Privacy and Communication Complexity

The Hardness of Being Private [ACC ${ }^{+} 12$]

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where $X=Y=\left[2^{n}\right], Z=\left[2^{n+1}\right]$ and $f(x, y)= \begin{cases}(x, B), & \text { if } x \leq y \\ (y, A) & \text { if } y<x\end{cases}$

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where $X=Y=\left[2^{n}\right], Z=\left[2^{n+1}\right]$ and $f(x, y)= \begin{cases}(x, B), & \text { if } x \leq y \\ (y, A) & \text { if } y<x\end{cases}$

	1	2	3	4	\ldots	$2^{n}-1$	2^{n}
1	$(1, B)$	$(1, B)$	$(1, B)$	$(1, B)$	\ldots	$(1, B)$	$(1, B)$
2	$(1, A)$	$(2, B)$	$(2, B)$	$(2, B)$	\ldots	$(2, B)$	$(2, B)$
3	$(1, A)$	$(2, A)$	$(3, B)$	$(3, B)$	\ldots	$(3, B)$	$(3, B)$
4	$(1, A)$	$(2, A)$	$(3, A)$	$(4, B)$	\ldots	$(4, B)$	$(4, B)$
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
$2^{n}-1$	$(1, A)$	$(2, A)$	$(3, A)$	$(4, A)$	\ldots	$\left(2^{n}-1, B\right)$	$\left(2^{n}-1, B\right)$
2^{n}	$(1, A)$	$(2, A)$	$(3, A)$	$(4, A)$	\ldots	$\left(2^{n}-1, A\right)$	$\left(2^{n}, B\right)$

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where $X=Y=\left[2^{n}\right], Z=\left[2^{n+1}\right]$ and $f(x, y)= \begin{cases}(x, B), & \text { if } x \leq y \\ (y, A) & \text { if } y<x\end{cases}$

	1	2	3	4		$2^{n}-1$	2^{n}
1	$(1, B)$	$(1, B)$	$(1, B)$	$(1, B)$		(1, B)	$(1, B)$
2	$(1, A)$	$(2, B)$	$(2, B)$	$(2, B)$		(2, B)	(2, B)
3	$(1, A)$	$(2, A)$	$(3, B)$	$(3, B)$		(3, B)	$(3, B)$
4	$(1, A)$	$(2, A)$	$(3, A)$	$(4, B)$		$(4, B)$	$(4, B)$
!							
$2^{n}-1$	$(1, A)$	$(2, A)$	$\begin{aligned} & (3, A) \\ & (3, A) \end{aligned}$	$\begin{aligned} & (4, A) \\ & (4, A) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \ldots \\ \ldots \\ \hline \end{array}$	$\left(2^{n}-1, B\right)$	$\left(2^{n}-1, B\right)$
2^{n}	$(1, A)$	$(2, A)$				$\left(2^{n}-1, A\right)$	$\left(2^{n}, B\right)$

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where
$X=Y=\left[2^{n}\right], Z=\left[2^{n+1}\right]$ and $f(x, y)= \begin{cases}(x, B), & \text { if } x \leq y \\ (y, A) & \text { if } y<x\end{cases}$

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where
$X=Y=\left[2^{n}\right], Z=\left[2^{n+1}\right]$ and $f(x, y)= \begin{cases}(x, B), & \text { if } x \leq y \\ (y, A) & \text { if } y<x\end{cases}$

Regions (preimages)
region $R_{x, y}=$ $\left\{\left(x^{\prime}, y^{\prime}\right) \in X \times Y \mid\right.$ $\left.f(x, y)=f\left(x^{\prime}, y^{\prime}\right)\right\}$
defined by function \longrightarrow

Matrix M_{f} has entries $M_{f}[x, y]=f(x, y)$.
A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions M_{f} into rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as $f: X \times Y \rightarrow Z$ where
$X=Y=\left[2^{n}\right], Z=\left[2^{n+1}\right]$ and $f(x, y)= \begin{cases}(x, B), & \text { if } x \leq y \\ (y, A) & \text { if } y<x\end{cases}$

Regions (preimages)
 region $R_{x, y}=$ $\left\{\left(x^{\prime}, y^{\prime}\right) \in X \times Y \mid\right.$ $\left.f(x, y)=f\left(x^{\prime}, y^{\prime}\right)\right\}$

defined by function \longrightarrow

Rectangles

rectangle $P_{x, y}=$ $\left\{\left(x^{\prime}, y^{\prime}\right) \in X \times Y \mid\right.$ $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$
and
$\left.\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)\right\}$
defined by protocol

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

Alice's first move? NO, loses privacy for Alice!

