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In the last lecture, we have seen the connection between PAR (Privacy Approximation Ratio)
and Communication Complexity. Today we are going to show some results from the paper ’The
Limits of Two-Party Differential Privacy’ by Andrew McGregor, Ilya Mironov, Toniann Pitassi,
Omer Reingold, Kunal Talwar and Salil Vadhan [7], which shows the connectoin between Two-
Party Differential Privacy and Communication Complexity. We will also discuss the separation
between the Client-Server Differential Privacy and the Two-Party Differential Privacy, as well as
some compressibility result.

1 Introduction to Differential Privacy and Definitions

Differential Privacy is a very powerful general-purpose notion, introduced by [4, 5]. There is an
excellent survey on the topic of differential privacy [3]. Informally, a randomized function of a
database is differentially private if its output distribution is insensitive to the presence or absence
of any particular record in the database. Therefore, if the analyses allowed on a database are
promised to preserve differential privacy, there is little incentive for an individual to conceal his or
her information from the database.

In this lecture, we will use the definition of differential privacy for mechanisms defined over
strings from a finite alphabet Σ and generalize it to interactive protocols.

Definition (Differential Privacy) A mechanism M on Σn is a family of probability distributions
{µx : x ∈ Σn} on R. The mechanism is ε- differentially private if for every x and x′ such that
|x− x′|H = 1 and every measurable subset S ⊂ R we have

µx(S) ≤ exp(ε)µx′(S).

where |x− x′|H denotes the Hamming distance between x and x′.

To distinguish it from the later generalization, we call it as the Client-Server Differential Privacy.
For a mechanism that satisfy ε-differential privacy, it has the following properties:

(1). ε is usually a very small number, and depends on specific problems. The term exp(ε) is
roughly (1 + ε) for small ε. The exponential form is easy to work with: suppose one wants

to estimate the ratio µx(S)
µx′′ (S) for |x− x′′|H = 2, then it can be bounded as:

exp(−2ε) ≤ µx(S)

µx′′(S)
≤ exp(2ε).
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(2). Usually we want the output of the mechanism M (denoted as M(x)) is close to a function
f(x) on x. It is common to use the expectation of difference in M(x) and f(x) as a measure
of error.

A common relaxation of ε-differential privacy is the following definition of δ-approximate ε-
differential privacy, abbreviated as (ε, δ)-differential privacy.

Definition (Approximate differential privacy) The mechanismM satisfies δ-approximate ε-differential
privacy if for every x and x′ such that |x− x′|H = 1 and every measurable subset S ⊂ R we have

µx(S) ≤ exp(ε)µx′(S) + δ.

The definition of differential privacy naturally extends to interactive protocols, by requiring that
the views of all parties be differentially private in respect to other parties’ inputs. The following
definition assumes semi-honest parties, i.e., parties that are guaranteed to follow the protocol (Note
that for models with weaker restriction on adversarial parities, the lower bounds on accuracy of
differentially private protocols still apply).

Let V IEWA
P (x, y) be the joint probability distribution over x, the transcript of the protocol

P , private randomness of the party A, where the probability space is private randomness of both
parties. For each x, V IEWA

P (x, y) is a mechanism over the y’s. Let V IEWB
P (x, y) be similarly

defined view of B whose input is y.

Definition (Differential Privacy for two-party protocols) We say that a protocol P has ε-differential
privacy if the mechanism V IEWA

P (x, y) is ε-differentially private for all values of x and same holds
for V IEWB

P (x, y) and all values of y.

The notion of sensitivity of a function is frequently used in designing differentially private
mechanisms. We present its definition here:

Definition (Sensitivity) For a real-valued function f : Σn → R define its sensitivity as the maximal
difference in value on adjacent inputs, i.e., max|x−y|H=1 |f(x)− f(y)|.

2 Differential Privacy and Communication Complexity

In this section, we are going to explore the connections between two-party differential privacy and
communication complexity. We show that they are all connected to the information cost of the
protocols. In section 2.1, we show that every differentially private protocol has (relatively) small
information cost, along with some compressibility results. In section 2.2 we show that a determin-
istic protocol that computes or approximates a function of sensitivity 1 with low communication
complexity can be converted to a differentially private protocol with some loss of accuracy.

