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CS 2429 - Foundations of Communication Complexity

Lecturer: Sergey Gorbunov

1 Introduction

In this lecture we will see how to use methods of (conditional) information complexity to prove lower
bounds for communication complexity problems. The results presented in these notes are due to
the following paper: “An information statistics approach to data stream and communication com-
plexity” by Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar and D. Sivakumar [1]. Another exposition of
these results can be found in the “The story of set disjointness” by A. Chattopadhyay, T. Pitassi [2].

We focus on the two-players set-disjointness problem. This problems is informally regarded
as “complete” for the communication complexity since it leads to lower bounds for many other
problems. We will show how to:

• use conditional information to argue communication complexity lower bounds,

• study communication complexity of a function by decomposing it into simpler primitives and
studying its associated communication complexity,

• prove a lower bound of Ω(1) of an AND function,

• prove a lower bound of Ω(n) of a set-disjointness function.

2 Preliminaries

We begin by recalling the set-disjointness (DISJ) problem. For this lecture we will study the two-
players case, which can be easily generalized. For n ∈ N, in DISJn problem two players, each
holding characteristic vectors x, y of subsets of [n], try to determine if their sets intersect. That is,

DISJn(x, y) outputs 1 if and only if x ∩ y 6= ∅

For a fixed input pair (x, y), let Π(x, y) denote the random variable on the message transcript
obtained by Alice and Bob (over the random coins of Alice and Bob). A protocol Π is δ-error is
for all input pairs (x, y) it errors with probability at most δ. As usual, let Rδ(f) denote the cost
of the best δ-error randomized protocol for a function f .

Information Theory. Let µ be a distribution over a finite set Q and X ∼ µ.

• The entropy of a random variable X is defined as:

H(X) =
∑
q∈Q

µ(q) log
1

µ(q)
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• The conditional entropy of X given Y is defined by:

H(X|Y ) = Ey[H(X|Y = y)]

where H(X|Y = y) is the entropy of the conditional distribution of X given Y = y.

• The joint entropy of X,Y is:

H(X,Y ) = H(X) +H(Y |X)

• The mutual information between X and Y is given by:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

• The conditional mutual information between X and Y conditioned on Z is:

I(X;Y |Z) = Ez[I(X;Y | Z = z)]

Fix a set K of inputs and a functions f : K → {0, 1}. In this case, we view K as consisting
of two inputs for two players. Intuitively, the information cost of a protocol is the amount of
information the protocol transcript reveals about the function inputs.

Definition [Information Cost of a Protocol.] Let Π be a randomized protocol whose inputs belong
to K and µ be a distribution on inputs in K. Let (X,Y) be the random variable distributes
according to µ. The information cost of Π with respect to µ is denoted by I(X,Y; Π(X,Y)).

Definition [Information Complexity of a Function.] The δ-error information complexity of a
function f with respect to distribution on the inputs µ is denoted by ICµ,δ(f) and defined to be
the minimum information cost of a δ-error protocol for f .

It is not hard to see that a complexity of the best randomized protocol protocol is at least the
information complexity of a function. Intuitively, this holds since the randomized algorithm must
communicate at least the amount of information needed to compute the function. More formally,

Rδ(f) = |Π| ≥ H(Π(X,Y)) ≥ I((X,Y); Π(X,Y)) ≥ ICµ,δ(f)

From now one, when we use X to denote a vector random variable, and Xi its individual entries.

Now, say a function f can be decomposed into n “simpler” primitives. Ideally, if we wanted
to prove lower bounds on a function by proving lower bounds on simpler primitives, we would
need something like a statement of the form ICµ,δ ≥ n · ICv,δ. Unfortunately, we cannot claim a
statement of this form since the distribution µ ∼ (X,Y) might not be a produce distribution (since
v ∼ (Xi,Yi) might not be a product distribution on its own). Instead, suppose (Xi,Yi) ∼ v, we
define an “auxiliary” random variable Di and let v′ denote the joint distribution of ((Xi,Yi),Di).
We choose Di such that conditioned on Di, Xi and Yi are independent. Let µ = vn and η = (v′)n.
We call η a mixture of product distributions in this case. Note that if ((X,Y),D) ∼ η is a mixture
of product distributions, then for all i, (Xi,Yi) are mutually independent even conditioned on D.
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Definition [Conditional Information Cost.] Let Π be a randomized protocol and let ((X,Y),D) ∼
η and that η is a mixture of product distribution. The conditional information cost of Π with respect
to η is denoted by I(X,Y; Π(X,Y) | D).

