
1

A New Dataset for Facial Motion Analysis
in Individuals with Neurological Disorders

Andrea Bandini, Member, IEEE, Sia Rezaei, Diego Guarı́n, Madhura Kulkarni, Derrick Lim, Mark I. Boulos,
Lorne Zinman, Yana Yunusova, and Babak Taati

Abstract—We present the first public dataset with videos
of oro-facial gestures performed by individuals with oro-facial
impairment due to neurological disorders, such as amyotrophic
lateral sclerosis (ALS) and stroke. Perceptual clinical scores
from trained clinicians are provided as metadata. Manual an-
notation of facial landmarks is also provided for a subset of
over 3300 frames. Through extensive experiments with multiple
facial landmark detection algorithms, including state-of-the-art
convolutional neural network (CNN) models, we demonstrated
the presence of bias in the landmark localization accuracy of
pre-trained face alignment approaches in our participant groups.
The pre-trained models produced higher errors in the two clinical
groups compared to age-matched healthy control subjects. We
also investigated how this bias changes when the existing models
are fine-tuned using data from the target population. The release
of this dataset aims to propel the development of face alignment
algorithms robust to the presence of oro-facial impairment,
support the automatic analysis and recognition of oro-facial
gestures, enhance the automatic identification of neurological
diseases, as well as the estimation of disease severity from videos
and images.

Index Terms—Algorithmic bias, dataset, face alignment, oro-
facial impairment, amyotrophic lateral sclerosis, stroke.

I. INTRODUCTION

MANY neurological diseases – e.g., stroke, amyotrophic
lateral sclerosis (ALS), Parkinson’s disease (PD), etc.

– affect the oro-facial musculature with major impairments
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to speech, swallowing, and oro-motor abilities, as well as
expression of emotions [1]–[3]. A timely and accurate assess-
ment of oro-facial impairments can contribute to the overall
disease diagnosis and lead to early interventions and improved
quality of life. The objective analysis of facial kinematics can
support the oro-facial structural and functional assessment as
well as provide outcome measures to track treatment progress
in neurological disorders [4], [5].

Currently, oro-facial assessment relies either on clinical
evaluations performed by experts (i.e., cranial nerve exami-
nation) or on the use of sensor-based techniques (e.g., opto-
electronic tracking methods, electromagnetic articulography).
However, subjective assessments show reduced reliability [6]
and sensor-based techniques require expensive instrumenta-
tion, prohibiting the translation of such technology into ev-
eryday clinical practice [7]. These drawbacks limit effective
disease progression and treatment recovery monitoring.

Computer vision research can help improve clinical as-
sessment. The study of the human face through computer
vision techniques for clinical purposes has thrived over the
past few years, with many applications in neurology, speech-
language pathology, and psychiatry [8]–[16]. The availability
of efficient and accurate face alignment approaches constitutes
an important step towards the development of marker-less
and intelligent tools for healthcare applications. Recent studies
reported that simple and clinically interpretable measures (e.g.,
velocity, acceleration, range of motion) extracted from lip and
jaw movements allow detecting the bulbar symptoms of ALS
and oro-facial impairment in individuals with PD and post-
stroke (PS) [10], [11], [17], [18]. However, since most of
the available datasets used to train these algorithms do not
include images of individuals with neurological disorders and
oro-facial impairments, there might be a degradation of the
landmark localization performance when impaired and non-
standard facial movements are presented. The presence of an
algorithmic bias was recently demonstrated in a number of
works [19]–[21]. Specifically, state-of-the-art landmark local-
ization performance was shown to perform worse in older
adults with dementia [19], [21] as compared to cognitively in-
tact older adults. A similar bias was reported in face alignment
accuracy for individuals with facial palsy [15], [20]. Retraining
or fine-tuning of the models with data from the clinical group
of interest can help reduce this bias [15], [20], [21].

Since the major obstacle for obtaining good landmark local-
ization performance in clinical populations is the limited avail-
ability of annotated training data, we released the first dataset
of facial videos of individuals with ALS and PS accompanied
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by the clinical scores and the ground truth location of 68 facial
landmarks on more than 3300 representative image frames.
The availability of this data aims to foster the development
of novel and robust approaches for face alignment and oro-
facial assessments that can be used to track and analyze
facial movements in these clinical populations. This dataset
is expected to facilitate further development of state-of-the-art
automatic assessments of neurological disorders. Moreover,
another aim of this study was to estimate the extent of
face alignment bias in individuals with neurological diseases
affecting the oro-facial function, such as ALS and stroke. To
detect the presence of bias, we evaluated multiple pre-trained
face alignment models across the range of disease severity.
Further experiments were also conducted by fine-tuning the
best pre-trained model on subsets of patients’ data to evaluate
how the use of frames from target populations might help
alleviate this issue. To summarize, the main contributions of
this paper included:

• We release Toronto NeuroFace1, the first dataset of 261
videos, clinical scores per video, and more than 3300
annotated frames of faces from individuals with ALS and
PS as well as age-matched healthy control (HC) subjects,
while performing oro-facial tasks typical of the clinical
assessment.