2.1 Differential Privacy and Information Cost

Recall the definition of information cost is:
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Definition (Information Cost). Given a distribution µ over inputs X and Y to the two parties of
protocol P , the information cost of P for distribution µ is defined as

ICostµ(P ) = I(XY ; Π(X,Y )),

where Π(X,Y ) is the random transcript of the protocol on input (X,Y ).

Intuitively, the setting of two-party differential privacy can be seen as adding a strong restriction
on two-party communication protocols, in the sense that the information cost of a protocol that is
differentially private would have relatively small information cost.

Proposition 1 If P (x, y) has ε-differential privacy, where x, y ∈ Σn for a finite alphabet Σ, then
for every distribution µ on Σn × Σn, the information cost of P is bounded as follows:

ICostµ(P ) ≤ 3εn.

If Σ = {0, 1} and µ is the uniform distribution, then the bound can be improved to ICostµ(P ) ≤
1.5ε2n.

Proof Let (X,Y ) be the random variables of the input, Π(X,Y ) to be the random variable of the
transcript. For every (x, y), (x′, y′), differential privacy implies that

exp(−2εn) ≤ Pr[Π(x, y) = π]

Pr[Π(x′, y′) = π]
≤ exp(2εn).

so that

exp(−2εn) ≤ Pr[Π(x, y) = π]

Pr[Π(X,Y ) = π]
≤ exp(2εn).

where (X,Y ) is an independent sample from µ.

ICostµ(P ) = I(X,Y ; Π(X,Y ))

= H(Π(X,Y ))−H(Π(X,Y )|X,Y )

= E(x,y,π) log
Pr[Π(X,Y ) = π|X = x, Y = y]

Pr[Π(X,Y ) = π]

≤ 2(log2 e)εn

For the special case where µ is the uniform distribution and Σ = {0, 1}, we can in fact prove
that ICostµ(P ) ≤ 1.5ε2n, by using additivity of mutual information and the fact that each bit of
the input is totally independent of the other input bits. Details can be found in [7].

In Lecture 7 we saw that communication protocols with low information cost can be compressed
into protocols with low communication complexity. Since Proposition 1 shows that differentially
private protocols have low information cost, it immediately yields that differentially private pro-
tocols can be compressed into protocols that have low communication complexity (not necessarily
differentially private). Formally, we have the following theorem.

Theorem 2 Let P be an ε-differentially private protocol P with output out(P ) where the input
(X,Y ) is distributed according to an arbitrary product distribution µ. Then for every γ > 0,
there exists functions fA, fB, and a protocol Q such that ‖fA(X,Q(X,Y )) − out(P )‖SD < γ,
Pr(fA(X,Q(X,Y )) 6= fB(Y,Q(X,Y ))) < γ and CC(Q) ≤ 3εγ−1n · polylog(CC(P )/γ)).
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For differentially private protocols with constant rounds, compression can be done while main-
taining differential privacy.

Theorem 3 Let P be an ε-differentially private protocol with r rounds. Then for every δ > 0,
there exists an O(rε)-differentially private protocol P∗ that has communication complexity O(r(εn+
log log 1

εδ )) and except with probability rδ, simulates P perfectly. In other words, there exists func-
tions πx, πy such that Pr[πx(V IEWA

P∗(x, y)) = V EIWA
P (x, y)] ≥ 1− rδ, and similarly for B.

The proof of Theorem 2 and Theorem 3 can be found in [7].

2.2 From Low Communication to Differential Privacy

In section 2.1, we saw that differentially private protocols have relatively small information cost
and can be compressed to protocols with low communication complexity. In this section, we
present some result from the other direction: protocols for certain functions with (deterministic)
communication complexity can be converted to differentially private protocols. Namely, we have
the following theorem:

Theorem 4 Let P be a deterministic protocol with communication complexity CC(P ) approxi-
mating a sensitivity-1 function f : Σn × Σn → Z with error bounded by ∆. Then there exists an
ε-differentially private protocol with the same communication complexity and the number of rounds
which computes f with expected additive error ∆ +O(CC(P )r/ε).

