Privacy and Communication Complexity

The Hardness of Being Private [ACCT12]
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Communication complexity The model

Matrix Mr has entries M¢[x, y| = f(x,y).
A submatrix is monochromatic if f is constant on inputs in the submatrix.

A deterministic protocol computing f repeatedly partitions Mr into
rectangles (submatrices) until every rectangle is monochromatic.
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Matrix Mr has entries M¢[x, y| = f(x,y).

A submatrix is monochromatic if f is constant on inputs in the submatrix.
A deterministic protocol computing f repeatedly partitions Mr into
rectangles (submatrices) until every rectangle is monochromatic.

Vickrey auction

The 2-player Vickrey auction is defined as f : X X Y — Z where

X=Y=[2", Z=[2""] and f(x,y) = {

Regions (preimages)

region Ry, =
{(X,y)eXxY]|
f(x,y) = f(x.y)}

defined by function —
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if x <y
if y <x

Rectangles

rectangle Py , =
{(x,y)eXxY|
f(x,y) = F(x,y')
and

m(x,y) =m(x',y')}
defined by protocol
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from z = f(x,y)?
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from z = f(x,y)?

Alice’s first move? NO, loses privacy for Alice!
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from z = f(x,y)?

Alice’s only choice for a privacy-preserving first message.
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from z = f(x,y)?

Bob's only privacy-preserving first message.
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from z = f(x,y)?

...andsoon ...
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Perfect privacy

Privacy against eavesdroppers

Can an eavesdropper learn about x and y, aside from z = f(x,y)?

Ascending English bidding is the only perfectly private protocol. Lengthy!
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Perfect privacy

Perfect privacy
A protocol for 2-player function f : X x Y — Z is perfectly private if
every two inputs in the same region are partitioned into the same

rectangle.
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Perfect privacy

A protocol for 2-player function f : X x Y — Z is perfectly private if
every two inputs in the same region are partitioned into the same
rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized
combinatorially. A private deterministic protocol for such functions is given
by “decomposing” M.
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Perfect privacy

Perfect privacy

A protocol for 2-player function f : X x Y — Z is perfectly private if
every two inputs in the same region are partitioned into the same
rectangle.

Characterizing perfect privacy [Kus89]

The perfectly private functions of 2 inputs are fully characterized
combinatorially. A private deterministic protocol for such functions is given
by “decomposing” M.

But perfect privacy is unattainable for many functions!
This leads us to a relaxation. ..
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Approximate privacy

Let’s relax our requirement from one big rectangle to simply grouping
inputs in the same preimage into largeish rectangles.
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Approximate privacy

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

worst-case PAR = max | X’y’
(xy) |Px X,y

| Ryl

over distribution U/
| Pyl

average-case PAR = E(, )
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Approximate privacy

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

[Reyl
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Approximate privacy

Privacy approximation ratio [FJS10]

A protocol for f has worst-case privacy approximation ratio:

[Reyl

worst-case PAR = max
(x.) |Pxy
average-case PAR = E(, ) :P ’y: over distribution U/
0 0 1

worst-case PAR = 10
average-case PAR =2
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Approximate privacy

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?
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How short can we make a protocol for Vickrey auction?

Bisection protocol.
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Approximate privacy

Two-player Vickrey auction

How short can we make a protocol for Vickrey auction?

®

Bisection protocol.
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Approximate privacy

Upper bounds for Vickrey auctions [FJS10]

English bidding bisection protocol
communication cost 2" O(n)
worst-case PAR 1 2"
average-case PAR 1 0(1)
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Approximate privacy

Upper bounds for Vickrey auctions [FJS10]

English bidding bisection protocol
communication cost 2" O(n)
worst-case PAR 1 2"
average-case PAR 1 0(1)

Worst-case lower bound (our work)

For all n, for all p, 2 < p < n/4, any deterministic protocol for the n-bit

two-player Vickrey auction obtaining PAR less than 2P~2 has length at
least 2/4P.
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Approximate privacy

Upper bounds for Vickrey auctions [FJS10]

English bidding bisection protocol
communication cost 2" O(n)
worst-case PAR 1 2"
average-case PAR 1 Oo(1)

Worst-case lower bound (our work)

For all n, for all p, 2 < p < n/4, any deterministic protocol for the n-bit
two-player Vickrey auction obtaining PAR less than 2P~2 has length at
least 2/4P.