• For the first time, we analyzed the problem of face
alignment bias in neurological disorders affecting the oro-
facial functions, such as stroke and ALS.

• Finally, we reported results of experiments linking the
face alignment error and clinical disease metrics using
pre-trained and fine-tuned face alignment algorithms.
These experiments allowed us to quantitatively demon-
strate the benefits of using data from target populations
when developing specific face alignment applications.

The remainder of the paper is organized as follows: Section
II summarizes the existing datasets for face alignment and the
application of face alignment algorithms in clinical conditions;
Section III describes in detail the data collection and pre-
processing steps involved in building the Toronto NeuroFace
dataset; Section IV provides a review of the face alignment
algorithms approaches for our experiments; Sections V and
VI describe the experiments and results performed with the
pre-trained and fine-tuned face alignment models, respectively;
and, finally, Sections VII and VIII conclude with a discussion
of the results.

II. RELATED WORK

In this section, we summarize some of the recent ad-
vancements on video-based analysis of facial movements and
expressions for clinical applications, with an overview of the
existing datasets.

A. Automatic face analysis for clinical applications

The analysis of facial movements and expressions for
healthcare applications is a fast-growing area of research,

1Access to the Toronto NeuroFace dataset can be requested at
slp.utoronto.ca/faculty/yana-yunusova/speech-production-lab/datasets/

which has seen important advancements over the recent years
[22]. Some of the applications are: the recognition of pain from
facial images and videos [8], [9], [23]; the automatic analy-
sis of the oro-facial dynamics in patients with neurological
disorders (e.g., PD, stroke, ALS, Alzheimer’s disease – AD,
etc.) [10]–[12], [17], [18], [24]; and the automatic detection of
symptoms related to psychiatric conditions, such as depression
and schizophrenia [13], [16], [25]. Regardless of the specific
condition, the overall aim is to provide accurate, objective, and
standardized information to clinicians associated with facial
kinematics and dynamics, in order to improve the current
assessment practices and evaluate treatment effects.

In many cases, facial landmark detection is used as the basis
of the processing pipeline, in order to extract robust spatio-
temporal features of gestures and expressions that, in turn,
can be used to infer the clinical condition of interest [8], [9],
[11], [12], [25]. Among the face alignment approaches, the
most widely used in this field are: active appearance models
(AAM) [26], [27], supervised descent method (SDM) [28],
and ensemble of regression trees (ERT) [29]. Recently, state-
of-the-art deep-learning-based approaches, such as the face
alignment network (FAN) [30], have been applied in patients
with dementia and facial paralysis [14], [15], [19], [21],
demonstrating higher localization accuracy than traditional
face alignment approaches.

Other authors [13], [24] did not use facial landmark rep-
resentations, but relied on deep-learned features to study the
facial dynamics. Wang et al. [24] implemented different deep-
learning architectures (3DCNN and multi-stream CNN) to
extract spatio-temporal features from the whole face region, in
order to classify different facial activities in patients with AD.
Another approach [13] implemented a VGG16 [31] to detect
facial action units (AUs) from specific face areas and used the
AUs as low level representation for estimating schizophrenia
severity. However, when the goal is the analysis of facial
kinematics in neurological conditions that affect gestures and
movements (i.e., stroke, PD, ALS, etc.), the facial representa-
tion via landmark detection would be preferred, since it allows
the extraction of clinically interpretable outcome measures that
can be related to the presence and severity of symptoms [11].

B. Existing datasets

To further improve the performance of automatic assessment
systems and promote their translation into clinical practice,
large public datasets with facial videos, images, and clinical
metadata (e.g., diagnosis, clinical scores, etc.) are needed. Not
only will the availability of this data promote the development
of accurate approaches, but it will also unify the efforts
made by different researchers towards solving problems in the
clinical domain. Although many face alignment datasets have
been published in the past 10 years [32]–[36], only a few were
developed and published for healthcare applications (e.g. pain
[37], [38] and facial paralysis [20], [39]).

