
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

 Lecture 9a
Overview of ways to improve generalization

Reminder: Overfitting

•  The training data contains information about the
regularities in the mapping from input to output. But it
also contains sampling error.
–  There will be accidental regularities just because of

the particular training cases that were chosen.
•  When we fit the model, it cannot tell which regularities

are real and which are caused by sampling error.
–  So it fits both kinds of regularity. If the model is very

flexible it can model the sampling error really well.

Preventing overfitting

•  Approach 1: Get more data!
–  Almost always the best bet if you

have enough compute power to
train on more data.

•  Approach 2: Use a model that has
the right capacity:
–  enough to fit the true regularities.
–  not enough to also fit spurious

regularities (if they are weaker).

•  Approach 3: Average many different
models.
–  Use models with different forms.
–  Or train the model on different

subsets of the training data (this
is called “bagging”).

•  Approach 4: (Bayesian) Use a
single neural network architecture,
but average the predictions made
by many different weight vectors.

Some ways to limit the capacity of a neural net

•  The capacity can be controlled in many ways:
–  Architecture: Limit the number of hidden layers and the number

of units per layer.
–  Early stopping: Start with small weights and stop the learning

before it overfits.
–  Weight-decay: Penalize large weights using penalties or

constraints on their squared values (L2 penalty) or absolute
values (L1 penalty).

–  Noise: Add noise to the weights or the activities.
•  Typically, a combination of several of these methods is used.

How to choose meta parameters that control capacity
(like the number of hidden units or the size of the weight penalty)

•  The wrong method is to try lots of
alternatives and see which gives the
best performance on the test set.
–  This is easy to do, but it gives a

false impression of how well the
method works.

–  The settings that work best on
the test set are unlikely to work
as well on a new test set drawn
from the same distribution.

•  An extreme example:
Suppose the test set has
random answers that do not
depend on the input.
–  The best architecture will

do better than chance on
the test set.

–  But it cannot be expected
to do better than chance
on a new test set.

Cross-validation: A better way to choose meta parameters

•  Divide the total dataset into three subsets:
–  Training data is used for learning the parameters of the model.
–  Validation data is not used for learning but is used for deciding

what settings of the meta parameters work best.
–  Test data is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data.

•  We could divide the total dataset into one final test set and N other
subsets and train on all but one of those subsets to get N different
estimates of the validation error rate.
–  This is called N-fold cross-validation.
–  The N estimates are not independent.

Preventing overfitting by early stopping

•  If we have lots of data and a big model, its very expensive to keep
re-training it with different sized penalties on the weights.

•  It is much cheaper to start with very small weights and let them grow
until the performance on the validation set starts getting worse.
–  But it can be hard to decide when performance is getting worse.

•  The capacity of the model is limited because the weights have not
had time to grow big.

Why early stopping works

•  When the weights are very
small, every hidden unit is in its
linear range.
–  So a net with a large layer of

hidden units is linear.
–  It has no more capacity than

a linear net in which the
inputs are directly connected
to the outputs!

•  As the weights grow, the hidden
units start using their non-linear
ranges so the capacity grows.

outputs

inputs

W1

W2

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

 Lecture 9b
Limiting the size of the weights

Limiting the size of the weights

•  The standard L2 weight penalty
involves adding an extra term to
the cost function that penalizes
the squared weights.
–  This keeps the weights small

unless they have big error
derivatives.

w

C when ∂C
∂wi

= 0, wi = −
1

λ
∂E
∂wi

C = E + λ
2

wi
2

i
∑

∂C
∂wi

=
∂E
∂wi

+λwi

The effect of L2 weight cost

•  It prevents the network from using weights that
it does not need.
–  This can often improve generalization a lot

because it helps to stop the network from
fitting the sampling error.

–  It makes a smoother model in which the
output changes more slowly as the input
changes.

•  If the network has two very similar inputs it
prefers to put half the weight on each rather
than all the weight on one.

w/2 w/2

w 0

Other kinds of weight penalty

•  Sometimes it works better to penalize
the absolute values of the weights.
–  This can make many weights

exactly equal to zero which helps
interpretation a lot.

•  Sometimes it works better to use a
weight penalty that has negligible
effect on large weights.
–  This allows a few large weights.

0

0

Weight penalties vs weight constraints
•  We usually penalize the

squared value of each
weight separately.

•  Instead, we can put a
constraint on the maximum
squared length of the
incoming weight vector of
each unit.
–  If an update violates this

constraint, we scale
down the vector of
incoming weights to the
allowed length.

•  Weight constraints have several
advantages over weight penalties.
–  Its easier to set a sensible value.
–  They prevent hidden units getting

stuck near zero.
–  They prevent weights exploding.