Average-case lower bound (our work)

For all n,r > 1, any deterministic protocol of length at most r for the n-bit
two-player Vickrey auction has average-case PAR greater than Q(W).

These are trade-offs: good privacy for short communication.
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Approximate privacy ~ Worst-case tradeoff

Worst-case lower bound

For all n, for all p, 2 < p < n/4, any deterministic protocol for the n-bit
two-player Vickrey auction problem obtaining PAR less than 2P~2 has
length at least 27/4P,

The parameter p lets us fix either the PAR or the communication cost
which we want a protocol to achieve, and determines the other.
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Approximate privacy ~ Worst-case tradeoff

Worst-case lower bound

For all n, for all p, 2 < p < n/4, any deterministic protocol for the n-bit
two-player Vickrey auction problem obtaining PAR less than 2P~2 has
length at least 27/4P,

The parameter p lets us fix either the PAR or the communication cost
which we want a protocol to achieve, and determines the other.

The proof proceeds as follows.

Fix any protocol 7 for Vickrey auction.
This proof will find some input pair (x,y) which either

o loses enough privacy (has PAR, , () > 2P~2), or

o takes communication at least 2"/4P in protocol 7.
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We'll track the “small” inputs (x,y) from the upper left-hand corner:

{C6y) I xy <27°P}

These inputs stand to lose the most privacy.

The rest of the inputs will be called “large.”
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Approximate privacy ~ Worst-case tradeoff

Let v be some vertex in the protocol tree for 7.

@ inputs which reach node v:
T(v) = Ta(v) x Tg(v) ={(x,y) | input (x,y) reaches v during 7}

o the square of small inputs S(v) x S(v) which reach v:
S(v) = Ta(v)N Te(v)N[2"P]
o the “large” inputs for each player:
AL(v) = Ta(v)n{2"P,... 2" — 1}
Bt(v) = Tg(v)n{2"=P,...,2" -1}
We want a square of small inputs which reach v because every square of

inputs resembles the entire Vickrey auction (has no quick, private
protocol).

o Ta(r) = Tg(r)=[2"]
o S(r)=[2"""]
o AL(r) = Bi(r) = {2"P ...,2" — 1}
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Approximate privacy ~ Worst-case tradeoff

Inputs only lose privacy as the protocol continues.

For any node v in the protocol tree and any (x,y) € T(v),

Reyl )5 IRuy
Payl® = TRy N TV

PAR,, (7) = — PARY, ()

In particular, consider some (x,y) € T(v) where x > y (Alice wins).

on _ on—p

PAR, > PAR) > — 1
,y(ﬂ) = x,y(Tr) = ‘AL(V)’ +2n—p ( )
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Approximate privacy ~ Worst-case tradeoff
Set = 1 —27"/4p,

Our strategy for finding (x, y)

© Start at the root with S(r), AL(r), and BL(r) as defined.

@ At node v, say it's Alice's turn to speak (the case is symmetric for
Bob). Alice sends bit b which partitions Ta(v) into two pieces,
inducing partitions of S(v) and AL(v).

e progress: if

(1= a)[S(V)] < |So(v)| < afS(v)]

then follow the branch such that |AH(v)| < 2|AL(v)|.
o useless: if for some |,

15i(v)[ = a|S(v)|
then follow that branch of the protocol tree.
© Repeat step 2 until one player has made p progress steps, or v is a
leaf.
Progress steps make the protocol short-but-not-private (bisection-like);
useless steps make the protocol private-but-not-short (English-like).
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Approximate privacy ~ Worst-case tradeoff

Case 1: Alice makes p progress steps (WLOG — symmetric for Bob)
We know that:

@ |[Ry| > 2" —2""P for every (x,y) € S(v) x S(v)

o |AL(r)| =27 —2r-F
For every progress step Alice made from vertex u to w in the protocol, we
know that |[AL(w)| < 3|AL(u)|. Thus |AL(V)| < &|AL(r)].
Thus for any (x,y) € S(v) x S(v), by equation (1)

on _ on—p .
> >
~AfW)[ + 27 T

Case 2: We reach a leaf v, so |S(v)| =1

Let g be the total number of useless steps made. Fewer than 2p progress
steps were made. |S(r)| =2"7P.