To the best of our knowledge, none of the existing datasets
include facial images and videos of individuals with oro-
facial impairment due to disorders of the nervous system (such
as stroke and ALS) accompanied by the ground truth facial
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landmarks and clinical metadata at the same time. The lack of
training data from specific clinical conditions might cause a
bias in the face alignment performance [14], [19], [21], similar
to what happens with race and sex biases in face recognition
models [40]–[42].

III. DATASET DESCRIPTION

In this section we provide details about participants, data
collection procedures, clinical assessment of the recorded
videos, and manual annotation of facial landmarks conducted
on a subset of frames.

A. Participants

Thirty-six participants were recruited for this study: 11
patients with ALS (4 male, 7 female), 14 patients PS (10
male, 4 female), and 11 HC subjects (7 male, 4 female). All
participants were cognitively unimpaired (Montreal Cognitive
Assessment score ≥ 26) [43] and passed a hearing screen-
ing. Patients with ALS were diagnosed according to the El
Escorial Criteria for the World Federation of Neurology [44].
Nine participants had spinal symptoms at onset, whereas two
participants presented bulbar onset ALS. The ALS severity
with respect to the effect on daily function was evaluated using
the ALS Functional Rating Scale – Revised (ALSFRS-R) [45].
The demographic and clinical summary for the participants
is reported in Table I. The study was approved by the Re-
search Ethics Boards at the Sunnybrook Research Institute
and UHN: Toronto Rehabilitation Institute. All participants
signed informed consent according to the requirements of the
Declaration of Helsinki, allowing inclusion into a shareable
database.

Age
(years)

Duration
(months) ALSFRS-R

HC 63.2 ± 14.3 – –
ALS 61.5 ± 8.0 49.6 ± 31.6 34.8 ± 5.0

PS 64.7 ± 14.7 19.4 ± 34.2 –

TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION FOR THE THREE

PARTICIPANT GROUPS. DURATION: MONTHS FROM THE DATE OF
SYMPTOM ONSET (ALS) OR FROM STROKE (PS). (ALS: AMYOTROPHIC

LATERAL SCLEROSIS; PS: POST-STROKE; HC: HEALTHY CONTROL;
ALSFRS-R: ALS FUNCTIONAL RATING SCALE - REVISED).

B. Tasks and experimental setup

Each subject was asked to perform a set of speech and
non-speech tasks commonly used during a clinical oro-facial
examination [46], [47]. They included: 10 repetitions of the
sentence “Buy Bobby a Puppy” at a comfortable speaking rate
and loudness (BBP); repetitions of the syllable /pa/ as fast as
possible in a single breath (PA); repetitions of the syllables
/pataka/ as fast as possible in a single breath (PATAKA);
puckering of the lips (e.g., pretend to blow a candle 5 times and
pretend to kiss a baby 5 times - BLOW and KISS); maximum
opening of the jaw 5 times (OPEN); pretending to smile with
tight lips 5 times (SPREAD); making a big smile 5 times
(BIGSMILE); and raising the eyebrows 5 times (BROW).

Participants’ faces were video-recorded using the Intel®

RealSenseTM SR300 camera. During the tasks, participants
were seated in front of the camera, with a face-camera distance
between 30 and 60 cm. A continuous light source was placed
behind the SR300 to illuminate the face uniformly. For each
task we collected a separate video recording composed of a
pair of color (RGB) and depth videos. Experiments and results
reported in this paper only consider the color videos, but both
video modalities are released in the dataset. Both streams were
stored at approximately 50 frames per second and 640 × 480
pixels of image resolution. A total of 261 video recordings
were included in the dataset: 80 from HC subjects, 76 from
patients with ALS, and 105 from patients PS.

C. Clinical oro-motor examination

Two trained speech-language pathologists watched the video
recordings and rated the above tasks based on: symmetry,
range of motion (ROM), speed, variability, and fatigue of
facial movements. They judged each of the above aspects
on a 5-point Likert scale with 1 indicating normal function
and 5 indicating severe dysfunction. For each video a total
score was also computed as sum of the 5 sub-scores. The
average scores between the two raters are reported in Table
II. The inter-rater agreement was found to be fair to moderate
according to the weighted Cohen’s kappa statistic (κ). This is
in line with results previously reported in the literature [48].
Fair to moderate inter-rater agreement reflects the subjective
nature of the clinical scores and is one of the motivating
factors towards developing vision-based objective assessment
systems. The average scores between the two raters were used
in all the experiments reported in this paper. Kruskal-Wallis
test showed statistically significant differences in the clinical
measures among the 3 groups. A post-hoc Wilcoxon rank-sum
test showed a small yet statistically significant increase of the
scores in both ALS and PS as compared to HC subjects (see
Table II). These results indicate that impairments were present
in the two clinical groups when compared to HC subjects. In
the majority of participants, these impairments were mild to
moderate in their severity.

