
Privacy and Communication Complexity

The Hardness of Being Private [ACC+12]
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Communication complexity The model

Matrix Mf has entries Mf [x , y ] = f (x , y).
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions Mf into
rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as f : X × Y → Z where

X = Y = [2n], Z = [2n+1] and f (x , y) =

{
(x ,B), if x ≤ y
(y ,A) if y < x
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{
(x ,B), if x ≤ y
(y ,A) if y < x

Regions (preimages)

region Rx ,y ={
(x ′, y ′) ∈ X × Y |

f (x , y) = f (x ′, y ′)
}

defined by function −→

Rectangles

rectangle Px ,y ={
(x ′, y ′) ∈ X × Y |

f (x , y) = f (x ′, y ′)
and

π(x , y) = π(x ′, y ′)}

defined by protocol
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?

Alice’s first move? NO, loses privacy for Alice!
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Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?

Alice’s only choice for a privacy-preserving first message.
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?

. . . and so on . . .
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y , aside from z = f (x , y)?

Ascending English bidding is the only perfectly private protocol. Lengthy!
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Perfect privacy

Perfect privacy

A protocol for 2-player function f : X × Y → Z is perfectly private if
every two inputs in the same region are partitioned into the same
rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized
combinatorially. A private deterministic protocol for such functions is given
by “decomposing” Mf .

But perfect privacy is unattainable for many functions!
This leads us to a relaxation. . .

Lila (CSC 2429 lecture 10) 3 / 16



Perfect privacy

Perfect privacy

A protocol for 2-player function f : X × Y → Z is perfectly private if
every two inputs in the same region are partitioned into the same
rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized
combinatorially. A private deterministic protocol for such functions is given
by “decomposing” Mf .

But perfect privacy is unattainable for many functions!
This leads us to a relaxation. . .

Lila (CSC 2429 lecture 10) 3 / 16



Perfect privacy

Perfect privacy

A protocol for 2-player function f : X × Y → Z is perfectly private if
every two inputs in the same region are partitioned into the same
rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized
combinatorially. A private deterministic protocol for such functions is given
by “decomposing” Mf .

But perfect privacy is unattainable for many functions!
This leads us to a relaxation. . .

Lila (CSC 2429 lecture 10) 3 / 16



Approximate privacy

Let’s relax our requirement from one big rectangle to simply grouping
inputs in the same preimage into largeish rectangles.

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max
(x ,y)

|Rx ,y |
|Px ,y |

average-case PAR = E(x ,y)
|Rx ,y |U
|Px ,y |U

over distribution U

worst-case PAR = 10
average-case PAR = 2
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Approximate privacy

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?
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Approximate privacy

Upper bounds for Vickrey auctions [FJS10]

English bidding bisection protocol

communication cost 2n O(n)
worst-case PAR 1 2n

average-case PAR 1 O(1)

Worst-case lower bound (our work)

For all n, for all p, 2 ≤ p ≤ n/4, any deterministic protocol for the n-bit
two-player Vickrey auction obtaining PAR less than 2p−2 has length at
least 2n/4p.

Average-case lower bound (our work)

For all n, r ≥ 1, any deterministic protocol of length at most r for the n-bit
two-player Vickrey auction has average-case PAR greater than Ω( n

log(r/n) ).

These are trade-offs: good privacy for short communication.
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Approximate privacy Worst-case tradeoff

Worst-case lower bound

For all n, for all p, 2 ≤ p ≤ n/4, any deterministic protocol for the n-bit
two-player Vickrey auction problem obtaining PAR less than 2p−2 has
length at least 2n/4p.

The parameter p lets us fix either the PAR or the communication cost
which we want a protocol to achieve, and determines the other.

The proof proceeds as follows.

Fix any protocol π for Vickrey auction.
This proof will find some input pair (x , y) which either

loses enough privacy (has PARx ,y (π) ≥ 2p−2), or

takes communication at least 2n/4p in protocol π.
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Approximate privacy Worst-case tradeoff

We’ll track the “small” inputs (x , y) from the upper left-hand corner:

{(x , y) | x , y ≤ 2n−p}

These inputs stand to lose the most privacy.

The rest of the inputs will be called “large.”
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Approximate privacy Worst-case tradeoff

Let v be some vertex in the protocol tree for π.

inputs which reach node v :
T (v) = TA(v)× TB(v) = {(x , y) | input (x , y) reaches v during π}
the square of small inputs S(v)× S(v) which reach v :
S(v) = TA(v) ∩ TB(v) ∩ [2n−p]

the “large” inputs for each player:
AL(v) = TA(v) ∩ {2n−p, . . . , 2n − 1}
BL(v) = TB(v) ∩ {2n−p, . . . , 2n − 1}

We want a square of small inputs which reach v because every square of
inputs resembles the entire Vickrey auction (has no quick, private
protocol).

At root node r :

TA(r) = TB(r) = [2n]

S(r) = [2n−p]

AL(r) = BL(r) = {2n−p, . . . , 2n − 1}
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Approximate privacy Worst-case tradeoff

Inputs only lose privacy as the protocol continues.

For any node v in the protocol tree and any (x , y) ∈ T (v),

PARx ,y (π) =
|Rx ,y |
|Px ,y |

o ≥ |Rx ,y |
|Rx ,y ∩ T (v)|

= PARv
x ,y (π)

In particular, consider some (x , y) ∈ T (v) where x > y (Alice wins).

PARx ,y (π) ≥ PARv
x ,y (π) ≥ 2n − 2n−p

|AL(v)|+ 2n−p
(1)
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Approximate privacy Worst-case tradeoff

Set α = 1− 2−n/4p.

