Privacy and Communication Complexity

The Hardness of Being Private [ACC⁺12]

A submatrix is **monochromatic** if f is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into **rectangles** (submatrices) until every rectangle is monochromatic.

A submatrix is **monochromatic** if f is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where $X = Y = [2^n], Z = [2^{n+1}] \text{ and } f(x, y) = \begin{cases} (x, B), & \text{if } x \le y \\ (y, A) & \text{if } y < x \end{cases}$

A submatrix is **monochromatic** if f is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into **rectangles** (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f : X \times Y \to Z$ where $X = Y = [2^n], Z = [2^{n+1}]$ and $f(x, y) = \begin{cases} (x, B), & \text{if } x \leq y \\ (y, A) & \text{if } y < x \end{cases}$

	1	2	3	4		$2^{n} - 1$	2 ⁿ
1	(1, B)	(1, B)	(1, B)	(1, B)		(1, <i>B</i>)	(1, B)
2	(1,A)	(2, B)	(2, B)	(2, B)		(2, <i>B</i>)	(2, <i>B</i>)
3	(1, A)	(2, <i>A</i>)	(3, <i>B</i>)	(3, <i>B</i>)		(3, <i>B</i>)	(3, <i>B</i>)
4	(1,A)	(2, A)	(3, <i>A</i>)	(4, <i>B</i>)		(4, <i>B</i>)	(4, <i>B</i>)
÷	:	:	÷	:	۰.	:	:
$2^n - 1$	(1, A)	(2, <i>A</i>)	(3, <i>A</i>)	(4, <i>A</i>)		$\left(2^n-1,B\right)$	$(2^n-1,B)$
2 ⁿ	(1, A)	(2, <i>A</i>)	(3, <i>A</i>)	(4, <i>A</i>)		$(2^n-1,A)$	$(2^{n}, B)$

A submatrix is **monochromatic** if f is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into **rectangles** (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f : X \times Y \to Z$ where $X = Y = [2^n], Z = [2^{n+1}]$ and $f(x, y) = \begin{cases} (x, B), & \text{if } x \leq y \\ (y, A) & \text{if } y < x \end{cases}$

	1	2	3	4	 $2^{n} - 1$	2 <i>ⁿ</i>
1	(1, <i>B</i>)	(1, B)	(1, B)	(1, B)	 (1, <i>B</i>)	(1, <i>B</i>)
2	(1, A)	(2, <i>B</i>)	(2, <i>B</i>)	(2, <i>B</i>)	 (2, <i>B</i>)	(2, <i>B</i>)
3	(1, A)	(2, A)	(3, <i>B</i>)	(3, <i>B</i>)	 (3, <i>B</i>)	(3, <i>B</i>)
4	(1, A)	(2, <i>A</i>)	(3, <i>A</i>)	(4, <i>B</i>)	 (4, <i>B</i>)	(4, <i>B</i>)
÷	:	÷		:		÷
$2^n - 1$	(1, A)	(2, <i>A</i>)	(3, <i>A</i>)	(4, <i>A</i>)	 $(2^n - 1, B)$	$(2^n-1,B)$
2 ⁿ	(1, A)	(2, <i>A</i>)	(3, <i>A</i>)	(4, <i>A</i>)	 $(2^n - 1, A)$	(2 ⁿ , B)

A submatrix is **monochromatic** if f is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into **rectangles** (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \to Z$ where

$$X = Y = [2^n], \ Z = [2^{n+1}] \text{ and } f(x, y) = \begin{cases} (x, B), & \text{if } x \le y \\ (y, A) & \text{if } y < x \end{cases}$$

A submatrix is **monochromatic** if *f* is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where $X = Y = [2^n]$ $Z = [2^{n+1}]$ and $f(x,y) = \int (x,B)$, if $x \le y$

$$x = y = [2, y], z = [2, y] \text{ and } f(x, y) = \begin{cases} (y, A) & \text{if } y < x \end{cases}$$

A submatrix is **monochromatic** if *f* is constant on inputs in the submatrix. A deterministic protocol computing f repeatedly partitions M_f into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where

$$X = Y = [2^{n}], Z = [2^{n+1}] \text{ and } f(x, y) = \begin{cases} (x, B), & \text{if } x \le y \\ (y, A) & \text{if } y < x \end{cases}$$

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

Alice's first move? NO, loses privacy for Alice!

Lila (CSC 2429 lecture 10)

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

Alice's only choice for a privacy-preserving first message.