D. Manual annotation of face landmarks

A set of 3306 frames (1015 HC, 920 ALS, and 1371 PS)
were extracted from the above videos and considered for the
experiments. On these frames, the ground truth positions of 68
facial landmarks were annotated following the Multi-PIE 2D
configuration [33]. For each non-speech task, we considered
3 frames per repetition: 1) beginning of the gesture (i.e., rest
position); 2) peak of the gesture (e.g., maximum jaw opening,
maximum lip puckering or spread, etc.); and the midpoint
between 1 and 2. For the speech tasks, the selection of frames
was carried out based on the visemes: 5 frames for each BBP
repetition (/b/ of Buy, /o/ of Bobby, /a/ between Bobby and
puppy, /p/ and /y/ of puppy); 3 frames for PA (maximum lip
compression of /p/, maximum lip opening of /a/ and midpoint
between /p/ and /a/); and 3 frames for PATAKA (maximum lip
compression of /p/, maximum opening after /p/, and midpoint
between /pa/ and /ta/). These criteria were adopted to cover
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Symmetry ROM Speed Variability Fatigue Total
HC 1.38 ± 0.22 1.16 ± 0.12 1.17 ± 0.12 1.19 ± 0.16 1.04 ± 0.05 5.39 ± 0.48

ALS 1.73 ± 0.22** 1.60 ± 0.68* 1.50 ± 0.46* 1.65 ± 0.45*** 1.50 ± 0.18*** 7.11 ± 1.05***

PS 2.26 ± 0.71** 1.86 ± 0.38*** 1.63 ± 0.45* 1.78 ± 0.57** 1.23 ± 0.18** 7.98 ± 1.33***

KW H(2) = 14.40, H(2) = 15.93, H(2) = 8.03, H(2) = 12.21, H(2) = 22.66, H(2) = 21.50,
p <.001 p <.001 p = .018 p = .002 p <.001 p <.001

κ 0.57 0.59 0.41 0.61 0.33

TABLE II
MEAN VALUE AND STANDARD DEVIATION OF CLINICAL SCORES. POST-HOC WILCOXON RANK-SUM TESTS BETWEEN HC AND ALS/ PS SUBJECTS:

* p <.05; ** p <.01; *** p <.001. (KW = KRUSKAL-WALLIS TEST; κ = WEIGHTED COHEN’S KAPPA STATISTIC TO MEASURE THE INTER-RATER
AGREEMENT FOR EACH SCORE).

Fig. 1. Distribution of frames per task.

a wide range of facial gestures and movements required to
perform the above tasks. Figure 1 shows the distribution of
frames for each task and group.

A second rater, blinded to the first rater’s annotation, marked
the 68 facial landmarks on a subset of 515 frames (15.6 % of
the annotated frames). To measure the inter-rater agreement,
the point-to-point Euclidean distance normalized by the di-
agonal of the face bounding box was computed (nRMSE).
The face bounding box was obtained using the maximum and
minimum coordinates of the annotated landmarks. For all the
frames annotated by the two raters, the nRMSE was lower
than 5% (90.1% was below 2%), with an average nRMSE of
1.36 ± 0.46%.

IV. METHODS

In this section we describe the face alignment algorithms
tested on the Toronto NeuroFace dataset. We also provide
details about the pre-training of these algorithms as well as
metrics to evaluate the localization performance on the 3
groups of interest.

A. Face alignment

The detection of facial landmarks is composed of two
steps: 1) face detection – to find a region of interest (ROI)
within the image where a face might be located; and 2) face
alignment – to locate the facial landmarks within the ROI.
Since our aim was to estimate the extent of face alignment
bias in individuals with neurological disorders, we used the
ground truth bounding box – obtained using the ground truth
landmarks – in all the experiments.

Five face alignment approaches were implemented: AAM
[26], [27], constrained local model (CLM) [49], ERT [29],
SDM [28], and FAN [30].

1) Generative methods – AAM: AAM is a linear statistical
model of the shape and appearance of the face. It can generate
several instances of shape and appearance models by varying
a small number of parameters. To fit an AAM, the shape
and appearance parameters are estimated to generate a model
instance that best fits the test face [27]. AAM is a well-known
early generative method used for face alignment [50].