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

Alice's only choice for a privacy-preserving first message.

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

Bob's only privacy-preserving first message.

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

... and so on ...

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from $z=f(x, y)$?

Ascending English bidding is the only perfectly private protocol. Lengthy!

Perfect privacy

A protocol for 2-player function $f: X \times Y \rightarrow Z$ is perfectly private if every two inputs in the same region are partitioned into the same rectangle.

Perfect privacy

A protocol for 2-player function $f: X \times Y \rightarrow Z$ is perfectly private if every two inputs in the same region are partitioned into the same rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized combinatorially. A private deterministic protocol for such functions is given by "decomposing" M_{f}.

Perfect privacy

A protocol for 2-player function $f: X \times Y \rightarrow Z$ is perfectly private if every two inputs in the same region are partitioned into the same rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized combinatorially. A private deterministic protocol for such functions is given by "decomposing" M_{f}.

But perfect privacy is unattainable for many functions! This leads us to a relaxation...

Approximate privacy

Let's relax our requirement from one big rectangle to simply grouping inputs in the same preimage into largeish rectangles.

Approximate privacy

Privacy approximation ratio [FJS10]
A protocol for f has worst-case privacy approximation ratio:

$$
\text { worst-case PAR }=\max _{(x, y)} \frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|}
$$

average-case $\operatorname{PAR}=\mathbb{E}_{(x, y)} \frac{\left|R_{x, y}\right| \mathcal{U}}{\left|P_{x, y}\right| \mathcal{U}}$ over distribution \mathcal{U}

Approximate privacy

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

$$
\text { worst-case PAR }=\max _{(x, y)} \frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|}
$$

average-case $\operatorname{PAR}=\mathbb{E}_{(x, y)} \frac{\left|R_{x, y}\right| \mathcal{U}}{\left|P_{x, y}\right| \mathcal{U}}$ over distribution \mathcal{U}

Approximate privacy

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

$$
\text { worst-case PAR }=\max _{(x, y)} \frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|}
$$

average-case $\operatorname{PAR}=\mathbb{E}_{(x, y)} \frac{\left|R_{x, y}\right| \mathcal{U}}{\left|P_{x, y}\right| \mathcal{U}}$ over distribution \mathcal{U}

Approximate privacy

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

$$
\text { worst-case PAR }=\max _{(x, y)} \frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|}
$$

average-case $\operatorname{PAR}=\mathbb{E}_{(x, y)} \frac{\left|R_{x, y}\right| \mathcal{U}}{\left|P_{x, y}\right| \mathcal{U}}$ over distribution \mathcal{U}

$$
\begin{aligned}
& \text { worst-case } \mathrm{PAR}=10 \\
& \text { average-case } \mathrm{PAR}=2
\end{aligned}
$$

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Bisection protocol.

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

Bisection protocol.

Upper bounds for Vickrey auctions [FJS10]

	English bidding	bisection protocol
communication cost	2^{n}	$O(n)$
worst-case PAR	1	2^{n}
average-case PAR	1	$O(1)$

Upper bounds for Vickrey auctions [FJS10]

	English bidding	bisection protocol
communication cost	2^{n}	$O(n)$
worst-case PAR	1	2^{n}
average-case PAR	1	$O(1)$

Worst-case lower bound (our work)

For all n, for all $p, 2 \leq p \leq n / 4$, any deterministic protocol for the n-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n / 4 p}$.

