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A B S T R A C T

Background: Gait and balance functions decline through the course of dementia, and can serve as a marker of
changes in physical status and falls risk. We have developed a technology (AMBIENT), based on a vision-based
sensor, which enables the frequent, accurate, and unobtrusive measurement of gait and balance.
Objective: The objective of this study was to examine the feasibility of using AMBIENT technology for frequent
assessment of mobility in people with dementia within an inpatient setting. In particular, we examined technical
feasibility, and the feasibility of participant recruitment, data collection and analysis.
Methods: AMBIENT was installed in a specialized dementia inpatient unit. AMBIENT captured gait bouts as the
participants walked within the view of the sensor during their daily routine and computed the spatiotemporal
parameters of gait.
Results: Twenty participants (age: 76.9 ± 6.7 years, female: 50%) were recruited over a period of 6 months. We
recorded a total of 3843 gait bouts, of which 1171 could be used to extract gait data. On average, 58 ± 47
walking sequences per person were collected over a recording period of 28 ± 20 days. We were able to con-
sistently extract six quantitative parameters of gait, consisting of stride length, stride time, cadence, velocity,
step length asymmetry, and step time asymmetry.
Significance: This study demonstrates the feasibility of longitudinal tracking of gait in a dementia inpatient
setting. This technology has important potential applications in monitoring functional status over time, and the
development of dynamic falls risk assessments.

1. Introduction

Gait and balance disorders are common consequences of aging and
decline in cognitive function (Hausdorff, Rios, & Edelberg, 2001). Im-
pairments of gait and balance are associated with increased risk of falls;
people with dementia who have a gait abnormality are approximately
three times more likely to fall than those with unimpaired gait (Shaw,
2003). Therefore, information about gait and balance are important
factors in an assessment of the risk of falling (Kearns, Fozard, & Nams,
2017; Morgan et al., 2007).

The variability in cognitive and behavioural symptoms and the
heterogeneity of dementia challenge the ability of any single cross-

sectional assessment to identify those at risk at falling. Most studies of
gait and falls in dementia involve cross-sectional assessment in la-
boratory settings or controlled environments (such as on flat in-
strumented walkways) that do not reflect the cognitive and physical
demands of negotiating real-world environments (Dolatabadi et al.,
2018). In addition, physical performance based assessments have fea-
sibility problems in individuals with dementia due to variability in the
individuals’ motivation, adherence, and comprehension of the task
(Sterke et al., 2010; Van Ooteghem et al., 2018). These measures are
often poorly sensitive to change (Pardasaney et al., 2012) and lack
specificity in people with dementia, most of whom are categorized as
high risk. Falls risk assessments are also typically validated over periods
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of 6 months to a year, and thus provide a long-term perspective on falls
risk.

The limitations of these approaches have led to the idea of devel-
oping a short-term or dynamic falls risk assessment, using frequent or
continuous monitoring of mobility functional status, to provide in-
formation about fluctuations in risk and opportunities to intervene
when the risk is at its highest (Klenk et al., 2017). Recent advances in
computer vision sensing and machine learning algorithms have inspired
research and development effort towards technologies that can provide
dynamic monitoring of gait and balance (Bogo et al., 2016; Cao et al.,
2016; Luo et al., 2017; Newell, Yang, & Deng, 2016; Shotton et al.,
2011; Sun & Sosnoff, 2018; Toshev & Szegedy, 2014). We have devel-
oped a technology, called AMBIENT (Ambient mobility, balance, and
gait evaluation and monitoring technologies), for the frequent, accu-
rate, unobtrusive, and cost-effective measurement of gait and balance
parameters (Dolatabadi, Taati, & Mihailidis, 2017). AMBIENT consists
of vision-based sensors embedded in the environment to automatically
detect and track walking sequences of individuals, as well as algorithms
and software to compute and analyze spatiotemporal parameters of gait
such as step time, step length, walking speed, and symmetry.

We have previously validated AMBIENT against instrumented
walkways (Dolatabadi, Taati, & Mihailidis, 2016). AMBIENT has been
used to collect and analyse data from individuals with stroke and also
people with acquired brain injury (Dolatabadi, Taati, & Mihailidis,
2016, 2017). We have demonstrated that machine learning techniques
can analyse AMBIENT data and accurately distinguish impaired gait
from healthy gait (Dolatabadi et al., 2017). In a single case study, we
also demonstrated that AMBIENT can reliably track changes over time,
i.e. either degradation of gait, or improvements with physical re-
habilitation (Dolatabadi, Taati, & Mihailidis, 2014).