2) Discriminative methods – CLM, ERT, and SDM: Unlike
AAM, discriminative methods learn a set of discriminative
functions to directly infer the landmark position from the
facial appearance. CLM is a part-based approach and learns an
independent local appearance model for each face point [49].
Geometrical constraints are then imposed using a shape model
over the local appearance models. CLM is considered more
robust to partial occlusions and lighting changes than AAM
[50]. ERT and SDM are part of a family of discriminative
approaches called cascaded regression methods. These algo-
rithms learn a regression function to estimate the shape of the
face step-by-step. Starting from an initial shape (e.g., average
shape), they sequentially refine it through trained regressors.
The shape increment is regressed using shape-indexed features
(i.e., features extracted in the current shape estimate). The
main difference between ERT and SDM is in the nature of
the regression function used: SDM uses a linear regression
to estimate the shape updates starting from scale-invariant
feature transform (SIFT) features, whereas ERT employs tree-
based regression [28], [29], [50]. Speed and accuracy made the
cascaded regression methods state-of-the-art in face alignment
before the advent of deep learning.

3) Deep learning methods – FAN: The FAN is a deep-
learning approach for face alignment based on a stack of four
hourglass networks [51]. This network architecture, originally
proposed for human-pose estimation, was re-adapted for solv-
ing face alignment problems, by replacing the bottleneck block
of each hourglass with the hierarchical, parallel and multi-
scale block proposed in [52]. The FAN estimates 68 facial
landmarks via heatmap regression from the RGB input images,
and it showed state-of-the-art performance on most available
face alignment datasets [30]. This architecture has also been
generalized to solve 3D face alignment problems (i.e., 3D-
FAN). However, considering that our dataset was collected
using frontal face positions, we implemented only the 2D
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Method Overall nRMSE (%)
AAM 2.29 ± 0.99
CLM 2.97 ± 1.37
ERT 2.02 ± 0.56
FAN 1.80 ± 0.34
SDM 2.20 ± 0.62

TABLE III
OVERALL NRMSE FOR EACH PRE-TRAINED MODEL. THE LOWEST

NRMSE IS HIGHLIGHTED IN BOLD.

version (i.e., 2D-FAN).

B. Pre-training and error metrics

The Menpo implementations of AAM, CLM, ERT, and
SDM were used [53]. These four algorithms were trained
on the 300-W training set (~4000 images) [35], [54], [55], a
widely-used dataset for 2D face alignment. For the FAN, we
used the pre-trained 2D-FAN model2 trained on the 300W-LP-
2D dataset (~60k images), which was obtained by extending
the 300W with synthetically generated images [30], [56].

Landmark localization performance between HC subjects
and ALS/ PS patients was compared in terms nRMSE between
the estimated landmarks and the ground truth annotations. For
each frame, the nRMSE was calculated as the point-to-point
Euclidean distance normalized by the diagonal of the bounding
box [30]. Comparison among the models and groups was also
performed by computing the percentage of frames with an
error lower than a pre-defined threshold.

V. EXPERIMENTS WITH PRE-TRAINED MODELS

In this section, we analyze landmark localization errors to
investigate: 1) the existence of bias in performance across
the different groups, and 2) the relationship between the
localization error and disease severity.

A. Overall error performance

The mean and standard deviation of the nRMSE values are
reported in Table III. These values were obtained by running
the pre-trained models on the whole set of 3306 annotated
frames. A non-parametric Friedman test was conducted to
test for differences between the errors obtained with the five
models. This test was preferred to a one-way ANOVA with
repeated measures, since the data was not normally distributed.
Friedman’s test showed a significant difference among the five
groups (p <0.001). A Tukey’s honestly significant difference
test for multiple comparisons indicated significant differences
among all pairs. Thus, the lowest landmark localization error
was the one produced by FAN, followed by ERT. The higher
localization accuracy of FAN can also be seen from the
convergence curves of Figure 2, where the nRMSE for FAN
was lower than 3% in 99.97% of the frames, versus 95.74%
of ERT, 92.98% of SDM, 87.39% of AAM, and 68.51% of
CLM.

2The 2D-FAN model used for these tests was downloaded from
https://github.com/1adrianb/2D-and-3D-face-alignment

Fig. 2. Convergence curves for the pre-trained face alignment models, show-
ing the nRMSE (%) vs. the percentage of frames with landmark localization
error lower than the corresponding nRMSE threshold.

B. Error analysis across groups

To analyze the presence of a bias in the landmark localiza-
tion performance, for each model we computed the nRMSE
obtained on ALS and PS patients and compared it with the
nRMSE obtained in HC subjects. Mean values and standard
deviations of the nRMSE obtained on HC subjects (1015
frames), patients with ALS (920 frames), and patients PS
(1371 frames) are reported in Table IV. Kruskall-Wallis test
showed significant differences among the three groups for all
the approaches. Post-hoc Wilcoxon rank-sum tests showed that
the nRMSE in the two clinical groups of interest (ALS and PS)
was significantly higher than in the HC group. Thus, although
FAN showed excellent overall results, there was a bias in its
face alignment performance.