Note that the above theorem is still a bit far from optimal: first of all, it only considerate
deterministic protocols; secondly, the loss of accuracy in the differentially private protocol depends
on the sensitivity of the function, as well as the number of rounds of the original communication
protocol. Any improvement of Theorem 4 would be very interesting.

Now let’s see how to prove Theorem 4. First, we introduce the exponential mechanism due to
McSherry and Talwar [9] as it is a key component in proving Theorem 4.

Definition (Exponential Mechanism) A real-valued score function q(x, r) is defined over the space
of all possible inputs x and outputs r. For given x and privacy parameter ε the exponential
mechanism denoted as ξεq(x) outputs r with probability proportional to exp(−εq(x, r)/2).

McSherry and Talwar [9] proved that for a sensitivity-1 score function, the exponential mech-
anism satisfies ε-differential privacy. Moreover, on expectation,

E[q(x, ξεq(x))] < min
r
q(x, r) + 4 log |R|/ε.

The high-level idea of proving Theorem 4 is the following: given a deterministic protocol for
computing the sensitivity-1 function f(x, y) we construct an ε-differentially private protocol by
sampling messages of the new protocol using the exponential mechanism. The score function
q(x,m), which specifies the exponential mechanism, is defined as the smallest number of bits one
has to flip in the input x to make the protocol output m. Now let’s see how to use the exponential
mechanism to prove Theorem 4:
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Proof Let πi be the transcript up to and including the i-th round of the protocol P , and let the
protocol be specified as r functions mi(·, ·), so that the first message of the protocol is m1(x, π0),
where π0 is empty, the second message is m2(y, π1), etc.

We define a new differentially protocol P ∗ by applying the exponential mechanism at each
round to sample from the set of messages consistent with the transcript of the protocol so far.
Assume wlog that i is odd, and let Xi ⊂ Σn be Alice’s set of inputs that are consistent with the
transcript π∗i−1 under the original protocol P . In other words, if the j-th message in π∗i−1 is µj , it
holds that µj = mj(x, π

∗
j−1), ∀x ∈ Xi and odd j < i. If the length of the i-th message of P is

ki bits, let Mi ∈ {0, 1}ki be the set of all messages that the protocol P may output for the given
transcript, i.e.,

Mi = {µ ∈ {0, 1}ki : ∃x′ ∈ Xi, s.t.,mi(x
′, π∗i−1) = µ}.

Define the score function q : Σn ×Mi → R as

qi(x, µ) = min
mi(x′,π∗i−1)=µ,x′∈Xi

‖x− x′‖1,

Let the i-th message of the new randomized protocol P ∗(x, y) be the output of the exponential

mechanism ξ
ε/[r/2]
qi (x). To compute the function, if the party receiving the last message of the

protocol is Alice, she finds the closest x′ ∈ Xr to her input x and outputs fA(x′, π∗r ), and similarly
to Bob.

To prove the theorem we demonstrate the following three properties of the protocol P ∗:

(1). P ∗ is well-defined. Since the i-th round of P ∗ is the output of the exponential mechanism, the
only possibility for the protocol’s not completing is for Mi to be empty for some i. However,
this cannot happen because for every feasible output µ, there is an input x′ which is consistent
with µ. As the sets Xi and Mi never become empty, the protocol never aborts.

(2). P ∗ is ε-differentially private. P ∗ is the combination of a sequence of ε∗ = ε/[r/2]-differentially
private applications of the exponential mechanism. The total privacy budge consumed by
each party is thus at most ε.