The aim of this study was to demonstrate the feasibility of the
AMBIENT system for frequent and unobtrusive monitoring of gait in
older adults with dementia in an inpatient clinical setting. The first
question to be addressed was the technical feasibility of study, such as
the installation and positioning the sensor within a busy clinical en-
vironment, and the protection of the privacy of staff and non-con-
senting patients on the unit. We also aimed to demonstrate the feasi-
bility of recruitment of research participants within this setting and the
acceptability of this research to substitute decision-makers, with a
target of at least 60% recruitment rate of eligible participants.

Finally, we evaluated whether the AMBIENT system would be able
to capture sufficient longitudinal data, both gait and balance measures
and falls outcomes, within this clinical setting and population, to allow
the future modelling of dynamic falls risk assessments. To demonstrate
the feasibility of this data collection, we assessed the number and fre-
quency of walks, the success rate of recording and parameter extrac-
tion, and tracked the number of falls in participants over the data
collection period. Our aim was to capture walking bouts (natural or
cued) with a minimum frequency of twice a week, with a total number
of walks of at least 10 a week, and we predicted a falls rate of 8 falls per
month.

2. Study design

2.1. a) Participants

Participants were inpatients in the Specialized Dementia unit at the
Toronto Rehabilitation Institute – University Health Network (TRI-
UHN), an eighteen-bed inpatient for older adults with behavioural and
psychological symptoms of dementia. A clinical diagnosis of dementia
is an admission criterion for this unit. Inclusion criteria for the study
were diagnosis of dementia based on the clinical record, and ability to
ambulate independently (with or without a walker) over a distance of
20m. There were no exclusion criteria. The duration of participation in
the study depended on the interval between recruitment and discharge,
and we defined the recording period as the time period from first gait

bout recording to last gait bout recording. This study was approved by
the Research Ethics Board of the University Health Network. Capacity
to consent was established by the unit geriatric psychiatrists. In all
cases, participants were found incapable and substitute decision-makers
provided written informed consent. Assent from the participant was
required before they were engaged in any assessments by the research
assistant.

2.2. b) Baseline assessment and follow-ups

At baseline, demographic data (sex and age), type of mobility aid,
type of dementia based on medical record, admission Neuropsychiatric
Inventory score (Cummings et al., 1994), and history of falls were
collected from patient charts. The following assessments were also
performed upon enrollment to characterize the study cohort: cognitive
performance was assessed by the Severe Impairment Battery-short
version (SIBS) (Saxton et al., 2005), functional mobility was assessed by
the POMA (Sterke et al., 2010), falls risk was assessed by the STRATIFY
falls risk tool (Aranda‐Gallardo et al., 2015), and functional status was
assessed by the Katz Index of Independence in Activities of Daily Living
(KATZ) (Shelkey & Wallace, 1999).

2.3. c) AMBIENT setup

The AMBIENT setup (Fig. 1) consists of a Microsoft Kinect for
Windows version 2, a laptop computer (Lenovo ThinkPad P50 s), a
Radio-Frequency Identification (RFID) reader (UHF Long Range from
FEIG Electronics, Duluth, Georgia, USA), and two circular polarized
UHF antennas (Times-7, Wellington, New Zealand). The Kinect sensor
was mounted on the ceiling of the hallway. The Kinect sensor tracks the
human pose and motion within its field of view at the real-time rate of
30 frames per second (Shotton et al., 2011). As people walk in the field
of view of a Kinect sensor, the 3-D locations, i.e., the x, y, and z co-
ordinates, of 25 body parts and joints (head, shoulders, arms, spine,
hips, knees and ankles) are tracked. The y axis is aligned with the room
vertical pointing upward, the x axis, defines the left and right direction,
and the subject’s walking direction is along the z axis.