C. Error analysis with respect to disease severity

To investigate the relationship between nRMSE and disease
severity, we computed the Spearman’s correlation coefficients
between the average nRMSE obtained on each video and
the corresponding clinical scores, averaged between the two
clinician raters. Table V shows the results for the Symmetry
and ROM scores; no significant correlations were found for
the other aspects of the perceptual assessment. A weak, yet
significant, positive correlation was found with the symmetry
score in the PS videos for FAN, ERT, and SDM (see Table V),
suggesting that the nRMSE can increase with the severity of
the facial asymmetry. Moreover, significant correlations (weak
negative) were found between the nRMSE and the ROM score
in both ALS and PS participants. In this case, the negative
correlation denotes lower errors in individuals with higher
impairment severity, namely reduced oro-facial movements.

VI. EXPERIMENTS WITH FINE-TUNED FAN

In this section, we report on how face alignment accuracy
and clinical bias changed when data from the Toronto Neu-
roFace dataset were used for fine-tuning a face alignment
algorithm. We investigated the case of FAN, since the results
from Section V showed its higher localization accuracy for this
dataset. Specifically, we conducted two experiments: 1) fine-
tuning the FAN separately within each group (HC, ALS, and



6

HC ALS PS Kruskal-Wallis test
AAM 2.27 ± 0.97 2.18 ± 0.82 2.39 ± 1.11*** H(2) = 12.07, p = .002
CLM 2.78 ± 1.22 2.75 ± 0.94 3.25 ± 1.64*** H(2) = 85.11, p <.001
ERT 1.85 ± 0.46 1.92 ± 0.46*** 2.20± 0.62*** H(2) = 320.06, p <.001
FAN 1.66 ± 0.22 1.87 ± 0.38*** 1.86± 0.36*** H(2) = 305.39, p <.001
SDM 2.09 ± 0.51 2.12 ± 0.48* 2.33 ± 0.73*** H(2) = 108.76, p <.001

TABLE IV
NRMSE OBTAINED IN THE THREE GROUPS ANALYZED. POST-HOC WILCOXON RANK-SUM TESTS BETWEEN HC AND ALS/ PS SUBJECTS: * p <.05; ** p

<.01; *** p <.001.

ALS PS
Symm. ROM Symm. ROM

AAM ρ 0.038 -0.23 0.10 -0.21
p val 0.74 0.04 0.30 0.03

CLM ρ -0.12 -0.02 0.15 -0.22
p val 0.30 0.89 0.11 0.03

ERT ρ -0.09 -0.31 0.23 -0.29
p val 0.44 0.007 0.02 0.003

FAN ρ -0.12 0.12 0.23 0.01
p val 0.31 0.32 0.02 0.91

SDM ρ -0.17 -0.12 0.27 -0.19
p val 0.14 0.29 0.006 0.05

TABLE V
CORRELATION BETWEEN ERROR AND ORO-FACIAL IMPAIRMENT

SEVERITY (SYMMETRY AND ROM). SIGNIFICANT CORRELATIONS ARE
REPORTED IN BOLD.

PS) using a leave-one-subject-out cross-validation (LOSO);
and 2) fine-tuning the FAN with data from one group and
testing it on the other two groups (leave-two-groups-out cross-
validation – LTGO). These tests were conducted to investigate
how different combinations of data for fine-tuning affect the
clinical bias detected of the pre-trained model.

For all tests, the final hourglass model of the pre-trained
FAN was fine-tuned for 50 epochs using RMSProp optimizer.
The learning rate was initialized to 1e-5 and was decayed by a
factor of 0.5 every 10 epochs. Similar to the previous section,
we used the nRMSE to compare the landmark localization
error among the three groups and its correlation with the
clinical perceptual evaluation.

A. Fine-tuned error across groups

The nRMSE values for the fine-tuned FAN are shown in
Tables VI and VII.

1) LOSO results: Fine-tuning the FAN with data from the
target group lowered the nRMSE in patients with ALS and
PS (see Figure 3) and the nRMSE obtained for these two
groups was lower than the error obtained in HC subjects with
the pre-trained model (see Table IV). However, fine-tuning
the FAN made the nRMSE decrease in HC subjects too, with
values always significantly lower than the fine-tuned nRMSE
of ALS and PS patients. Thus, despite the improved landmark
localization accuracy, a clinical bias still remains.