Lila (CSC 2429 lecture 10)

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

Bob's only privacy-preserving first message.

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

...and so on ... Lila (CSC 2429 lecture 10)

Can an eavesdropper learn about x and y, aside from z = f(x, y)?

Ascending English bidding is the only perfectly private protocol. Lengthy!

Lila (CSC 2429 lecture 10)

Perfect privacy

A protocol for 2-player function $f: X \times Y \rightarrow Z$ is **perfectly private** if every two inputs in the same **region** are partitioned into the same **rectangle**.

Perfect privacy

A protocol for 2-player function $f : X \times Y \to Z$ is **perfectly private** if every two inputs in the same **region** are partitioned into the same **rectangle**.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized combinatorially. A private deterministic protocol for such functions is given by "decomposing" M_f .

Perfect privacy

A protocol for 2-player function $f : X \times Y \to Z$ is **perfectly private** if every two inputs in the same **region** are partitioned into the same **rectangle**.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized combinatorially. A private deterministic protocol for such functions is given by "decomposing" M_f .

But perfect privacy is unattainable for many functions! This leads us to a relaxation...

Let's relax our requirement from one **big** rectangle to simply grouping inputs in the same preimage into large*ish* rectangles.

worst-case PAR =
$$\max_{(x,y)} \frac{|R_{x,y}|}{|P_{x,y}|}$$

average-case
$$PAR = \mathbb{E}_{(x,y)} \frac{|R_{x,y}|_{\mathcal{U}}}{|P_{x,y}|_{\mathcal{U}}}$$
 over distribution \mathcal{U}

worst-case PAR =
$$\max_{(x,y)} \frac{|R_{x,y}|}{|P_{x,y}|}$$

average-case
$$\mathsf{PAR} = \mathbb{E}_{(x,y)} \frac{|R_{x,y}|_{\mathcal{U}}}{|P_{x,y}|_{\mathcal{U}}}$$
 over distribution \mathcal{U}

worst-case PAR =
$$\max_{(x,y)} \frac{|R_{x,y}|}{|P_{x,y}|}$$

average-case
$$\mathsf{PAR} = \mathbb{E}_{(x,y)} \frac{|R_{x,y}|_{\mathcal{U}}}{|P_{x,y}|_{\mathcal{U}}}$$
 over distribution \mathcal{U}

worst-case
$$PAR = \max_{(x,y)} \frac{|R_{x,y}|}{|P_{x,y}|}$$

average-case
$$\mathsf{PAR} = \mathbb{E}_{(x,y)} \frac{|R_{x,y}|_{\mathcal{U}}}{|P_{x,y}|_{\mathcal{U}}}$$
 over distribution \mathcal{U}

worst-case
$$PAR = 10$$

average-case $PAR = 2$

Two-player Vickrey auction

Two-player Vickrey auction

Two-player Vickrey auction

Two-player Vickrey auction

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Bisection protocol.

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Bisection protocol.

	English bidding	bisection protocol
communication cost	2 ⁿ	<i>O</i> (<i>n</i>)
worst-case PAR	1	2 ⁿ
average-case PAR	1	O(1)

	English bidding	bisection protocol
communication cost	2 ⁿ	<i>O</i> (<i>n</i>)
worst-case PAR	1	2 ⁿ
average-case PAR	1	O(1)

Worst-case lower bound (our work)

For all *n*, for all *p*, $2 \le p \le n/4$, any deterministic protocol for the *n*-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n/4p}$.

	English bidding	bisection protocol
communication cost	2 ⁿ	<i>O</i> (<i>n</i>)
worst-case PAR	1	2 ⁿ
average-case PAR	1	O(1)

Worst-case lower bound (our work)

For all *n*, for all *p*, $2 \le p \le n/4$, any deterministic protocol for the *n*-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n/4p}$.

Average-case lower bound (our work)

For all $n, r \ge 1$, any deterministic protocol of length at most r for the *n*-bit two-player Vickrey auction has average-case PAR greater than $\Omega(\frac{n}{\log(r/n)})$.

	English bidding	bisection protocol
communication cost	2 ⁿ	O(n)
worst-case PAR	1	2 ⁿ
average-case PAR	1	O(1)

Worst-case lower bound (our work)

For all *n*, for all *p*, $2 \le p \le n/4$, any deterministic protocol for the *n*-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n/4p}$.

Average-case lower bound (our work)

For all $n, r \ge 1$, any deterministic protocol of length at most r for the n-bit two-player Vickrey auction has average-case PAR greater than $\Omega(\frac{n}{\log(r/n)})$.

