (z,y) is the maximum number of bits communicated
over all choices of the random strings 4 and rp. The worst case cost of P is the maximum,
over all inputs (z,y), of the worst case running time of P on (z,y).

e The average case running time P on input (x,y) is the expected number of bits communicated
over all choices of the random strings 4 and rg. The average case cost of P is the maximum,
over all inputs (z,y), of the average case running time of P on (z,y).

So, for a function f: X x Y — {0,1}, we define the following complexity measures. All of these
definitions are for private coin protocols.

e Ro(f) is the minimum average case cost of a randomized protocol that computes f with zero
€rTor.

e ForO<e< %, R(f) is the minimum worst case cost of a randomized protocol that computes
f with error e.

e For 0 < € < 1, R}(f) is the minimum worst case cost of a randomized protocol that computes
f with one-sided error e.
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These lead naturally to the following complexity classes:

o ZPP* = {f | Ry(f) € O(polylog(n))}
e BPP“ = {f| Re(f) € O(polylog(n))}

o RP ={f | RL(f) € O(polylog(n))}

Analogous definitions hold in a public coin model, that is, a model where both Alice and Bob see
the results of a single series of random coin flips. A randomized protocol in the public coin model
can be viewed as a distribution of deterministic protocols, that is, Alice and Bob choose together a
string r (according to a probability distribution II, and independently of z and y) and then follow
the deterministic protocol P,. The success probability of a public coin protocol on input (z,y)
is the probability of choosing a deterministic protocol, according to the probability distribution
I1, that computes f(z,y) correctly. We use the same complexity measures as in the private coin
model, but add a superscript ‘pub’, i.e., RgUb( ), Rfm’( f), REP "b( f). We have previously seen the
following facts:

o RV(f) < Re(f)

e for every § > 0 and every € > 0, Reys(f) < RP(f) + O(logn + log 6—1)

1.2 Distributional Complexity

Let u be a probability distribution over X xY, X = {0,1}", Y = {0, 1}". The (u, €)-distributional
communication complexity of f, D(f), is the cost of the best deterministic protocol that gives the
correct answer for f on at least a (1 — €) fraction of all inputs in X x Y, weighted by p.

Theorem 1 Rfub(f) = max, D{(f)

Proof First, we show that Rﬁmb( f) > max, D¥(f). Let P be a randomized public coin protocol

with worst-case cost Rbe( f) that computes f with success probability at least 1 — e for every input
(x,y). Therefore, if II is the probability distribution of P’s public coin flips,

P Y = s >1-—
TEH,(w,y)er(XxY)H(P (z,y) = f(z.y)) €

By a counting argument, there exists a fixed choice of public coin flips 7’ such that

Pr PT’ x, — T, 2 1—¢
(x,y)e(XxY)#( (z,y) = f(z,y))

Thus, P, is a deterministic protocol that gives the correct answer for f on at least a 1 — e fraction
of all inputs in X x Y, weighted by u. So, Rfuz’(f) > cost(P,s) > max, DE(f).

Next, we show that RP“’(f) < max, D¥(f). Let ¢ = max, D ().
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1.2.1 Minimax Theorem

We will show this direction of the theorem by an application of Von Neumann’s Minimax Theorem.
In a two-player, zero-sum game, there are two players, P1 and P2. P1 has a finite set A =
{ai1,...,an} of pure strategies, and P2 has a finite set of pure strategies, B = {b1,...,b,}. Each
player has a utility for each pair (a;,b;) of actions. The utility for P1 is denoted by Ui (a;, b;) and
the utility for P2 is denoted by Ua(a;, b;). It is a zero-sum game if for all 4, j Uy (as, bj) = —Ua(as, b;).
In our case, for each (a;,b;), one of the players will win and the other one will lose.

Each player can use a mixed strategy by creating a probability mass function and playing each
pure strategy with a fixed probability. Let p; denote the probability that P1 plays action a; and
let g; denote the probability that P2 plays action b;. Since p and ¢ are probabilities, we have that
each p;,q; > 0, and the sum of the p;’s is 1, and the sum of the ¢;’s is 1. A mixed strategy for P1
will be denoted by p, and similarly ¢ denotes a mixed strategy for P2. For each mixed strategy
pair (p, q), the payoff M (p, q) is defined to be

> piM(ai, by)g;.

i=1 j=1

When P1 uses pure strategy a; and P2 uses mixed strategy ¢, then M (a;,q) = Z?Zl M (ai, bj)q;,
and analogously for M (p,b;). We let P and @ denote the set of all mixed strategies available to
player 1 and 2 respectively. Player P1’s objective is to select a mixed strategy p € P soas to
maximize mingM (p, q), and at the same time P2’s objective is to select a mixed strategy ¢ € Q
soas to minimize max,M (p, q).