To gain more insight into the effect of fine-tuning the FAN,
we quantified the reduction of error as the difference between
the pre-trained and fine-tuned nRMSE (∆E). In the LOSO
test, this reduction was slightly larger in patients with ALS
and PS than HC subjects (see Table VI).

2) LTGO results: Even when the FAN was fine-tuned with
data from one group and tested on the other two groups, the
error in HC subjects remained lower than patients with ALS
and PS. Moreover, looking at the average ∆E values reported
in Table VII, we can observe the following trends:

• Fine-tuning using HC data caused a decrease of nRMSE
in ALS and PS groups similar to ∆E obtained in HC
subjects in the LOSO test.

• Fine-tuning using ALS data caused a decrease of nRMSE
in HC and PS groups lower than ∆E obtained in patients
with ALS in the LOSO test.

• Fine-tuning using PS data caused a decrease of nRMSE in
HC and ALS groups lower than ∆E obtained in patients
PS in the LOSO test.

These results suggested that, at least in the two clinical
groups, data from the same population were needed when fine-
tuning the network.

B. Fine-tuned error vs. disease severity

To further explore how the algorithmic bias changed after
fine-tuning the FAN, we computed the Spearman’s correlation
coefficient between the fine-tuned nRMSE (average value for
each video) and the corresponding clinical score (average
between the two raters). Previously, the nRMSE obtained
with pre-trained FAN showed a positive correlation with the
symmetry score in individuals in the PS group (ρ = 0.23, p =
0.017, Table V). After fine-tuning the FAN on the PS data
(LOSO test), this correlation decreased and was no longer
statistically significant (ρ = 0.10, p = 0.30). A smaller
decrease of correlation was obtained when the FAN was fine-
tuned using data from patients with ALS (ρ = 0.19, p =
0.06) and from HC subjects (ρ = 0.17, p = 0.08). This result
further confirmed that fine-tuning the FAN with data from the
population of interests may have important benefits in reducing
the clinical bias due to the presence of neurological diseases
and oro-facial impairment.

VII. DISCUSSION

In this paper, we proposed and described a novel dataset and
baseline results for facial landmark localization with state-of-
the-art face alignment models in patients with ALS and PS.
To the best of our knowledge, this is the first dataset that
includes videos and images of facial gestures captured from
individuals with these conditions alongside relevant clinical
scores. The dataset is intended to be made available to the
research community to foster future release of similar datasets
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HC ALS PS Kruskal-Wallis test
nRMSE 1.34 ± 0.24 1.53 ± 0.33*** 1.53 ± 0.33*** H(2) = 274.24, p <.001
∆E 0.31 ± 0.21 0.34 ± 0.21** 0.33 ± 0.19* H(2) = 9.8, p = .007

TABLE VI
RESULTS OBTAINED BY FINE-TUNING FAN WITHIN EACH GROUP (LOSO) . POST-HOC WILCOXON RANK-SUM TESTS BETWEEN HC AND ALS/ PS

SUBJECTS: * p <.05; ** p <.01; *** p <.001.

Fine-tuning on HC ALS PS Wilcoxon rank-sum test
HC group nRMSE – 1.57 ± 0.34 1.55 ± 0.32 Z = -0.06, p = 0.94

∆E – 0.30 ± 0.23 0.31 ± 0.18 Z = -0.28, p = 0.78
ALS group nRMSE 1.39 ± 0.22 – 1.55 ± 0.32 Z = -14.47, p <.001

∆E 0.27 ± 0.20 – 0.31 ± 0.18 Z = -5.04, p <.001
PS group nRMSE 1.35 ± 0.22 1.58 ± 0.33 – Z = -16.18, p <.001

∆E 0.31 ± 0.22 0.30 ± 0.26 – Z = 1.22, p = 0.22

TABLE VII
RESULTS OBTAINED BY FINE-TUNING THE FAN WITH DATA FROM ONE GROUP AND TEST IT ON THE OTHER TWO GROUPS (LTGO).

and the development of novel face alignment approaches
robust to the presence of oro-facial impairments. This dataset
will facilitate the development of novel and intelligent systems
for the automatic assessment of motor speech disorders and
oro-facial impairments. In addition to landmark localization,
the availability of rich metadata such as the diagnosis, clinical
perceptual assessment, and type of oro-facial gesture will
allow researchers to use this dataset for multiple purposes,
including automatic classification of neurological diseases,
estimation of clinical scores, and analysis of facial gestures
in clinical populations.