Definition [Conditional Information Complexity.] The δ-error conditional information complexity
of a function f with respect to η is denoted by CICη,δ(f) and defined to be the minimum conditional
information cost of a δ-error protocol for f .

Lemma 1 Let µ be a distribution on the inputs from the set K to a function f . If η is a mixture
of produce distributions on K×M, where the marginal distribution on K is µ, then

ICµ,δ(f) ≥ CICη,δ(f)

Proof Consider a protocol Π with information cost ICµ,δ. Let η ∼ ((X,Y),D). By definition,
µ ∼ (X,Y). Hence, since Π(X,Y) is conditionally independent of D given X,Y, then

ICµ,δ(f) = I((X,Y); Π(X,Y)) ≥ I((X,Y); Π(X,Y)|D) ≥ CICη,δ(f)

where the second inequality holds by the data processing inequality of information complexity.

Hence, our goal now will be to lower bound the conditional information complexity of a function
on a mixture of product distributions.

3 Decomposing Disjointness Function

Clearly,
DISJn(X,Y) = ∨i∈[n](Xi ∧Yi)

We now show how to define an “auxiliary” distribution Di conditioned on which, each Xi and Yi

are independent. First, consider distribution v ∼ (Xi,Yi) given by:

v(0, 0) = 1/2 v(0, 1) = v(1, 0) = 1/4

Let Di denote a random variable on uniform distribution on {a, b}.

• If Di = a, then let Xi = 0 and let Yi be uniformly chosen from {0, 1}.

• If Di = b, then let Yi = 0 and let Xi be uniformly chosen from {0, 1}.

Denote v′ ∼ ((Xi,Yi),Di), and µ = vn, η = (v′)n. It is easy to see that conditioned on Di, Xi

and Yi are independent random variables. Therefore, the joint distribution ((Xi,Yi),Di) (resp.
((X,Y),D)) is a mixture of product distributions.

Theorem 2 Let v ∼ (Xi,Yi) and v′ ∼ ((Xi,Yi),Di) be a mixture of product distributions. Let
µ = vn, η = (v′)n. Let Π be an δ-error randomized protocol for DISJn. Let AND denote the bitwise
and of two bits. Then,

I((Xi,Yi),Π(X,Y) | D) ≥ CICv′,δ(AND)
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Proof Consider the protocol Π for DISJn. We will use it as a subroutine to show that there exists
a protocol to solve AND function on input (b, b′) with the same error and information cost. Let

D−i = D1, . . . ,Di−1,Di+1, . . . ,Dn

Now, by definition,

I((Xi,Yi); Π(X,Y) | D) = Ed[I((Xi,Yi); Π(X,Y) | Di,D−i = d)]

• We derive a distribution of protocols Πd using Π to solve AND function over v′ distribution.
Recall that η = (v′)n. Protocol Πd has d hard-wired in it.

• Given bit b to Alice, she generates

X−i = X1, . . . ,Xi−1,Xi+1, . . . ,Xn

conditioned on D−i = d.

• Given bit b′ to Bob, he generates

Y−i = Y1, . . . ,Yi−1,Yi+1, . . . ,Yn

conditioned on D−i = d.

• Recall, that conditioned on D−i, (Xi,Yi) is a product distribution so Alice and Bob can
generate their corresponding sequences independently.

• They put their input bits b, b′ in the i’th positions of their sequences obtaining X,Y, respec-
tively.

• Then, they run Π on X,Y and output whatever it outputs.

It is not hard to see that the distribution produced is identical to (Xi,Yi,Di,Π(Xi,Yi)).
Hence, we obtain a protocol Πd with the same error δ, establishing the claim by an averaging
argument.

