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 Lecture 9a 
Overview of ways to improve generalization 



Reminder: Overfitting  

•  The training data contains information about the 
regularities in the mapping from input to output. But it 
also contains sampling error. 
–  There will be accidental regularities just because of 

the particular training cases that were chosen. 
•  When we fit the model, it cannot tell which regularities 

are real and which are caused by sampling error.  
–  So it fits both kinds of regularity. If the model is very 

flexible it can model the sampling error really well.  



Preventing overfitting 

•  Approach 1: Get more data! 
–  Almost always the best bet if you 

have enough compute power to 
train on more data. 

•  Approach 2: Use a model that has 
the right capacity: 
–  enough to fit the true regularities. 
–  not enough to also fit spurious 

regularities (if they are weaker). 

•  Approach 3: Average many different 
models. 
–  Use models with different forms. 
–  Or train the model on different 

subsets of the training data (this 
is called “bagging”). 

•  Approach 4: (Bayesian) Use a 
single neural network architecture, 
but average the predictions made 
by many different weight vectors.  



Some ways to limit the capacity of a neural net 

•  The capacity can be controlled in many ways: 
–  Architecture: Limit the number of hidden layers and the number 

of  units per layer. 
–  Early stopping: Start with small weights and stop the learning 

before it overfits. 
–  Weight-decay: Penalize large weights using penalties or 

constraints on their squared values (L2 penalty) or absolute 
values (L1 penalty). 

–  Noise: Add noise to the weights or the activities. 
•  Typically, a combination of several of these methods is used. 
   



How to choose meta parameters that control capacity  
(like the number of hidden units or the size of the weight penalty) 

•  The wrong method is to try lots of 
alternatives and see which gives the 
best performance on the test set. 
–  This is easy to do, but it gives a 

false impression of how well the 
method works. 

–  The settings that work best on 
the test set are unlikely to work 
as well on a new test set drawn 
from the same distribution. 

•  An extreme example: 
Suppose the test set has 
random answers that do not 
depend on the input.  
–  The best architecture will 

do better than chance on 
the test set. 

–  But it cannot be expected 
to do better than chance 
on a new test set.  



Cross-validation: A better way to choose meta parameters 

•  Divide the total dataset into three subsets: 
–  Training data is used for learning the parameters of the model. 
–  Validation data is not used for learning but is used for deciding 

what settings of the meta parameters work best. 
–  Test data is used to get a final, unbiased estimate of how well the 

network works. We expect this estimate to be worse than on the 
validation data. 

•  We could divide the total dataset into one final test set and N other 
subsets and train on all but one of those subsets to get N different 
estimates of the validation error rate.  
–  This is called N-fold cross-validation. 
–  The N estimates are not independent. 



Preventing overfitting by early stopping 

•  If we have lots of data and a big model, its very expensive to keep 
re-training it with different sized penalties on the weights. 

•  It is much cheaper to start with very small weights and let them grow 
until the performance on the validation set starts getting worse. 
–  But it can be hard to decide when performance is getting worse. 

•  The capacity of the model is limited because the weights have not 
had time to grow big. 



Why early stopping works 

•  When the weights are very 
small, every hidden unit is in its 
linear range. 
–  So a net with a large layer of 

hidden units is linear. 
–  It has no more capacity than 

a linear net in which the 
inputs are directly connected 
to the outputs! 

•  As the weights grow, the hidden 
units start using their non-linear 
ranges so the capacity grows. 
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 Lecture 9b 
Limiting the size of the weights 



Limiting the size of the weights 

•  The standard L2 weight penalty 
involves adding an extra term to 
the cost function that penalizes 
the squared weights. 
–  This keeps the weights small 

unless they have big error 
derivatives.  
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The effect of L2 weight cost 

•  It prevents the network from using weights that 
it does not need. 
–  This can often improve generalization a lot 

because it helps to stop the network from 
fitting the sampling error.  

–  It makes a smoother model in which the 
output changes more slowly as the input 
changes.  

•  If the network has two very similar inputs it 
prefers to put half the weight on each rather 
than all the weight on one. 

w/2 w/2 

w 0 



Other kinds of weight penalty 

•  Sometimes it works better to penalize 
the absolute values of the weights. 
–  This can make many weights 

exactly equal to zero which helps 
interpretation a lot. 

•  Sometimes it works better to use a 
weight penalty that has negligible 
effect on large weights. 
–  This allows a few large weights. 