PAR () > PAR,,(m) > PARY () P2

1=|S(v)| > 2"P(1 — a)?Pad

Thus g > 2"/4P.
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Approximate privacy Subjective privacy

Privacy against players

Can Bob learn anything about Alice’s private input x, beyond the fact that
z = f(x,y)? Can Alice learn anything about Bob's private input y?
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Can Bob learn anything about Alice’s private input x, beyond the fact that
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Approximate privacy Subjective privacy

Privacy against players

Can Bob learn anything about Alice’s private input x, beyond the fact that
z = f(x,y)? Can Alice learn anything about Bob's private input y?

region Réy =
{(y)eXxY|
flx,y)=f(x,y')}

defined by function
Alice sees
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Approximate privacy Subjective privacy

Privacy against players

Can Bob learn anything about Alice’s private input x, beyond the fact that
z = f(x,y)? Can Alice learn anything about Bob's private input y?

ST s Subjective rectangles

0 1 B _
A rectangle Pg
reglonRy {( )GX};<Y|
{( yYe X x Y| 0 1 (xy)—f(xy)
A=) o w(x.y) = 7y}
defined by function 0 1 defined by protocol
Alice sees -
Alice sees
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Approximate privacy Subjective privacy

Privacy against players

Can Bob learn anything about Alice’s private input x, beyond the fact that
z = f(x,y)? Can Alice learn anything about Bob's private input y?

T - jective r ngl
ST s Subjective rectangles

0 1 rectangle P58 =
region RY = ‘ ‘ {(x )GX};<Y|
o o F(x) = )
P it 0o 1 m(x,y) = 7(x,y')}
defined by function ‘ 0 1 ‘ defined by protocol
Alice sees

Alice sees

Subjective privacy approximation ratio (Feigenbaum Jaggard Schapira '10)

| x,y\

P |Py |

average-case PAR®P = mf\x E(x
v
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Approximate privacy Many definitions of privacy

Information cost (Braverman et al.)

IC, () = I(X : m(X, Y)|Y) + I(Y : 7(X, Y)|X)}

Informational privacy (Klauck '02)

PRIV, (7) = max{/(X : 7(X,Y)|Y, f(X,Y)), (Y : 7(X,Y)|X, f(X,Y¥))}
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Approximate privacy Many definitions of privacy

Information cost (Braverman et al.)

ICu(m) = I(X: (X, Y)[Y) 4+ I(Y : 7(X,Y)[|X)}

Informational privacy (Klauck '02)

PRIV, (7) = max{/(X : 7(X,Y)|Y, f(X,Y)), (Y : 7(X,Y)|X, f(X,Y¥))}

Theorem (us '12): PRIV, —log|Z| < IC < 2(PRIV, +log|Z|)
Theorem (us '12): PRIV, (P) < log(avg,, PARS“2(P))
Theorem (Braverman '11): 1Cy,(DISJ)= Q(n).

Any protocol P computing the n-bit Set Intersection INTERSEC,, has
exponential average-case subjective PAR:

avg, PARSU6(P) = 25Hn)
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Approximate privacy Many definitions of privacy

For a region R, define cut:(R) = |{Px, | (x,y) € R}|.

Ry
avg PAR, () = EH|P’V| > ulx y)‘P
Pyl (,y)eXxY |Pxyl

ZZ(M

R region (x,y)ER

_ Z ]R] Z /J(Xy

Xy

R region (x,y)ER ,y
= Y |R|-cutz(R)
R region
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Theorem (us '12): PRIV,,(P) < log(avg, PAR®?(P))
Proof:
I(X; 7(X, Y)Y, £(X,Y))
= H(X; 7(X, Y)Y, F(X,Y)) — H(X|Y, f(X,Y), (X, Y))
< H(X; 7(X, Y)|Y, f(X,Y))
= PrlY =y,Z=z]-H(x(X,Y)[Y =y, f(X,Y) = 2)

v,z
=Y IR NX x {y}u H@(X, Y)Y =y, f(X,Y) = 2)
=Y |R: NX x {y}|, - log(cut(R: N X x {y}))

v,z
<log» [R:NX x {y},- (cutz(R: N X x {y}))

< log(avg PAR®“?(7))
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Approximate privacy Many definitions of privacy

Next time: differential privacy. Yet another definition of privacy!
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