Upper bounds for Vickrey auctions [FJS10]

	English bidding	bisection protocol
communication cost	2^{n}	$O(n)$
worst-case PAR	1	2^{n}
average-case PAR	1	$O(1)$

Worst-case lower bound (our work)

For all n, for all $p, 2 \leq p \leq n / 4$, any deterministic protocol for the n-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n / 4 p}$.

Average-case lower bound (our work)
For all $n, r \geq 1$, any deterministic protocol of length at most r for the n-bit two-player Vickrey auction has average-case PAR greater than $\Omega\left(\frac{n}{\log (r / n)}\right)$.

Upper bounds for Vickrey auctions [FJS10]

	English bidding	bisection protocol
communication cost	2^{n}	$O(n)$
worst-case PAR	1	2^{n}
average-case PAR	1	$O(1)$

Worst-case lower bound (our work)

For all n, for all $p, 2 \leq p \leq n / 4$, any deterministic protocol for the n-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n / 4 p}$.

Average-case lower bound (our work)
For all $n, r \geq 1$, any deterministic protocol of length at most r for the n-bit two-player Vickrey auction has average-case PAR greater than $\Omega\left(\frac{n}{\log (r / n)}\right)$.

These are trade-offs: good privacy for short communication.

Worst-case lower bound

For all n, for all $p, 2 \leq p \leq n / 4$, any deterministic protocol for the n-bit two-player Vickrey auction problem obtaining PAR less than 2^{p-2} has length at least $2^{n / 4 p}$.

The parameter p lets us fix either the PAR or the communication cost which we want a protocol to achieve, and determines the other.

Worst-case lower bound

For all n, for all $p, 2 \leq p \leq n / 4$, any deterministic protocol for the n-bit two-player Vickrey auction problem obtaining PAR less than 2^{p-2} has length at least $2^{n / 4 p}$.

The parameter p lets us fix either the PAR or the communication cost which we want a protocol to achieve, and determines the other.

The proof proceeds as follows.
Fix any protocol π for Vickrey auction.
This proof will find some input pair (x, y) which either

- loses enough privacy (has $\operatorname{PAR}_{x, y}(\pi) \geq 2^{p-2}$), or
- takes communication at least $2^{n / 4 p}$ in protocol π.

We'll track the "small" inputs (x, y) from the upper left-hand corner:

$$
\left\{(x, y) \mid x, y \leq 2^{n-p}\right\}
$$

These inputs stand to lose the most privacy.

The rest of the inputs will be called "large."

Let v be some vertex in the protocol tree for π.

- inputs which reach node v :

$$
T(v)=T_{A}(v) \times T_{B}(v)=\{(x, y) \mid \text { input }(x, y) \text { reaches } v \text { during } \pi\}
$$

- the square of small inputs $S(v) \times S(v)$ which reach v :

$$
S(v)=T_{A}(v) \cap T_{B}(v) \cap\left[2^{n-p}\right]
$$

- the "large" inputs for each player:

$$
\begin{aligned}
& A^{L}(v)=T_{A}(v) \cap\left\{2^{n-p}, \ldots, 2^{n}-1\right\} \\
& B^{L}(v)=T_{B}(v) \cap\left\{2^{n-p}, \ldots, 2^{n}-1\right\}
\end{aligned}
$$

We want a square of small inputs which reach v because every square of inputs resembles the entire Vickrey auction (has no quick, private protocol).

At root node r :

- $T_{A}(r)=T_{B}(r)=\left[2^{n}\right]$
- $S(r)=\left[2^{n-p}\right]$
- $A^{L}(r)=B^{L}(r)=\left\{2^{n-p}, \ldots, 2^{n}-1\right\}$

Inputs only lose privacy as the protocol continues.