•  When a unit hits it’s limit, the effective
weight penalty on all of it’s weights is
determined by the big gradients.
–  This is more effective than a fixed

penalty at pushing irrelevant
weights towards zero.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

 Lecture 9c
Using noise as a regularizer

L2 weight-decay via noisy inputs
•  Suppose we add Gaussian noise to the inputs.

–  The variance of the noise is amplified by
the squared weight before going into the
next layer.

•  In a simple net with a linear output unit directly
connected to the inputs, the amplified noise
gets added to the output.

•  This makes an additive contribution to the
squared error.
–  So minimizing the squared error tends to

minimize the squared weights when the
inputs are noisy.

i

j

xi + N(0,σ i
2)

wi

yj + N(0,wi
2σ i

2)

Gaussian noise

ynoisy = wi
i
∑ xi + wiεi

i
∑ where εi is sampled from N(0,σ i

2)

So is equivalent to an L2 penalty σ i
2

because εi is independent of ε j
and εi is independent of (y− t)

E (ynoisy − t)2"
#

$
%= E y+ wiεi

i
∑ − t

'

(
))

*

+
,,

2"

#

-
-

$

%

.

.
= E (y− t)+ wiεi

i
∑

'

(
))

*

+
,,

2"

#

-
-

$

%

.

.

= (y− t)2 +E 2(y− t) wiεi
i
∑

#

$
%
%

&

'
(
(
+E wiεi

i
∑
)

*
++

,

-
..

2#

$

%
%

&

'

(
(

= (y− t)2 +E wi
2εi
2

i
∑
#

$
%
%

&

'
(
(

= (y− t)2 + wi
2σ i

2

i
∑

output on
one case

Noisy weights in more complex nets

•  Adding Gaussian noise to the weights of a
multilayer non-linear neural net is not exactly
equivalent to using an L2 weight penalty.
–  It may work better, especially in recurrent

networks.
–  Alex Graves’ recurrent net that recognizes

handwriting, works significantly better if
noise is added to the weights.

Using noise in the activities as a regularizer
•  Suppose we use backpropagation to

train a multilayer neural net composed
of logistic units.
–  What happens if we make the units

binary and stochastic on the
forward pass, but do the backward
pass as if we had done the forward
pass “properly”?

•  It does worse on the training set and
trains considerably slower.
–  But it does significantly better on

the test set! (unpublished result).

p(s =1) = 1

1+ e−z

0.5

0
0

1

z

p

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

 Lecture 9d
Introduction to the Bayesian Approach

The Bayesian framework
•  The Bayesian framework assumes that we always have a prior

distribution for everything.
–  The prior may be very vague.
–  When we see some data, we combine our prior distribution

with a likelihood term to get a posterior distribution.
–  The likelihood term takes into account how probable the

observed data is given the parameters of the model.
•  It favors parameter settings that make the data likely.
•  It fights the prior
•  With enough data the likelihood terms always wins.

A coin tossing example
•  Suppose we know nothing about coins except that each

tossing event produces a head with some unknown
probability p and a tail with probability 1-p.
–  Our model of a coin has one parameter, p.

•  Suppose we observe 100 tosses and there are 53 heads.
What is p?

•  The frequentist answer (also called maximum likelihood):
Pick the value of p that makes the observation of 53 heads
and 47 tails most probable.
–  This value is p=0.53

A coin tossing example: the math

P(D) = p53(1− p)47probability of
a particular
sequence
containing 53
heads and 47
tails.

dP(D)
dp

= 53p52(1− p)47 − 47p53(1− p)46

=
53
p
−
47
1− p

"

#
$

%

&
' p53(1− p)47(
)

*
+

= 0 if p = .53

Some problems with picking the parameters that
are most likely to generate the data

•  What if we only
tossed the coin once
and we got 1 head?
–  Is p=1 a sensible

answer?
–  Surely p=0.5 is a

much better
answer.

•  Is it reasonable to give a single
answer?
–  If we don’t have much data,

we are unsure about p.
–  Our computations of

probabilities will work much
better if we take this
uncertainty into account.

Using a distribution over parameter values

•  Start with a prior distribution
over p. In this case we used a
uniform distribution.

•  Multiply the prior probability of
each parameter value by the
probability of observing a head
given that value.

•  Then scale up all of the
probability densities so that
their integral comes to 1. This
gives the posterior distribution.

probability
density

p
area=1

area=1

0 1

1

1

2

probability
density

probability
density

Lets do it again: Suppose we get a tail

•  Start with a prior distribution
over p.

•  Multiply the prior probability
of each parameter value by
the probability of observing
a tail given that value.