(3). Its additive error is bounded as ∆ +O(CC(P )r/ε). Let ε∗ = ε/[r/2] and Ki = Σi−1
j=1kj where

kj is the length of π∗i−1. We claim that for the closest to x element x′ ∈ Xi, the distance
between x and x′ is dominated as a random variable by Ki/ε

∗ + Γ(i, 1/ε∗). The proof is by
induction on the round number i. For the first round, X1 includes all possible inputs, and
the distance ||x − x′||1 = 0. For subsequent rounds, if x′ is the closest to x element of Xi,
the optimal value of the score function qi(x, µ) is ||x − x′||. By the property of exponential
mechanism, (..) Finally, when Alice approximates the value of the function by computing
fA(x′, π∗r ) for x′ ∈ Xr closest to her input x, the expected error

E(|f(x, y)− fA(x′, π∗r )| ≤ |f(x, y)− f(x′, y′)|+ |f(x′, y′)− fA(x′, π∗r )|
≤ E(|x− x′|+ |y − y′|) + ∆

≤ ∆ + 2Kr/ε
∗ + r/ε∗.

where y′ is similarly defined value closest to Bob’s input y and consistent with the protocol’s
transcript. Since Kr > r and ε < 3rε∗, the expected error of P ∗ is ∆ + O(CC(P )r/ε) as
claimed.
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3 Lowerbounds for 2-party differential-privacy

We now turn to the separation of the (standard) client-server setting, and the two-party setting
(defined in this note). We will be interested in functions

1. well approximated by protocols that are 1-party differentially private, but that

2. are poorly approximated by any protocol that is 2-party differentially private.

3.1 Preliminaries

When one is interested in a differentially private mechanism, one has in mind a particular function
f and is interested in differentially private mechanism K that is correlated with f (so that K(x) can
be used as a proxy for f(x)). What does it mean for a function and a mechanism to be correlated?
For any x, K(x) − f(x) is distribution over errors. Certainly if K(x) is a stand-in for f(x), this
distribution of errors can’t be “too big”. Specifying a norm on the space of distributions is a
quantification of size.

Our norm, which we call (γ, k)-boundedness, is the following.

Definition [(γ, k) boundedness, correlation] A distribution D over R is (γ, k)-bounded if

Pr
X∼D

[|X| > k] < γ (1)

Definition We will say that mechanismK and function f are (γ, k)-correlated if E(x) = K(x)−f(x)
is γ, k-bounded for every x.

Looking ahead, a mechanism that is (γ, k) correlated with f gives rise to a protocol computing f
within an additive factor k with error probability at most γ.

Note that (γ, k)-correlation is a weak notion of correlation; for example being (γ = O(1), k =
O(1))-bounded does not imply that ‖ · ‖1 <∞. This choice of error-norm is appropriate as we are
aiming at lower-bounds for differential privacy. I.e. we want to give examples of functions that
cannot be approximated meaningfully by differentially private mechanisms; by choosing a weak
notion of correlation we are pointing out that even if one is satisfied with a very weak notion of
correlation, one cannot. (In computation-theory parlance: this weak notion of correlation gives
strong lower-bounds).

Collecting the above discussion, our central object of study is the following.

Definition Mechanism K is an (ε, γ, k)-realization of the function f if

1. K is ε-differentially private

2. ∀x E(x) = M(x)− f(x), the error-distribution for input x, is (γ, k) bounded.

Given a partition of f ’s input into two pieces and Π is a protocol who’s input/output syntax
matches f , we say that Π is an (ε, γ, k) 2-party realization of f if

1. ∀y, K(x) = ViewA
Π(x, y) is ε-differentially private

2. ∀x, K(y) = ViewB
Π(x, y) is ε-differentially private
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3. ∀x, y, E(x, y) = Π(x, y)− f(x, y), the error-distribution for input (x, y), is (γ, k) bounded.

Note that we view a mechanism as taking ε as an input1. As ε gets smaller, distributions for
neighbouring databases are required to be closer, so this is a stronger constraint. The suggestion
of this work is that such constraints can only be realized by adding more noise to the output,
increasing the error. Thus the quality of a mechanism is quantified by expressing γ,k as a function
of ε. A mechanism is more or less usable only if γ and k depend only on ε (and not, say, |x|, the
size of the “database”).