For any node v in the protocol tree and any $(x, y) \in T(v)$,

$$
\operatorname{PAR}_{x, y}(\pi)=\frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|} 0 \geq \frac{\left|R_{x, y}\right|}{\left|R_{x, y} \cap T(v)\right|}=\operatorname{PAR}_{x, y}^{v}(\pi)
$$

In particular, consider some $(x, y) \in T(v)$ where $x>y$ (Alice wins).

$$
\begin{equation*}
\operatorname{PAR}_{x, y}(\pi) \geq \operatorname{PAR}_{x, y}^{v}(\pi) \geq \frac{2^{n}-2^{n-p}}{\left|A^{L}(v)\right|+2^{n-p}} \tag{1}
\end{equation*}
$$

Set $\alpha=1-2^{-n / 4 p}$.

Our strategy for finding (x, y)

(1) Start at the root with $S(r), A^{L}(r)$, and $B^{L}(r)$ as defined.
(2) At node v, say it's Alice's turn to speak (the case is symmetric for Bob). Alice sends bit b which partitions $T_{A}(v)$ into two pieces, inducing partitions of $S(v)$ and $A^{L}(v)$.

- progress: if

$$
(1-\alpha)|S(v)| \leq\left|S_{0}(v)\right| \leq \alpha|S(v)|
$$

then follow the branch such that $\left|A_{i}^{L}(v)\right| \leq \frac{1}{2}\left|A_{i}^{L}(v)\right|$.

- useless: if for some i,

$$
\left|S_{i}(v)\right| \geq \alpha|S(v)|
$$

then follow that branch of the protocol tree.
(3) Repeat step 2 until one player has made p progress steps, or v is a leaf.

Progress steps make the protocol short-but-not-private (bisection-like); useless steps make the protocol private-but-not-short (English-like).

Case 1: Alice makes p progress steps (WLOG - symmetric for Bob)

We know that:

- $\left|R_{x, y}\right| \geq 2^{n}-2^{n-p}$ for every $(x, y) \in S(v) \times S(v)$
- $\left|A^{L}(r)\right|=2^{n}-2^{n-p}$

For every progress step Alice made from vertex u to w in the protocol, we know that $\left|A^{L}(w)\right| \leq \frac{1}{2}\left|A^{L}(u)\right|$. Thus $\left|A^{L}(v)\right| \leq \frac{1}{2^{p}}\left|A^{L}(r)\right|$.
Thus for any $(x, y) \in S(v) \times S(v)$, by equation (1)

$$
\operatorname{PAR}_{x, y}^{v}(\pi) \geq \operatorname{PAR}_{x, y}(\pi) \geq \operatorname{PAR}_{x, y}^{v}(\pi) \geq \frac{2^{n}-2^{n-p}}{\left|A^{L}(v)\right|+2^{n-p}} \geq 2^{p-2}
$$

Case 2: We reach a leaf v, so $|S(v)|=1$

Let q be the total number of useless steps made. Fewer than $2 p$ progress steps were made. $|S(r)|=2^{n-p}$.

$$
1=|S(v)| \geq 2^{n-p}(1-\alpha)^{2 p} \alpha^{q}
$$

Thus $q \geq 2^{n / 4 p}$.

Privacy against players

Can Bob learn anything about Alice's private input x, beyond the fact that $z=f(x, y)$? Can Alice learn anything about Bob's private input y ?

Privacy against players

Can Bob learn anything about Alice's private input x, beyond the fact that $z=f(x, y)$? Can Alice learn anything about Bob's private input y ?

Privacy against players

Can Bob learn anything about Alice's private input x, beyond the fact that $z=f(x, y)$? Can Alice learn anything about Bob's private input y ?

Subjective regions

$$
\begin{gathered}
\text { region } R_{x, y}^{A}= \\
\left\{\left(x, y^{\prime}\right) \in X \times Y\right. \\
\left.f(x, y)=f\left(x, y^{\prime}\right)\right\}
\end{gathered}
$$

defined by function Alice sees

Privacy against players

Can Bob learn anything about Alice's private input x, beyond the fact that $z=f(x, y)$? Can Alice learn anything about Bob's private input y ?