The Minimax theorem states that for every two-person zero-sum game, there exists an equilib-
rium strategy. That is there exists a value v such that

max,mingM (p, q) = mingmax,M (p, q)

In other words, in every two-person zero-sum game with finite strategies, there exists a value
v and a mixed strategy for each player such that: (a) given Player 2’s strategy, the best payoff for
Player 1 is v, and (b) given Player 1’s strategy, the best payoff for Player 2 is —v.

In our context, we define a two-player zero-sum game as follows:

e P1 (the protocol designer): his pure strategies are all c-bit deterministic protocols Py, one
for each choice of coin flips. His mixed strategies are all randomized protocols, P, (each of
which is a distribution over the deterministic protocols).

e P2 (the adversary): her pure strategies are all inputs (z,y). Her mixed strategies are all
distributions p over the inputs.

e P1 has payoff 1 if P.(z,y) = f(z,y) and -1 otherwise. That is, the designer (P1) wins the
game iff this protocol is correct on (z,y), and otherwise P2 wins.

We are given as our assumption that for all distributions p over inputs (z,y), there exists a
pure strategy (a protocol) P such that the probability of a win is at least 1 — e. This means that
Min,MaxpM (p, P) > 1 —e. (Since for each choice of y, there is a fixed strategy P, that achieves
payoff 1—e, so no matter what p we choose, the designer will be able to come up with a protocol that
wins 1 —e of the time. Now by the Minimax theorem, this means that MaxpMin, M (u, P) > 1—e.
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From this it follows that there is a randomized strategy P such that for all fixed (z,y), the payoff
is at least 1 — e.

Theorem 1 is useful because, for any choice of p, a lower bound for DY gives a lower bound on

RP(f).

Definition A distribution p over X x Y is a product distribution if pu(z,y) = px(z) - py (y) for
some distributions px over X and py over Y. Let RUI(f) = max, D*(f), where the maximum is
taken over all product distributions pu.

Exercise: Prove that R. ](DISJ) = O(y/nlogn). On the other hand, show that R.(DISJ) = ©(n).

Sherstov showed a separation between product and non-product distributional complexity by
proving the existence of a function f such that RlI(f) = ©(1) but R.(f) = O(n).

2 Lower Bounds for Randomized Protocols: Discrepancy

We now consider a technique for proving lower bounds for DY. It consists of finding an upper
bound for the size of rectangles in My that are “almost” monochromatic. If we can prove that all
such rectangles for a given function f are small, then we need a lot of rectangles to “cover” the
function.

Definition Let f: X xY — {0,1} be a function, R be any rectangle, and p be a probability
distribution on X x Y.

Discy(R, f) = };r[f(x,y) =0and (z,y) € R] — lzr[f(x,y) =1 and (z,y) € R]

= Prl(z,y) € R < [Pr[f(z,y) = 0l(z,y) € B - Prf(z,y) = 1[(z,y) € R]|
Another common expression for the descrepancy is:

DiSCu(Ra = Z (_1)f($’y)ux,y~

z,yER

The discrepancy of f according to p is
Disc,(f) = mI%X{DiscM(R, N}
where the maximum is taken over all rectangles R.

Proposition 2 For every function f : X xY — {0, 1}, every probability distribution p on X x Y,
and every € > 0,

D! (f) > logy(——¢

7€ Discu(f))
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Proof Let P be a ¢-bit deterministic protocol for f which is correct with probability at least % +¢,
where the inputs are weighted by u. Then,

G+a-(G-9 < PiP(ey) = flay)] - PriP(,y) # f(w.y)

2 = 30 (P;r[P(:v,y) = f(a.y) and (2.y) € R] = Pr{P(e,y) # f(@,y) and (z,y) € Re])
l

where the summation is over all leaves ¢ of the protocol. Since each leaf designates either a 0 or a
1, we can bound this expression from above by

2.

PZLr[f(:c,y) =0 and (z,y) € Ry] — P:Lr[f(x,y) =1 and (z,y) € Ry
)4

Each Ry is a rectangle, so each of the terms in this sum is bounded from above by Disc,(f). Since
there at most 2¢ leaves, we get 2e < 2¢- Disc,(f), which implies the result. 0O

We now demonstrate how to prove a lower bound for the inner product (IP) function by calculating
the discrepancy of IP according to the uniform distribution. Before we prove this result, we
will study the communication matrix for the IP function for n = 3 to get some intuition. The
associated communication matrices are Hadamard matrices. (Hadamard matrices are defined to
be square matrices where each entry is either +1 or —1 and such that all pairs of rows are mutually
orthogonal.)