3.2 Theorem statements

We have now developed the language and motivation to state our two main theorems. Each
theorem each give a function that is realizable in the 1-party setting, but not realizable in the 2-
party setting for any reasonable choices of correlation parameters γ, k. The first theorem concerns
a natural function, the hamming distance.

Theorem 5 Let fH(x, y) = dH(x, y).

1. There exists an (ε, γ = Oε(1), k = Oε(1)) 1-party realization of fH .

2. Let Π be an (ε, γ, k) 2-party realization of fH .

∃ε0∀ε ≤ ε0 γ = Oε(1) =⇒ k = Ω(
√
n)

Note that the error of k = Ω(
√
n) should be compared to the range of f(x, y), which is [n] (the

suggestion being that a number that is more than
√
n from the hamming distance of two strings

is unlikely to be of much use for an application that needs hamming distance)
The second proposition is of identical form, but gives a function with even larger error relative

to the range of the function. The function is slightly less natural function in that doesn’t have
a name, but has a short description that uses IPn, the inner-product of GF (2)n, and a “good”
error-correcting code.

Theorem 6 Let C : {0, 1}n → {0, 1}m be a code with distance d = Ω(n) and where m = Θ(n).
Let fIP : {0, 1}m × {0, 1}m → R such that

fIP (x, y) = IPn(Dec(x), Dec(y))(d− d(x,C)− d(y, C))

1. There exists an (ε, γ = Oε(1), k = Oε(1)) 1-party realization of fIP .

2. Let Π be an (ε, γ, k) 2-party realization of fIP .

∃ε0∀ε ≤ ε0 γ = Oε(1) =⇒ k = Ω(n)

Since the functions in both Theorems 5 and 6 have low-sensitivity, the laplacian mechanism (i.e.
adding noise distributed as the Laplacian distribution with mean 1/ε. This development is given
in Section 3.3. Both lower-bounds use machinery from information complexity; these proofs are
given in Section 3.4. Section 3.5 discusses of the computational relaxation of differential privacy,
which offers some consolation for the lower-bounds.

1Deploying a mechanism on some database requires a choice of ε appropriate for the domain of the data. This
is best chosen by someone with a strong sense of the semantics of data. Making ε a parameter is an attempt to
formulate a clean problem of mechanism design without thinking too much about the semantics of particular data.
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3.3 Realizing insensitive functions in the client-server setting

In this section we discuss the “upper-bounds” of for Theorems 5 and 6: i.e. that there exists
differentially-private mechanisms in the 1-party setting that are well correlated with fH and fIP .
Our “client-server” setting is the standard setting for differential privacy, so mechanisms for this set-
ting are well-known. We will use the simplest such mechanism, the Laplacian mechanism, obtained
by adding noise distributed as Lap(1/ε) to the value of the function; the laplacian distribution
is tightly concentrated around its mean and so can easily be shown to be (γ = O(1), k = O(1))
bounded for ε = Θ(1). This mechanism works for functions with low-sensitivity, which happens to
be the case for both fH and fIP .

We now give some details.

Definition Let f be real-valued function. The sensitivity of f , which we denote ∆f is the quantity

max
x,x′:dH(x,x′)=1

|f(x)− f(x′)|

(we only say that f is real-valued so we know what metric to apply on the range of f ; the definition
makes sense given any metric on the range of f). Both fH and fIP are functions with sensitivity
1: that fH has sensitivity one is trivial; as for fIP , h(x) = d(x,C) has sensitivity at most 1, thus
so too does fIP .

Let K be the mechanism that on input x, ε outputs f(x)+E where E is distributed as Lap(δf/ε).
(Recall X ∼ Lap(λ) if Pr[X = x] ∝ exp(−|x|/λ)).

Proposition 7 K is an (ε, γ = O(∆f/ε), k = O(∆f/ε)) realization of f .