0 

0 



Weight penalties vs weight constraints 
•  We usually penalize the 

squared value of each 
weight separately. 

•  Instead, we can put a 
constraint on the maximum 
squared length of the 
incoming weight vector of 
each unit. 
–  If an update violates this 

constraint, we scale 
down the vector of 
incoming weights to the 
allowed length. 

•  Weight constraints have several 
advantages over weight penalties. 
–  Its easier to set a sensible value. 
–  They prevent hidden units getting 

stuck near zero. 
–  They prevent weights exploding. 

•  When a unit hits it’s limit, the effective 
weight penalty on all of it’s weights is 
determined by the big gradients.  
–  This is more effective than a fixed 

penalty at pushing irrelevant 
weights towards zero. 
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 Lecture 9c 
Using noise as a regularizer 



L2 weight-decay via noisy inputs 
•  Suppose we add Gaussian noise to the inputs. 

–  The variance of the noise is amplified by 
the squared weight before going into the 
next layer.  

•  In a simple net with a linear output unit directly 
connected to the inputs, the amplified noise 
gets added to the output. 

•  This makes an additive contribution to the 
squared error. 
–  So minimizing the squared error tends to 

minimize the squared weights when the 
inputs are noisy. 
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Noisy weights in more complex nets 

•  Adding Gaussian noise to the weights of a 
multilayer non-linear neural net is not exactly 
equivalent to using an L2 weight penalty. 
–  It may work better, especially in recurrent 

networks. 
–  Alex Graves’ recurrent net that recognizes 

handwriting, works significantly better if 
noise is added to the weights.  



Using noise in the activities as a regularizer 
•  Suppose we use backpropagation to 

train a multilayer neural net composed 
of logistic units. 
–  What happens if we make the units 

binary and stochastic on the 
forward pass, but do the backward 
pass as if we had done the forward 
pass “properly”? 

•  It does worse on the training set and 
trains considerably slower. 
–  But it does significantly better on 

the test set! (unpublished result). 
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 Lecture 9d 
Introduction to the Bayesian Approach 



The Bayesian framework 
•  The Bayesian framework assumes that we always have a prior 

distribution for everything. 
–  The prior may be very vague. 
–  When we see some data, we combine our prior distribution 

with a likelihood term to get a posterior distribution. 
–  The likelihood term takes into account how probable the 

observed data is given the parameters of the model.  
•  It favors parameter settings that make the data likely.  
•  It fights the prior 
•  With enough data the likelihood terms always wins. 



A coin tossing example 
•  Suppose we know nothing about coins except that each 

tossing event produces a head with some unknown 
probability p and a tail with probability 1-p.  
–  Our model of a coin has one parameter, p. 

•  Suppose we observe 100 tosses and there are 53 heads.  
What is p? 

•  The frequentist answer (also called maximum likelihood): 
Pick the value of p that makes the observation of 53 heads 
and 47 tails most probable. 
–  This value is p=0.53 



A coin tossing example: the math 

P(D) = p53(1− p)47probability of 
a particular 
sequence 
containing 53 
heads and 47 
tails. 
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Some problems with picking the parameters that 
are most likely to generate the data 

•  What if we only 
tossed the coin once 
and we got 1 head? 
–  Is p=1 a sensible 

answer? 
–  Surely p=0.5 is a 

much better 
answer. 

•  Is it reasonable to give a single 
answer? 
–  If we don’t have much data, 

we are unsure about p. 
–   Our computations of 

probabilities will work much 
better if we take this 
uncertainty into account. 



Using a distribution over parameter values 

•  Start with a prior distribution 
over p. In this case we used a 
uniform distribution. 

•  Multiply the prior probability of 
each parameter value by the 
probability of observing a head 
given that value. 

•  Then scale up all of the 
probability densities so that 
their integral comes to 1. This 
gives the posterior distribution. 
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Lets do it again: Suppose we get a tail 

•  Start with a prior distribution 
over p. 

•  Multiply the prior probability 
of each parameter value by 
the probability of observing 
a tail given that value. 

•  Then renormalize to get the 
posterior distribution. Look 
how sensible it is! 
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Lets do it another 98 times 

•  After 53 heads and 47 
tails we get a very 
sensible posterior 
distribution that has its 
peak at 0.53 (assuming a 
uniform prior). 
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Bayes Theorem 

p(D)p(W |D) = p(D,W ) = p(W )p(D |W )

prior probability of 
weight vector W 

posterior probability of 
weight vector W given 
training data D 

probability of observed 
data given W 

joint probability conditional 
probability 

p(W |D) =
p(W ) p(D |W )

p(D)

p(W )p(D |W )
W
∫
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 Lecture 9e 
The Bayesian interpretation of weight decay 



Supervised Maximum Likelihood Learning 
•  Finding a weight vector that 

minimizes the squared 
residuals is equivalent to 
finding a weight vector that 
maximizes the log probability 
density of the correct answer. 