Subjective regions

> region $R_{x, y}^{A}=$ $\left\{\left(x, y^{\prime}\right) \in X \times Y\right.$ $\left.f(x, y)=f\left(x, y^{\prime}\right)\right\}$
defined by function Alice sees

0		
0	1	
0	1	
0	1	
0	1	

Subjective rectangles

$$
\begin{aligned}
& \text { rectangle } P_{x, y}^{B}= \\
& \left\{\left(x, y^{\prime}\right) \in X \times Y\right. \\
& f(x, y)=f\left(x, y^{\prime}\right), \\
& \left.\pi(x, y)=\pi\left(x, y^{\prime}\right)\right\}
\end{aligned}
$$

defined by protocol Alice sees

Privacy against players

Can Bob learn anything about Alice's private input x, beyond the fact that $z=f(x, y)$? Can Alice learn anything about Bob's private input y ?

Subjective regions

> region $R_{x, y}^{A}=$ $\left\{\left(x, y^{\prime}\right) \in X \times Y\right.$ $\left.f(x, y)=f\left(x, y^{\prime}\right)\right\}$
defined by function Alice sees

0		
		1
0	1	
0	1	
0	1	

Subjective rectangles

$$
\begin{aligned}
& \text { rectangle } P_{x, y}^{B}= \\
& \left\{\left(x, y^{\prime}\right) \in X \times Y\right. \\
& f(x, y)=f\left(x, y^{\prime}\right), \\
& \left.\pi(x, y)=\pi\left(x, y^{\prime}\right)\right\}
\end{aligned}
$$

defined by protocol
Alice sees

Subjective privacy approximation ratio (Feigenbaum Jaggard Schapira '10)

$$
\text { average-case } \mathrm{PAR}^{\text {sub }}=\max _{v=A, B} \mathbb{E}_{(x, y)} \frac{\left|R_{x, y}^{v}\right|}{\left|P_{x, y}^{v}\right|}
$$

Information cost (Braverman et al.)

$$
\left.I C_{\mu}(\pi)=I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y})+I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X})\right\}
$$

Informational privacy (Klauck ’02)

$\operatorname{PRIV}_{\mu}(\pi)=\max \{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}$

Information cost (Braverman et al.)

$$
\left.I C_{\mu}(\pi)=I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y})+I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X})\right\}
$$

Informational privacy (Klauck ’02)

$$
\operatorname{PRIV}_{\mu}(\pi)=\max \{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}
$$

Theorem (us '12): $\operatorname{PRIV}_{\mu}-\log |Z| \leq I C \leq 2\left(\operatorname{PRIV}_{\mu}+\log |Z|\right)$

Information cost (Braverman et al.)

$$
\left.I C_{\mu}(\pi)=I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y})+I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X})\right\}
$$

Informational privacy (Klauck '02)

$$
\operatorname{PRIV}_{\mu}(\pi)=\max \{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}
$$

Theorem (us '12): PRIV $_{\mu}-\log |Z| \leq I C \leq 2\left(\operatorname{PRIV}_{\mu}+\log |Z|\right)$ Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log \left(\operatorname{avg}_{\mu} \operatorname{PAR}^{\text {sub }}(P)\right)$

Information cost (Braverman et al.)

$$
\left.I C_{\mu}(\pi)=I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y})+I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X})\right\}
$$

Informational privacy (Klauck '02)

$$
\operatorname{PRIV}_{\mu}(\pi)=\max \{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}
$$

Theorem (us '12): $\operatorname{PRIV}_{\mu}-\log |Z| \leq I C \leq 2\left(\operatorname{PRIV}_{\mu}+\log |Z|\right)$
Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log \left(\operatorname{avg}_{\mu} \operatorname{PAR}^{\text {sub }}(P)\right)$
Theorem (Braverman '11): $\mathrm{IC}_{\mathcal{U}}($ DISJ $)=\Omega(n)$.

Information cost (Braverman et al.)

$$
\left.I C_{\mu}(\pi)=I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y})+I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X})\right\}
$$

Informational privacy (Klauck '02)

$$
\operatorname{PRIV}_{\mu}(\pi)=\max \{I(\mathbf{X}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})), I(\mathbf{Y}: \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}, f(\mathbf{X}, \mathbf{Y}))\}
$$

Theorem (us '12): $\operatorname{PRIV}_{\mu}-\log |Z| \leq I C \leq 2\left(\operatorname{PRIV}_{\mu}+\log |Z|\right)$
Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log \left(\operatorname{avg}_{\mu} \operatorname{PAR}^{\text {sub }}(P)\right)$
Theorem (Braverman '11): $\mathrm{IC}_{\mathcal{U}}($ DISJ $)=\Omega(n)$.