To protect the privacy of staff, non-participating patients, and
visitors, the RFID system was used to identify participants in order to
automatically turn on Kinect recording when only a study participant
was within view. The RFID reader and the laptop were enclosed in a
locked wooden box secured the side wall of the hallway. The two RFID
antennas were attached on both walls of the hallway and about 8m
away from the Kinect sensor. RFID tags (LinTag™ Heat-Seal, Austin,
Texas, USA) with unique ID numbers were assigned to each participant.
Following recruitment, the tags were ironed on the patients’ pants at
knee level with a heat press. A dual-light LED (USB HID Traffic
Indicators, Delcom Products Inc., Danbury, Connecticut, USA) was at-
tached to the box to indicate recording status.

2.4. d) Data collection

There were two forms of data collection: natural and cued walks.
Natural walks were captured automatically when participants walked
within the view of the sensor over the course of the day and night. For
cued walks, a research assistant cued the participant to walk on their
own towards the system. To distinguish cued walks from natural walks,
the research assistant wore an RFID tag with a unique ID. We chose to
include cued walks to address the possibility of participants who rarely
initiated walking on their own, or who had walking habits that rarely
took them to the particular corridor where the system was installed.

2.5. e) Calculation of gait parameters and data analysis

Using a validated methodology (Dolatabadi et al., 2016b, 2014), the
following parameters of gait were computed from the smoothed ankle
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and hip trajectories captured by the Kinect sensor: step length as the
displacement of the ankle of one foot along the z axis during stance
phase to the ankle of the opposite foot on the previous stance phase,
step time as the elapsed time of double support phase of one foot plus
single support phase of the same foot, cadence as the number of steps
per minute, gait velocity as the displacement of the hip centre along the
z axis divided by the elapsed time between the first and last step.
Symmetry measures, including step time symmetry and step length
symmetry, were calculated as the ratio of the larger parameter divided
by the smaller parameter. The variability measures are calculated as the
standard deviation (SD) of each gait parameters within each walking
bout divided by the mean value.

We used descriptive statistics to demonstrate our sample char-
acteristics and address our feasibility objectives.

2.6. f) Feasibility assessment

To assess the technical feasibility of the set-up, a log of all technical
issues encountered was maintained. We tracked number of eligible
participants and decision-makers approached for consent. We reviewed
all recordings to identify both unsuccessful recordings and unsuccessful
parameter extractions and their causes. We quantified the number of
natural and cued walks per participant. We tracked the occurrence of
falls during the participants’ enrollment in the study. Falls were iden-
tified through participation in daily safety huddles, incident reports,
and chart reviews. Falls were defined as: “unintentionally coming to
rest on the floor or other lower level “and were documented using an
approach modified from Yang et al. (2013) We gathered information

documented in the chart, and where possible, directly spoke to staff
who had witnessed the fall. Information collected about the fall in-
cluded location of fall, cause of fall, height of fall (e.g. from standing,
sitting, or bed), activity at time of fall, direction of fall, and injuries
from fall.

3. Results

3.1. a) Technical feasibility

AMBIENT was installed on the inpatient unit as illustrated in Fig. 1.
We selected a back corridor of the unit which is not usually crowded,
but is commonly navigated by wandering patients. The use of RFID tags
allowed us to maintain the privacy of nonconsenting staff and residents
by only activating the system when a single participant was in view. In
one instance, we discovered that a non-participant was wearing clothes
belonging to a participant. We were able to address this promptly by
returning the item of clothing to its owner, informing the family of the
non-consenting patient, and deleting the recorded walking bouts. There
were five incidents in which patients tampered with the equipment (e.g.
pulled off the wires or RFID antennae from the wall). We improved the
security of the equipment in increments by using better adhesive and
camouflaging the antennae using wallpaper the same colour as the
walls.

3.2. b) Feasibility of participant recruitment

A total of 64 individuals were admitted to the unit during the 6-

Fig. 1. AMBIENT set-up in the hallway of the Geriatric Psychiatry unit at TRI-UHN. AMBIENT set-up includes a Kinect sensor (a), a control box (b), and two RFID
antennas (c). Two RFID tags (d) were attached to participants’ clothing at knee level.
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month recruitment period, of whom 30 met our inclusion criteria. The
main reason for exclusion was use of a wheelchair. All substitute de-
cision-makers agreed to be approached with study information by re-
search staff. Of these, five decision-makers did not return the research
staff calls or the consent forms in a timely manner (i.e. the potential
participants were nearing discharge by the time we made contact with
their decision-makers, thus consent was not pursued). To address this
issue, we obtained an amendment to our research ethics approval such
that we could initiate data collection with verbal consent from decision-
makers over the phone while we waited for the consent form to be
returned. During the feasibility study, no decision-maker explicitly
declined to provide consent or raised any concerns about the study.