•  Then renormalize to get the
posterior distribution. Look
how sensible it is!

probability
density

p
area=1

area=1

0 1

1

2

Lets do it another 98 times

•  After 53 heads and 47
tails we get a very
sensible posterior
distribution that has its
peak at 0.53 (assuming a
uniform prior).

probability
density

p

area=1

0 1

1

2

Bayes Theorem

p(D)p(W |D) = p(D,W) = p(W)p(D |W)

prior probability of
weight vector W

posterior probability of
weight vector W given
training data D

probability of observed
data given W

joint probability conditional
probability

p(W |D) =
p(W) p(D |W)

p(D)

p(W)p(D |W)
W
∫

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

 Lecture 9e
The Bayesian interpretation of weight decay

Supervised Maximum Likelihood Learning
•  Finding a weight vector that

minimizes the squared
residuals is equivalent to
finding a weight vector that
maximizes the log probability
density of the correct answer.

•  We assume the answer is
generated by adding
Gaussian noise to the output
of the neural network.

 t
correct
answer

 y
model’s
estimate of
most probable
value

Supervised Maximum Likelihood Learning

p(tc | yc) =
1
2πσ

e
−(tc−yc)

2

2σ 2

yc = f (inputc , W)output of the net
Gaussian
distribution
centered at the
net’s output

probability
density of the
target value
given the net’s
output plus
Gaussian noise

Cost

Minimizing squared
error is the same as
maximizing log prob
under a Gaussian.

− log p(tc | yc) = k +
(tc − yc)

2

2σ 2

MAP: Maximum a Posteriori
•  The proper Bayesian approach

is to find the full posterior
distribution over all possible
weight vectors.
–  If we have more than a

handful of weights this is
hopelessly difficult for a
non-linear net.

–  Bayesians have all sort of
clever tricks for
approximating this
horrendous distribution.

•  Suppose we just try to find the
most probable weight vector.
–  We can find an optimum by

starting with a random weight
vector and then adjusting it in
the direction that improves
p(W | D).

–  But it’s only a local optimum.
•  It is easier to work in the log

domain. If we want to minimize a
cost we use negative log probs

Why we maximize sums of log probabilities

•  We want to maximize the product of the probabilities of the
producing the target values on all the different training cases.
–  Assume the output errors on different cases, c, are independent.

•  Because the log function is monotonic, it does not change where the
maxima are. So we can maximize sums of log probabilities

p(D |W) = p(tc
c
∏ |W) = p tc | f (inputc,W)()

c
∏

log p(D |W) = log p(tc
c
∑ |W)

MAP: Maximum a Posteriori

p(W |D) = p(W) p(D |W) / p(D)

This is an integral over
all possible weight
vectors so it does not
depend on W

log prob of
W under
the prior

log prob
of target
values
given W

Cost = − log p(W |D) = − log p(W)− log p(D |W)+ log p(D)

The log probability of a weight under its prior

•  Minimizing the squared weights is equivalent to maximizing the log
probability of the weights under a zero-mean Gaussian prior.

w 0

p(w) p(w) = 1

2πσ
e
−
w2

2σW
2

− log p(w) = w2

2σW
2 + k

The Bayesian interpretation of weight decay

− log p(W |D) = − log p(D |W) − log p(W) + log p(D)

assuming a Gaussian prior
for the weights

assuming that the model
makes a Gaussian prediction

constant

So the correct value of the weight decay
parameter is the ratio of two variances.
It’s not just an arbitrary hack.

C = E +
σD
2

σW
2 wi

2

i
∑

C* = 1

2σD
2 (yc

c
∑ − tc)

2 + 1

2σW
2 wi

2

i
∑

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

 Lecture 9f
MacKay’s quick and dirty method of fixing

weight costs

Estimating the variance of the output noise

•  After we have learned a model that minimizes the squared error, we
can find the best value for the output noise.
–  The best value is the one that maximizes the probability of

producing exactly the correct answers after adding Gaussian
noise to the output produced by the neural net.

–  The best value is found by simply using the variance of the
residual errors.

Estimating the variance of the Gaussian prior on the weights

•  After learning a model with some initial choice of variance for the
weight prior, we could do a dirty trick called “empirical Bayes”.
–  Set the variance of the Gaussian prior to be whatever makes the

weights that the model learned most likely.
•  i.e. use the data itself to decide what your prior is!

–  This is done by simply fitting a zero-mean Gaussian to the one-
dimensional distribution of the learned weight values.

•  We could easily learn different variances for different sets of
weights.

•  We don’t need a validation set!

MacKay’s quick and dirty method of choosing the ratio of
the noise variance to the weight prior variance.

•  Start with guesses for both the noise variance and the weight prior
variance.

•  While not yet bored
–  Do some learning using the ratio of the variances as the weight

penalty coefficient.
–  Reset the noise variance to be the variance of the residual errors.
–  Reset the weight prior variance to be the variance of the

distribution of the actual learned weights.
•  Go back to the start of this loop.