Lemma 3 If η ∼ ((X,Y),D) is a mixture of product distributions, then

I(X,Y; Π(X,Y) | D) ≥
∑
i

I(Xi,Yi; Π(X,Y) | D)

Proof The proof follows directly by expanding the definitions and using the fact that (Xi,Yi) are
independent conditioned on D.

Combining Theorem 2 and Lemma 3, we obtain:

ICµ,δ ≥ CICη,δ(DISJn) ≥ n · CICv′,δ(AND)

Hence, it is left to lower bound the conditional information complexity of AND function.
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4 Ω(1) Lower Bound of AND function

In this section, we will prove a lower bound Ω(1) on the AND function over v ∼ ((Xi,Yi),Di)
distribution. Consider an arbitrary Γ protocol for AND with δ-error. By definition,

I(Xi,Yi; Γ | Di) =

1

2
I((Xi,Yi); Γ | Di = a) +

1

2
I((Xi,Yi); Γ | Di = b) =

1

2
[I(Z; Γ(0, Z)) + I(Z; Γ(Z, 0))]

Now intuitively, we do not expect the protocol to behave very differently on input (1, 0) versus
(0, 1) since it must output 0 in both cases. However, we do expect it to behave differently on
inputs (0, 0) and (1, 1). In order exploit this “intuition” we connect conditional information with
Hellinger distance and show a special “cut-and-paste” property.

For any distribution V over a discrete domain Q = {q1, . . . , qn} can be viewed as a unit vector in
RQ whose i’th coordinate is

√
V (qi). The Hellinger distance is just 1/

√
2 of the Euclidean distance

between distributions viewed as vectors.

Definition [Hellinger Distance.] Let V and W be two probability distributions over a domain Q.
The square of Hellinger distance is defined as:

h2(V,W ) = 1−
∑
q∈Q

√
V (q) ·W (q)

We summarize a few properties connecting Hellinger distance and information. We refer the
reader to the paper [1] for the proofs.

• (Hellinger distance and Information) Let ψ(z1), ψ(z2) be two random variables and let Z
denote a random variable with uniform distribution over {z1, z2}. Then,

I(Z;ψ(Z)) ≥ h2(ψ(z1), ψ(z2))

• (Cut-and-Paste Property) For any randomized protocol Γ and for any two pairs of inputs
(Xi,Yi) and (X′i,Y

′
i),

h(Γ(Xi,Yi),Γ(X′i,Y
′
i)) = h(Γ(Xi,Y

′
i),Γ(X′i,Yi))

Cut-and-Paste property can be seen an an extension to the following property of determin-
istic protocols Γ′. If transcript induced by Γ′ on (x, y) is identical to the transcript on
(x′, y′), then the transcripts induced by Γ′ on inputs (x′, y) and (x, y′) must also be identical.
For randomized algorithms, equality is replaced by the Hellinger distance over the protocol
transcripts.
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• (Soundness) For any δ-error protocol Γ for a function f , and for any two pairs of inputs
(Xi,Yi) and (X′i,Y

′
i) such that f(Xi,Yi) 6= f(X′i,Y

′
i),

h2(Γ(Xi,Yi),Γ(X′i,Y
′
i)) ≥ 1− 2

√
δ

Putting it together, we obtain that for any protocol Γ computing AND with δ-error:

I((Xi,Yi); Γ(Xi,Yi) | Di) ≥ 1
2 [I(Z; Γ(0, Z)) + I(Z; Γ(Z, 0))]

≥ (1/2)[h2(Γ(0, 1),Γ(0, 0)) + h2(Γ(0, 0),Γ(1, 0))]

≥ (1/4)[h(Γ(0, 0),Γ(0, 1)) + h(Γ(0, 0),Γ(1, 0))]2 (Cauchy-Schwarz)

≥ (1/4)[h2(Γ(0, 1),Γ(1, 0))] (Triangle Inequality)

= (1/4)[h2(Γ(0, 0),Γ(1, 1))] (Cut-and-Paste)

= (1/4)[1− 2
√
δ] (Soundness)

Hence, CICv′,δ(AND) = Ω(1). As a result, we obtain Ω(n) lower bound on DISJn function.
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