These are *trade-offs*: good privacy for short communication.

Worst-case lower bound

For all *n*, for all *p*, $2 \le p \le n/4$, any deterministic protocol for the *n*-bit two-player Vickrey auction problem obtaining PAR less than 2^{p-2} has length at least $2^{n/4p}$.

The parameter p lets us fix either the PAR or the communication cost which we want a protocol to achieve, and determines the other.

Worst-case lower bound

For all *n*, for all *p*, $2 \le p \le n/4$, any deterministic protocol for the *n*-bit two-player Vickrey auction problem obtaining PAR less than 2^{p-2} has length at least $2^{n/4p}$.

The parameter p lets us fix either the PAR or the communication cost which we want a protocol to achieve, and determines the other.

The proof proceeds as follows.

Fix any protocol π for Vickrey auction. This proof will find some input pair (x, y) which either

- loses enough privacy (has $PAR_{x,y}(\pi) \ge 2^{p-2}$), or
- takes communication at least $2^{n/4p}$ in protocol π .

We'll track the "small" inputs (x, y) from the upper left-hand corner:

$$\{(x,y) \mid x,y \le 2^{n-p}\}$$

These inputs stand to lose the most privacy.

Let v be some vertex in the protocol tree for π .

• inputs which reach node v:

 $T(v) = T_A(v) \times T_B(v) = \{(x, y) \mid \text{ input } (x, y) \text{ reaches } v \text{ during } \pi\}$

- the square of small inputs $S(v) \times S(v)$ which reach v: $S(v) = T_A(v) \cap T_B(v) \cap [2^{n-p}]$
- the "large" inputs for each player: $A^{L}(v) = T_{A}(v) \cap \{2^{n-p}, \dots, 2^{n} - 1\}$ $B^{L}(v) = T_{B}(v) \cap \{2^{n-p}, \dots, 2^{n} - 1\}$

We want a square of small inputs which reach v because every square of inputs *resembles* the entire Vickrey auction (has no quick, private protocol).

At root node *r*:

•
$$T_A(r) = T_B(r) = [2^n]$$

•
$$S(r) = [2^{n-p}]$$

•
$$A^{L}(r) = B^{L}(r) = \{2^{n-p}, \dots, 2^{n}-1\}$$

Inputs only lose privacy as the protocol continues.

For any node v in the protocol tree and any $(x, y) \in T(v)$,

$$\operatorname{PAR}_{x,y}(\pi) = \frac{|R_{x,y}|}{|P_{x,y}|} o \ge \frac{|R_{x,y}|}{|R_{x,y} \cap T(v)|} = \operatorname{PAR}_{x,y}^{v}(\pi)$$

In particular, consider some $(x, y) \in T(v)$ where x > y (Alice wins).

$$\operatorname{PAR}_{x,y}(\pi) \ge \operatorname{PAR}_{x,y}^{\nu}(\pi) \ge \frac{2^n - 2^{n-p}}{|A^L(\nu)| + 2^{n-p}}$$
 (1)

Set $\alpha = 1 - 2^{-n/4p}$.

Our strategy for finding (x, y)

- Start at the root with S(r), $A^{L}(r)$, and $B^{L}(r)$ as defined.
- At node v, say it's Alice's turn to speak (the case is symmetric for Bob). Alice sends bit b which partitions T_A(v) into two pieces, inducing partitions of S(v) and A^L(v).
 - progress: if

$$(1-lpha)|S(\mathbf{v})| \leq |S_0(\mathbf{v})| \leq lpha|S(\mathbf{v})|$$

then follow the branch such that $|A_i^L(v)| \leq \frac{1}{2}|A_i^L(v)|$.

• useless: if for some *i*,

 $|S_i(v)| \geq \alpha |S(v)|$

then follow that branch of the protocol tree.

Repeat step 2 until one player has made p progress steps, or v is a leaf.

Progress steps make the protocol short-but-not-private (bisection-like); useless steps make the protocol private-but-not-short (English-like).