•  We assume the answer is 
generated by adding 
Gaussian noise to the output 
of the neural network. 

      t 
correct 
answer 
 

    y 
model’s 
estimate of 
most probable 
value 



Supervised Maximum Likelihood Learning 

p(tc | yc ) =
1
2πσ

e
−(tc−yc )

2

2σ 2

yc = f (inputc , W )output of the net 
Gaussian 
distribution 
centered at the 
net’s output 

probability 
density of the 
target value 
given the net’s 
output plus 
Gaussian noise 

Cost  

Minimizing squared 
error is the same as 
maximizing log prob 
under a Gaussian. 

− log p(tc | yc ) = k +
(tc − yc )

2

2σ 2



MAP: Maximum a Posteriori 
•  The proper Bayesian approach 

is to find the full posterior 
distribution over all possible 
weight vectors.  
–  If we have more than a 

handful of weights this is 
hopelessly difficult for a 
non-linear net. 

–  Bayesians have all sort of 
clever tricks for 
approximating this 
horrendous distribution. 

•  Suppose we just try to find the 
most probable weight vector. 
–  We can find an optimum by 

starting with a random weight 
vector and then adjusting it in 
the direction that improves  
p( W | D ). 

–  But it’s only a local optimum. 
•  It is easier to work in the log 

domain. If we want to minimize a 
cost we use negative log probs 



Why we maximize sums of log probabilities 

•  We want to maximize the product of the probabilities of the 
producing the target values on all the different  training cases. 
–  Assume the output errors on different cases, c, are independent. 
 
  

•  Because the log function is monotonic, it does not change where the 
maxima are. So we can maximize sums of log probabilities 

p(D |W ) = p(tc
c
∏ |W ) = p tc | f (inputc,W )( )

c
∏

log p(D |W ) = log p(tc
c
∑ |W )



MAP: Maximum a Posteriori 

p(W |D) = p(W ) p(D |W ) / p(D)

This is an integral over 
all possible weight 
vectors so it does not 
depend on W 

log prob of 
W under 
the prior 

log prob 
of target 
values 
given W 

Cost = − log p(W |D) = − log p(W )− log p(D |W )+ log p(D)



The log probability of a weight under its prior 

•  Minimizing the squared weights is equivalent to maximizing the log 
probability of the weights under a zero-mean Gaussian prior.  
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The Bayesian interpretation of weight decay 

− log p(W |D) = − log p(D |W ) − log p(W ) + log p(D)

assuming a Gaussian prior 
for the weights 

assuming that the model 
makes a Gaussian prediction 

constant 

So the correct value of the weight decay 
parameter is the ratio of two variances. 
It’s not just an arbitrary hack. 
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 Lecture 9f 
MacKay’s quick and dirty method of fixing 

weight costs 



Estimating the variance of the output noise 

•  After we have learned a model that minimizes the squared error, we 
can find the best value for the output noise. 
–  The best value is the one that maximizes the probability of 

producing exactly the correct answers after adding Gaussian 
noise to the output produced by the neural net. 

–  The best value is found by simply using the variance of the 
residual errors. 



Estimating the variance of the Gaussian prior on the weights 

•  After learning a model with some initial choice of variance for the 
weight prior, we could do a dirty trick called “empirical Bayes”. 
–  Set the variance of the Gaussian prior to be whatever makes the 

weights that the model learned most likely. 
•  i.e. use the data itself to decide what your prior is! 

–  This is done by simply fitting a zero-mean Gaussian to the one-
dimensional distribution of the learned weight values. 

•  We could easily learn different variances for different sets of 
weights. 

•  We don’t need a validation set! 



MacKay’s quick and dirty method of choosing the ratio of 
the noise variance to the weight prior variance. 

•  Start with guesses for both the noise variance and the weight prior 
variance. 

•  While not yet bored 
–  Do some learning using the ratio of the variances as the weight 

penalty coefficient. 
–  Reset the noise variance to be the variance of the residual errors. 
–  Reset the weight prior variance to be the variance of the  

distribution of the actual learned weights. 
•  Go back to the start of this loop. 