In this work, we also demonstrated that even the presence of
mild to moderate oro-facial impairment can cause a bias in the
face alignment accuracy when the algorithms are not trained

with data from the target populations. This bias translated
to higher landmark localization errors in individuals with
ALS and PS, and there was a statistically significant positive
correlation between the nRMSE and the severity of facial
asymmetry in patients PS. These results added further evidence
to the presence of a bias in the face alignment accuracy in
clinical groups, as recently demonstrated in [15], [19]–[21].

A comparison of our results with those in [21] reveals much
smaller nRMSE values obtained with our data. This difference
can be explained by two main factors. First, we used the
ground truth bounding boxes as the face detector (i.e., ideal
case), since our aim was to investigate the performance of
the face alignment step exclusively. Secondly, our recording
setting was highly controlled and standardized, with uniform

Fig. 3. Comparison between pre-trained FAN (top row) and fine-tuned FAN (middle row). Bar plots (bottom row) show the nRMSE values corresponding
to the above sample frames. In these examples, we show how the fine-tuning can improve the landmark localization accuracy of facial contour and mouth
regions. White: ground truth landmarks; Red: facial landmarks obtained with pre-trained FAN; Green; landmarks obtained with fine-tuned FAN.
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face illumination, short and consistent camera-face distance,
and frontal face recordings. This standardization helped im-
prove the quality of the video recording, which facilitated the
performance of the face alignment algorithms (see Figure 3).
Nevertheless, the pre-trained models were not robust enough
to the presence of the oro-facial impairments. Future studies
will be devoted to investigate the face alignment bias in
uncontrolled situations, such as video-recordings collected in
home environments, since one of the end goals of developing
intelligent systems for oro-facial assessment is to design
automated tools for monitoring patients remotely.

As expected, fine-tuning the FAN on data from the Toronto
NeuroFace dataset improved the landmark localization accu-
racy. However, despite the improved accuracy, a clinical bias
still existed after fine-tuning, with errors significantly lower in
HC subjects as compared to ALS and PS participants. This is
consistent with recent findings from Asgarian et al. [19], where
fine-tuning could not reduce the gap in face alignment error
between older adults with and without dementia. This result
can be explained by the presence of two main types of domain
shifts in this problem: the first one is the difference between
the original training data and our dataset; the second one is the
presence of oro-facial impairment. Although it is difficult to
delineate how much of this error reduction depended on each
of these two types of domain shifts, our results suggested that
the former was prevalent. In fact, the error reduction in HC
subjects was in most cases comparable to the one obtained
in the two clinical groups, and it can be explained by the
composition of our dataset, which included older adults who
are generally not well represented in the dataset used for pre-
training. Moreover, recent work [15] suggested that the number
of patients needed to remove clinical bias in individuals with
facial palsy had to be at least 40 or higher. Although our
dataset included different populations and tasks and thus a
direct comparison cannot be made, the sizes of our two clinical
groups were 3 to 4 times smaller than the proposed sample
size. Thus, future work will focus on expanding this dataset.

Despite the small sample sizes, however, some evidence
from our experiments also suggested that fine-tuning might
have some effect – although small – on decreasing the bias.
In fact, correlation with facial asymmetry decreased and error
decrease in clinical groups can be slightly higher as compared
to HC subjects. Thus, future research will also focus on under-
standing if an optimal composition of dataset for fine-tuning
exists and if different clinical conditions require different types
of data – in addition to larger datasets – for removing the
algorithmic bias.

VIII. CONCLUSION

In this work, we developed the first dataset with facial
images and videos from individuals with oro-facial impairment
due to stroke and ALS, as well as videos from age-matched
healthy control subjects. Our experiments demonstrated that,
even in case of standardized experimental setup (e.g., frontal
face, uniform illumination, short distance from the camera)
and mild to moderate oro-facial impairment due to neurolog-
ical diseases, a bias in the face alignment accuracy occurred.

We also demonstrated that fine-tuning the face-alignment
algorithm on the target dataset improved the landmark lo-
calization accuracy, but only had a mild effect on removing
the algorithmic bias. Thus, more efforts should be made by
the research community to publish new datasets with images
and videos from clinical populations, in this particular case
neurological diseases affecting the oro-facial functions.

In addition to new investigations on algorithmic bias in face
alignment, future work will focus on using this dataset to
improve the automatic identification of neurological disorders
and the estimation of disease severity from videos and images
of oro-facial gestures.

The paucity of available datasets with facial images from
clinical populations remains the main issue that hinders the
development of robust face alignment algorithms able to deal
with the large inter- and intra-group variability present in
clinical conditions affecting the oro-facial musculature. The
availability of novel datasets in the field can foster the devel-
opment of accurate approaches for the automatic assessment
of neurological diseases and oro-facial impairments.
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