Our strategy for finding (x , y)

1 Start at the root with S(r), AL(r), and BL(r) as defined.
2 At node v , say it’s Alice’s turn to speak (the case is symmetric for

Bob). Alice sends bit b which partitions TA(v) into two pieces,
inducing partitions of S(v) and AL(v).

progress: if
(1− α)|S(v)| ≤ |S0(v)| ≤ α|S(v)|

then follow the branch such that |AL
i (v)| ≤ 1

2 |A
L
i (v)|.

useless: if for some i ,
|Si (v)| ≥ α|S(v)|

then follow that branch of the protocol tree.

3 Repeat step 2 until one player has made p progress steps, or v is a
leaf.

Progress steps make the protocol short-but-not-private (bisection-like);
useless steps make the protocol private-but-not-short (English-like).
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Approximate privacy Worst-case tradeoff

Case 1: Alice makes p progress steps (WLOG – symmetric for Bob)

We know that:

|Rx ,y | ≥ 2n − 2n−p for every (x , y) ∈ S(v)× S(v)

|AL(r)| = 2n − 2n−p

For every progress step Alice made from vertex u to w in the protocol, we
know that |AL(w)| ≤ 1

2 |A
L(u)|. Thus |AL(v)| ≤ 1

2p |A
L(r)|.

Thus for any (x , y) ∈ S(v)× S(v), by equation (1)

PARv
x ,y (π) ≥ PARx ,y (π) ≥ PARv

x ,y (π) ≥ 2n − 2n−p

|AL(v)|+ 2n−p
≥ 2p−2

Case 2: We reach a leaf v , so |S(v)| = 1

Let q be the total number of useless steps made. Fewer than 2p progress
steps were made. |S(r)| = 2n−p.

1 = |S(v)| ≥ 2n−p(1− α)2pαq

Thus q ≥ 2n/4p.
Lila (CSC 2429 lecture 10) 12 / 16



Approximate privacy Subjective privacy

Privacy against players

Can Bob learn anything about Alice’s private input x , beyond the fact that
z = f (x , y)? Can Alice learn anything about Bob’s private input y?

Subjective regions

region RA
x ,y ={

(x , y ′) ∈ X × Y |
f (x , y) = f (x , y ′)

}
defined by function
Alice sees

Subjective rectangles

rectangle PB
x ,y ={

(x , y ′) ∈ X × Y |
f (x , y) = f (x , y ′),
π(x , y) = π(x , y ′)}

defined by protocol
Alice sees

Subjective privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

average-case PARsub = max
v=A,B

E(x ,y)

|Rv
x ,y |
|Pv

x ,y |
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Approximate privacy Many definitions of privacy

Information cost (Braverman et al.)

ICµ(π) = I (X : π(X,Y)|Y) + I (Y : π(X,Y)|X)}

Informational privacy (Klauck ’02)

PRIVµ(π) = max{I (X : π(X,Y)|Y, f (X,Y)), I (Y : π(X,Y)|X, f (X,Y))}

Theorem (us ’12): PRIVµ− log |Z | ≤ IC ≤ 2(PRIVµ + log |Z |)
Theorem (us ’12): PRIVµ(P) ≤ log(avgµ PARsub(P))
Theorem (Braverman ’11): ICU (DISJ)= Ω(n).

Theorem 3

Any protocol P computing the n-bit Set Intersection INTERSECn has
exponential average-case subjective PAR:

avgU PARsub(P) = 2Ω(n)
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Information cost (Braverman et al.)

ICµ(π) = I (X : π(X,Y)|Y) + I (Y : π(X,Y)|X)}

Informational privacy (Klauck ’02)

PRIVµ(π) = max{I (X : π(X,Y)|Y, f (X,Y)), I (Y : π(X,Y)|X, f (X,Y))}

Theorem (us ’12): PRIVµ− log |Z | ≤ IC ≤ 2(PRIVµ + log |Z |)
Theorem (us ’12): PRIVµ(P) ≤ log(avgµ PAR

sub(P))
Theorem (Braverman ’11): ICU (DISJ)= Ω(n).

Theorem 3

Any protocol P computing the n-bit Set Intersection INTERSECn has
exponential average-case subjective PAR:

avgU PAR
sub(P) = 2Ω(n)
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Approximate privacy Many definitions of privacy

Observation

For a region R, define cutπ(R) = |{Px ,y | (x , y) ∈ R}|.

avg PARµ(π) = Eµ
|Rx ,y |
|Px ,y |

=
∑

(x ,y)∈X×Y

µ(x , y)
|Rx ,y |
|Px ,y |

=
∑

R region

∑
(x ,y)∈R

µ(x , y)
|R|
|Px ,y |

=
∑

R region

|R|
( ∑

(x ,y)∈R

µ(x , y)

|Px ,y |

=
∑

R region

|R| · cutπ(R)
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Theorem (us ’12): PRIVµ(P) ≤ log(avgµ PAR
sub(P))

Proof:

I(X;π(X,Y)|Y, f (X,Y))

= H(X;π(X,Y)|Y, f (X,Y))−H(X|Y, f (X,Y), π(X,Y))

≤ H(X;π(X,Y)|Y, f (X,Y))

=
∑
y ,z

Pr [Y = y ,Z = z ] ·H(π(X,Y)|Y = y , f (X,Y) = z)

=
∑
y ,z

|Rz ∩ X× {y}|µ ·H(π(X,Y)|Y = y , f (X,Y) = z)

=
∑
y ,z

|Rz ∩ X× {y}|µ · log(cutπ(Rz ∩ X × {y}))

≤ log
∑
y ,z

|Rz ∩ X× {y}|µ · (cutπ(Rz ∩ X × {y}))

≤ log(avg PARsub(π))
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Next time: differential privacy. Yet another definition of privacy!
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