The I P matrix, H,, for n = 3 looks like this:

11 1 1 1 1 1
-11 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1
-1 .11 1 -1 -1 1
11 -1 -1 -1 -1
-11 -1 -1 1 -1 1
1 -1 -1 -1 -1 1 1
-1 11 -1 1 1 -1

G G S T R G U W
—_

More generally Hy = [1] and H,, is built from H,,_; as follows: the lower right quadrant of H,
is equal to —H,,_1 and the other three quadrants are equal to H,_1.
The following facts are easy to prove about H,:

e Every pair of rows is orthogonal, and therefore H2 = N - I.
e We can interpret the rows as parity functions

e The matrix is symmetric about the diagonal

The eigenvectors form an orthonormal basis

The only eigenvalues of H, are +/ — v/N.
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We want to find the eigenvalues of the Hadamard matrices, as claimed in the last bullet point
above. Recall these are defined by the following recursive construction:

H, H,
Ho = [1], Hn—i-l:[H o }

Lemma 3 For each n, H2 = 2" In.

Proof The proof is by induction. Since Hy = Iy, the lemma is correct for n = 0.
Given that H2 = 2"], we can calculate H> 41 explicitly:

H2 _ Hn Hn 2
nH Hn _Hn
— H’rzl + H’rzl H72L - Hgb — 27L+112n 0 — 2TL+1I i
H2 - H? H?+H? 0 2 [, e
Corollary 4 The eigenvalues of H,, are all £2™/2.
Moreover, if n > 0, then half of the eigenvalues are +2"/2, and half of them —27/2.

Proof If \ is an eigenvalue of H,, then \? is an eigenvalue of 21, so A\? = 2",
Moreover, if n > 0 then Tr(H,,) = 0 by construction, and so exactly half of the eigenvalues are
positive, and exactly half are negative.

We denote the discrepancy of f (with respect to the uniform distribution) and a rectangle A x B
by disc(f, A x B). All our results can be generalized to arbitrary distributions by multiplying each
entry of My by the probability of the corresponding cell.

Recall that Boolean functions can be considered as taking values in either {0,1} or {+1, —1}.
In this section, we will use the +1 convention when describing the matrices and rectangles.

We use the notation 14 for the characteristic vector of A, which contains 1 in positions corre-
sponding to the elements of A, and 0’s elsewhere.

2.1 The Eigenvalue Method

The eigenvalue method upper bounds the discrepancy using the maximal eigenvalue of M.

Lemma 5 (Eigenvalue Bound) Let f be a symmetric Boolean function, i.e. f(xz,y) = f(y,x).

Then
disc(f, A x B) < 272" Apnax /| A| - | B,
where n = |x| = |y| is the input size, and Amax is the largest eigenvalue of the symmetric matric My.

Proof Since M/ is symmetric, its eigenvectors v; form an orthonormal basis for R". Denote by \;
the eigenvalue corresponding to v;, so that Mv; = A\;v;.
Expand the characteristic vectors of A and B in this basis:

14 = Zaivi, 1p = Zﬁm
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Putting these expansions into the definition of discrepancy, we are almost done. Since 22"disc( f, A x
B) is equal to the absolute value of the difference between the number of 1’s and the number of
0’s in A x B, we have:
2°"disc(f, A x B) = [14"M;1p]|
T
= ‘ <Z Oéwz‘) <Z Bz‘)\wz)
= ‘Z ifidi| < > aiBil.

Note that 3> a? = ||14]|* = |A| (by Parseval’s identity) and similarly 3 42 = | B|. The lemma
follows from an application of Cauchy-Schwarz:

max

22"disc(f, A X B) < Amax Z a;fBi

< max\/Za VO B2 = AmaxV/[4] - |BJ.

We are now ready to prove Lindsey’s Lemma which gives a bound on the disrepancy of the
inner product function:

Lemma 6 (Lindsey’s Lemma) 2*"disc(IP,, A x B) < \/2"|A] - |B|.
Here 1P, (z,y) = Y. z;y; (mod 2).

Proof The matrix corresponding to IP,, is H,. We have shown that A\pax(Hp) = 2"/2, and so the
lemma, follows by the Eigenvalue Bound.