Case 1: Alice makes p progress steps (WLOG – symmetric for Bob)

We know that:

- $|R_{x,y}| \geq 2^n 2^{n-p}$ for every $(x,y) \in S(v) imes S(v)$
- $|A^L(r)| = 2^n 2^{n-p}$

For every progress step Alice made from vertex u to w in the protocol, we know that $|A^{L}(w)| \leq \frac{1}{2}|A^{L}(u)|$. Thus $|A^{L}(v)| \leq \frac{1}{2^{p}}|A^{L}(r)|$. Thus for any $(x, y) \in S(v) \times S(v)$, by equation (1)

$$\operatorname{PAR}_{x,y}^{\nu}(\pi) \geq \operatorname{PAR}_{x,y}(\pi) \geq \operatorname{PAR}_{x,y}^{\nu}(\pi) \geq \frac{2^n - 2^{n-p}}{|A^L(\nu)| + 2^{n-p}} \geq 2^{p-2}$$

Case 2: We reach a leaf v, so |S(v)| = 1

Let q be the total number of useless steps made. Fewer than 2p progress steps were made. $|S(r)| = 2^{n-p}$.

$$1 = |S(v)| \ge 2^{n-p}(1-\alpha)^{2p}\alpha^q$$

Thus $q \ge 2^{n/4p}$. Lila (CSC 2429 lecture 10)

Can Bob learn anything about Alice's private input x, beyond the fact that z = f(x, y)? Can Alice learn anything about Bob's private input y?

Can Bob learn anything about Alice's private input x, beyond the fact that z = f(x, y)? Can Alice learn anything about Bob's private input y?

Can Bob learn anything about Alice's private input x, beyond the fact that z = f(x, y)? Can Alice learn anything about Bob's private input y?

defined by **function** Alice sees

0	
	1

Can Bob learn anything about Alice's private input x, beyond the fact that z = f(x, y)? Can Alice learn anything about Bob's private input y?

Subjective regions
region
$$R_{x,y}^A =$$

 $\{(x, y') \in X \times Y \mid$
 $f(x, y) = f(x, y')\}$

defined by **function** Alice sees

0		1
0	1	
0	1	
0	1	

Subjective rectangles

rectangle
$$P^B_{x,y} =$$

 $\{(x, y') \in X \times Y \mid$
 $f(x, y) = f(x, y'),$
 $\pi(x, y) = \pi(x, y')\}$

defined by **protocol** Alice sees

Can Bob learn anything about Alice's private input x, beyond the fact that z = f(x, y)? Can Alice learn anything about Bob's private input y?

Alice sees

Subjective rectangles

rectangle
$$P^B_{x,y} =$$

 $\{(x, y') \in X \times Y \mid$
 $f(x, y) = f(x, y'),$
 $\pi(x, y) = \pi(x, y')\}$

defined by **protocol** Alice sees

Subjective privacy approximation ratio (Feigenbaum Jaggard Schapira '10)

average-case
$$\operatorname{PAR}^{\operatorname{sub}} = \max_{v=A,B} \mathbb{E}_{(x,y)} \frac{|R_{x,y}^v|}{|P_{x,y}^v|}$$

$$\mathit{IC}_{\mu}(\pi) = \mathit{I}(\mathbf{X}:\pi(\mathbf{X},\mathbf{Y})|\mathbf{Y}) + \mathit{I}(\mathbf{Y}:\pi(\mathbf{X},\mathbf{Y})|\mathbf{X})\}$$

Informational privacy (Klauck '02)

 $\operatorname{PRIV}_{\mu}(\pi) = \max\{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}$

$$IC_{\mu}(\pi) = I(\mathbf{X} : \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}) + I(\mathbf{Y} : \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X})\}$$

Informational privacy (Klauck '02)

 $\operatorname{PRIV}_{\mu}(\pi) = \max\{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}$

Theorem (us '12): $\operatorname{PRIV}_{\mu} - \log |Z| \le IC \le 2(\operatorname{PRIV}_{\mu} + \log |Z|)$

$$IC_{\mu}(\pi) = I(\mathbf{X} : \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}) + I(\mathbf{Y} : \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X})\}$$

Informational privacy (Klauck '02)

 $\operatorname{PRIV}_{\mu}(\pi) = \max\{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}$

Theorem (us '12): $\operatorname{PRIV}_{\mu} - \log |Z| \le IC \le 2(\operatorname{PRIV}_{\mu} + \log |Z|)$ Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \le \log(\operatorname{avg}_{\mu} \operatorname{PAR}^{sub}(P))$

$$\mathit{IC}_{\mu}(\pi) = \mathit{I}(\mathbf{X}:\pi(\mathbf{X},\mathbf{Y})|\mathbf{Y}) + \mathit{I}(\mathbf{Y}:\pi(\mathbf{X},\mathbf{Y})|\mathbf{X})\}$$

Informational privacy (Klauck '02)