Proof Note that a random variable with distribution Lap(λ) has mean 0 and variance 2λ2.
Applying Chebyshev’s inequality

Pr[|X − µ| ≥ `σ] ≤ 1/`2

for any value of ` > 1 gives that the error distribution of K(x) is (γ = 1 − 1/`2, k = `ε/∆f)
bounded.

Let D1,D2 be two inputs to f that differ in one position. Unpacking the definition of K and
Lap, we have that for all x

Pr[K(D1) = x] ∝ exp(−|f(D1)− x|ε/∆f)

Pr[K(D2) = x] ∝ exp(−|f(D2)− x|ε/∆f)

Taking the ratio of these quantities we get

Pr[K(D1) = x]

Pr[K(D2) = x]
= exp(−(|f(D1)− x| − |f(D2)− x|)ε/∆f) (2)

Observing that
|f(D1)− x| − |f(D2)− x| ≤ |f(D1)− f(D2)| ≤ ∆f

the exponents in the RHS of (2) collapse and the LHS is lowerbounded by exp(−ε). By symmetry
of D1,D2, we get that for all x

Pr[K(D1) = x] ≤ exp(ε) Pr[K(D2) = x] (3)

The condition of ε-differential privacy requires that (3) holds for arbitrary sets S and not just
individual points, but we can write each set as a union of points and use the law of total probability
to derive the condition of ε-differential privacy.
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3.4 Lower-bounds for the 2-party setting

We now turn to establishing the lower-bounds of Theorems 5 and 6.
Given Proposition 1, i.e. that

Π is ε-differentially private =⇒ IC(Π) ≤ 3εn

to lowerbound ε, it suffices to get a lowerbound on the information complexity of the protocol in
question, which we do with a reduction from a standard problem.

3.4.1 Hamming-distance

Proposition 8 Let ΠH be a (ε, γ, k) 2-party realization of dH . There exists a constant ε0 such
that for all ε ≤ ε0

γ = Oε(1) =⇒ k(ε) = Ω(
√
n)

.

Proof Let ΠH be a protocol that (γ = O(1), k = o(
√
n) realizes dH . We will use ΠH to compute

the following function

fGapH(x, y) =


0 dH(x, y) < n/2−

√
n

⊥ |dH(x, y)− n/2| ≤
√
n

1 dH(x, y) > n/2 +
√
n

Let ΠGapH be the following (obvious) protocol: each player simply runs ΠH on their input to obtain
α, an approximation of dH(x, y). If |α − n/2| <

√
n output ⊥, otherwise output 0 or 1 based on

what side of n/2 is α.
Clearly ΠGapH computes fGapH with probability at least γ.
Given this reduction, we have that IC(dH) ≥ IC(fGapHam). We will show shortly that

IC(fGapH) = Ω(n) (4)

Combining these facts with Proposition 1 we have that

Ω(n) ≤ IC(dH) ≤ 3εn

So there is some constant lowerbound below which we cannot obtain ε differential privacy for dH
if we care about error o(

√
n).

As for (4), Chakrabarti and Regev [1] showed that fGapH has a smooth rectangle bound of
2Ω(n), implying a partition bound of the same value. Using the technology of [6], we have a Θ(n)
lowerbound on IC(fGapHam).

Note that a different proof appears in [8] as at its time of publication, the machinery of [6] did
not exist and another proof of (4) was not known.
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3.4.2 fIP

Proposition 9 Let C : {0, 1}n → {0, 1}m be a code with distance d = Ω(n) and where m = Θ(n).
Let fIP : {0, 1}m × {0, 1}m → R such that

fIP (x, y) = IPn(Dec(x), Dec(y))(d− d(x,C)− d(y, C))

Let Π be an (ε, γ, k) 2-party realization of fIP .

∃ε0∀ε ≤ ε0 γ = Oε(1) =⇒ k = Ω(n)

Proof As before, let Πf is a (ε, γ, k) realization of f . We show that if k is o(n), then ε has a
non-zero constant lowerbound.

We can compute g = IP using Πf in the trivial way: on input x, run Πf on C(x) to obtain
output β. If β > αm/2, output 1, otherwise output 0. As before we have

Ω(n) = IC(IP ) ≤ IC(fIP ) ≤ 3εn

giving us our non-zero constant lower bound for ε.