Theorem 3

Any protocol P computing the n-bit Set Intersection INTERSEC $_{n}$ has exponential average-case subjective PAR:

$$
\operatorname{avg}_{\mathcal{U}} \operatorname{PAR}^{\mathrm{sub}}(P)=2^{\Omega(n)}
$$

Observation

For a region R, define $\operatorname{cut}_{\pi}(R)=\left|\left\{P_{x, y} \mid(x, y) \in R\right\}\right|$.

$$
\begin{aligned}
\operatorname{avg} \operatorname{PAR}_{\mu}(\pi) & =\mathbb{E}_{\mu} \frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|}=\sum_{(x, y) \in X \times Y} \mu(x, y) \frac{\left|R_{x, y}\right|}{\left|P_{x, y}\right|} \\
& =\sum_{R \text { region }} \sum_{(x, y) \in R} \mu(x, y) \frac{|R|}{\left|P_{x, y}\right|} \\
& =\sum_{R \text { region }}|R|\left(\sum_{(x, y) \in R} \frac{\mu(x, y)}{\left|P_{x, y}\right|}\right. \\
& =\sum_{R \text { region }}|R| \cdot \operatorname{cut}_{\pi}(R)
\end{aligned}
$$

Theorem (us '12): $\operatorname{PRIV}_{\mu}(P) \leq \log \left(\operatorname{avg}_{\mu} \operatorname{PAR}^{\text {sub }}(P)\right)$
Proof:

$$
\begin{aligned}
& \mathbf{I}(\mathbf{X} ; \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})) \\
& =\mathbf{H}(\mathbf{X} ; \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y}))-\mathbf{H}(\mathbf{X} \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y}), \pi(\mathbf{X}, \mathbf{Y})) \\
& \leq \mathbf{H}(\mathbf{X} ; \pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}, f(\mathbf{X}, \mathbf{Y})) \\
& =\sum_{y, z} \operatorname{Pr}[\mathbf{Y}=y, \mathbf{Z}=z] \cdot \mathbf{H}(\pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}=y, f(\mathbf{X}, \mathbf{Y})=z) \\
& =\sum_{y, z}\left|R_{z} \cap \mathbb{X} \times\{y\}\right|_{\mu} \cdot \mathbf{H}(\pi(\mathbf{X}, \mathbf{Y}) \mid \mathbf{Y}=y, f(\mathbf{X}, \mathbf{Y})=z) \\
& =\sum_{y, z}\left|R_{z} \cap \mathbb{X} \times\{y\}\right|_{\mu} \cdot \log \left(\operatorname{cut}_{\pi}\left(R_{z} \cap X \times\{y\}\right)\right) \\
& \leq \log \sum_{y, z}\left|R_{z} \cap \mathbb{X} \times\{y\}\right|_{\mu} \cdot\left(\operatorname{cut}_{\pi}\left(R_{z} \cap X \times\{y\}\right)\right) \\
& \leq \log \left(\operatorname{avg} \operatorname{PAR}^{\text {sub }}(\pi)\right)
\end{aligned}
$$

Next time: differential privacy. Yet another definition of privacy!

References

Anil Ada, Arkadev Chattopadhyay, Stephen A Cook, Lila Fontes, Michal Koucký, and Toniann Pitassi.
The Hardness of Being Private.
In Conference on Computational Complexity, 2012.
Joan Feigenbaum, Aaron D Jaggard, and Michael Schapira.
Approximate Privacy: Foundations and Quantification.
ACM Conference on Electronic Commerce, pages 167-178, 2010.
Eyal Kushilevitz.
Privacy and communication complexity.
IEEE Symposium on Foundations of Computer Science, pages 416-421, 1989.