 $\operatorname{PRIV}_{\mu}(\pi) = \max\{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}$

Theorem (us '12): $\operatorname{PRIV}_{\mu} - \log |Z| \leq IC \leq 2(\operatorname{PRIV}_{\mu} + \log |Z|)$ Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log(\operatorname{avg}_{\mu} \operatorname{PAR}^{\operatorname{sub}}(P))$ Theorem (Braverman '11): $\operatorname{IC}_{\mathcal{U}}(\operatorname{DISJ}) = \Omega(n)$.

$$IC_{\mu}(\pi) = I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y})|\mathbf{Y}) + I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y})|\mathbf{X})\}$$

Informational privacy (Klauck '02)

 $\operatorname{PRIV}_{\mu}(\pi) = \max\{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}$

Theorem (us '12): $\operatorname{PRIV}_{\mu} - \log |Z| \leq IC \leq 2(\operatorname{PRIV}_{\mu} + \log |Z|)$ Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log(\operatorname{avg}_{\mu} \operatorname{PAR}^{sub}(P))$ Theorem (Braverman '11): $\operatorname{IC}_{\mathcal{U}}(\mathsf{DISJ}) = \Omega(n)$.

Theorem 3

Any protocol P computing the *n*-bit Set Intersection INTERSEC_{*n*} has exponential average-case subjective PAR:

 $\operatorname{avg}_{\mathcal{U}}\operatorname{PAR}^{\operatorname{sub}}(P) = 2^{\Omega(n)}$

Observation

For a region R, define $cut_{\pi}(R) = |\{P_{x,y} \mid (x,y) \in R\}|.$

$$\operatorname{avg} \operatorname{PAR}_{\mu}(\pi) = \mathbb{E}_{\mu} \frac{|R_{x,y}|}{|P_{x,y}|} = \sum_{(x,y)\in X\times Y} \mu(x,y) \frac{|R_{x,y}|}{|P_{x,y}|}$$
$$= \sum_{R \text{ region}} \sum_{(x,y)\in R} \mu(x,y) \frac{|R|}{|P_{x,y}|}$$
$$= \sum_{R \text{ region}} |R| (\sum_{(x,y)\in R} \frac{\mu(x,y)}{|P_{x,y}|}$$
$$= \sum_{R \text{ region}} |R| \cdot \operatorname{cut}_{\pi}(R)$$

Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log(\operatorname{avg}_{\mu}\operatorname{PAR}^{\operatorname{sub}}(P))$ Proof:

$$\begin{aligned} \mathbf{I}(\mathbf{X}; \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})) \\ &= \mathbf{H}(\mathbf{X}; \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})) - \mathbf{H}(\mathbf{X} | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y}), \pi(\mathbf{X}, \mathbf{Y})) \\ &\leq \mathbf{H}(\mathbf{X}; \pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})) \\ &= \sum_{y,z} Pr[\mathbf{Y} = y, \mathbf{Z} = z] \cdot \mathbf{H}(\pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y} = y, f(\mathbf{X}, \mathbf{Y}) = z) \\ &= \sum_{y,z} |R_z \cap \mathbb{X} \times \{y\}|_{\mu} \cdot \mathbf{H}(\pi(\mathbf{X}, \mathbf{Y}) | \mathbf{Y} = y, f(\mathbf{X}, \mathbf{Y}) = z) \\ &= \sum_{y,z} |R_z \cap \mathbb{X} \times \{y\}|_{\mu} \cdot \log(cut_{\pi}(R_z \cap X \times \{y\})) \\ &\leq \log \sum_{y,z} |R_z \cap \mathbb{X} \times \{y\}|_{\mu} \cdot (cut_{\pi}(R_z \cap X \times \{y\})) \\ &\leq \log(\operatorname{avg} \operatorname{PAR}^{\operatorname{sub}}(\pi)) \end{aligned}$$

Next time: differential privacy. Yet another definition of privacy!

References

 Anil Ada, Arkadev Chattopadhyay, Stephen A Cook, Lila Fontes, Michal Koucký, and Toniann Pitassi.
 The Hardness of Being Private.
 In Conference on Computational Complexity, 2012.

Joan Feigenbaum, Aaron D Jaggard, and Michael Schapira. Approximate Privacy: Foundations and Quantification. ACM Conference on Electronic Commerce, pages 167–178, 2010.

Eyal Kushilevitz.

Privacy and communication complexity. *IEEE Symposium on Foundations of Computer Science*, pages 416–421, 1989.