3.5 Consolation in computational differential-privacy

One might ask: is it possible to relax our definition of 2-party differential privacy without compro-
mising totally on security, but while allowing us to circumvent the earlier lower-bounds?

Instead of considering the maximum ratio of probabilities for neighbouring distributions, one
might relax the distribution by requiring only that the maximum ratio of the distinguishing advan-
tage of polytime adversaries is similarly bounded. That is, for a particular mechanism K, rather
than require that for all neighbouring x,x′,

∀S Pr[K(x) ∈ S]/Pr[K(x′) ∈ S] ≤ exp(ε)

we ask instead that

∀A Pr[A(K(x)) = 1]/Pr[A(K(x′)) = 1] ≤ exp(ε) + δ

where A is constrained to run in polynomial time. (Introducing δ is necessary for technical reasons
concerning the power of non-uniform polytime). The above notion is one of the possible formaliza-
tions of computational differential privacy. This definition and others is considered in [10], where
the problem of 2-party differential privacy was first formulated.

This relaxed notion is interesting as we can use machinery of cryptography to obtain a generic
transformations protocols that are differentially private in the 1-party setting, to protocols giving
identical privacy in the 2-party setting. The machinery in question is that which solves the (very
general) problem of “secure” multi-party computation. A more precise, though not concise, name
might be “private-input public-output function evaluation”; i.e. there is a single function f , each
of the two parties have an input proper to them (x0, x1), they want to collaborate to compute
f(x0, x1) such that the value of f(x0, x1) is computed and disclosed to both parties, but nothing
else about their respective inputs is revealed to either party.

The transformation is simple: Let f(x1, x2) be a function with an ε-differentially private mech-
anism K (that correlates with f by some factor δ). To build an ε-differentially private protocol
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for computing f (wherein the views of both parties are ε-differentially private mechanisms of the
other’s input), it suffices run a computationally secure MPC protocol for evaluating K. The claim
is that the resulting protocol will be differentially private.

Proposition 10 If f has an ε-differentially private implementation in the client-server setting,
then f also has an ε-computationally approximately differentially private implementation (with the
same error distribution) in the two-party setting.

3.5.1 Malicious players and computational differential privacy

In this section we outline a second sense in which the notion of computational differential privacy is
more permissive (we already saw examples of fucntions that could not be implemented in a manner
that is statistically differentially private in the two party setting, but could be implemented in the
1-party setting).

The 2-party differential privacy discussed so far is that the view of a protocol remains differ-
entially private assuming that both players follow the protocol. In the cryptographic literature,
this notion of security would be referred to as “security against honest but curious adversaries”.
There are protocols that are secure against honest-but-curious adversaries, but if an adversary were
allowed to deviate from the protocol, all security would be lost. The first protocol for secure multi-
party computation, Yao’s garbled circuit evaluation [11] is one such protocol. To obtain security
against arbitrary adversarial behaviours, one may insist that all players prove at each step of the
protocol that their messages were honestly generated; the proof system must have a zero-knowledge
property so that the proof does not disclose anything inappropriate about the other parties input.

We thus can strengthen the earlier Proposition 10 to the following:

Proposition 11 If f has an ε-differentially private implementation in the client-server setting,
then f also has an ε-computationally approximately differentially private implementation (with the
same error distribution) in the two-party, even against malicious adversaries.

If one is interested in statistical differential privacy, such a general theorem is not possible for
the space of all functions. There are known protocols for giving information-theoretically secure
multi-party computation of arbitrary functions provided there are a minimum number of players
following the protocol: a strict majority of players need be honest. In the two-party setting, this
means that both players need be honest. [10] cites Benny Chor and Eyal Kushilevitz “A Zero-One
Law for Boolean Privacy”, [2], as witnessing functions that cannot be implemented by a protocol
that retains information-theoretic privacy of a party’s input in the face of arbitrary behaviour of
the other player.
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