Of the 25 participants initially recruited to the study, five were ul-
timately withdrawn from analysis—two due to death soon after entry to
the study, and three due to a decline in health and walking ability such
that they no longer met inclusion criteria soon after entry into the
study—leaving 20 participants for analysis. The five excluded partici-
pants had 1 ± 1 gait recordings (range 0–3) before their exclusion
from the study. Characteristics of the 20 included participants are
shown in Table 1. Overall, this represents an 83% recruitment rate and
an 80% retention rate in the study.

3.3. c) Feasibility of data collection

We discovered that rollator-type mobility aids interfered with the
Kinect skeletal tracking by blocking the lower limbs, however, many
individuals who were prescribed rollators or other walking aids did not
use them reliably. Ultimately, we excluded 34 walking sequences in

which a mobility aid blocked skeletal tracking. Over a period of six
months, 3843 Kinect skeletal tracking bouts were captured. Among
these, 1906 (49.6%) recordings were discarded for the following rea-
sons:

• Kinect skeletal tracking failure (91% of the discarded video seg-
ments). The majority of these (1000 bouts) were discarded because
participants were walking away from the sensor and their gait could
not be tracked from behind. The sensor sometimes failed to identify
the skeleton of participants who walked very close to the wall.
Skeleton tracking also sometimes failed for very short participants
(height< 110 cm) due to the acute viewing angle of the ceiling-
mounted sensor.
• No gait bouts (9% of the discarded video segments). In these cases,
the participant triggered the RFID antennas but did not continue
walking towards the sensor.

The remaining 1937 bouts amounted to a mean ± SD of 97 ± 84
(median 87.5) walking sequences per person, over a mean length of stay
of 48 ± 37 (median 36) days.

We discovered that in order to extract reliable gait measures, a
minimum of two gait cycles needed to be captured in the recording.
This occurred in 60% of bouts, leaving a total of 1171 recordings, for an
average of 58 ± 47 per person. Once the bouts with less than two gait
cycles were excluded, the total period of active participation in the
study (from the first useable gait bout to last useable gait bout) was
reduced to 28 ± 20 days. The descriptive summary of the number of
walking recordings for which we were able to extract gait parameters,
averaged over 20 participants is shown in Table 2.

We aimed to record walks of participants on at least two days in a
week, with a minimum of 10 bouts of walking in a week. As indicated in
Table 2, on average, 14 walking bouts including cued and natural walks
were recorded per week. However, 15 individuals had<10 natural
walks captured per week, thus necessitating the cued walks. Including
both natural and cued walks, 12 individuals had ≥10 walks per week,
and all but 1 individual had at least one walk on two or more days per
week.

During the six-month study period, there were 21 falls among the
participants. The range of reported falls was 0–7, where 12 participants
did not fall during their length of stay, three fell once, one fell twice,
three fell three times, and one fell 7 times.

3.4. d) Feasibility of data analysis

Table 3 demonstrates the results of the extraction of six gait para-
meters and their variability measures from the collected AMBIENT data
for the feasibility study participants. For summary purposes, the para-
meters are reported as averaged over all participants over the entire
period of data collection, with natural and cued walks reported sepa-
rately. The mean gait parameters are also divided by fallers and non-
fallers. As an illustration of the frequency and variability of selected
spatiotemporal gait parameters, Fig. 2 summarizes the data collected
from two participants, one of whom fell several times during the study.

Table 1
Characteristics of Participants.

Characteristics Participants

All
(n= 20)

Fallers
(n=8)

Non-Fallers
(n= 12)

Sex (Female #) 10 4 6
Age (years) 76.9 ± 6.7 76.9 ± 6.7 76.9 ± 7.1
Height (cm) 165 ± 10 168.1 ± 8.6 163.2 ± 10.7
Weight (kg) 66.5 ± 10.0 65.5 ± 11.6 67.0 ± 9.4
Leg length (cm) 103 ± 20 105.3 ± 23.3 101.7 ± 18.5
Dementia diagnosis (#)
Alzheimer‘s 9 2 7
Vascular 2 0 2
Mixed 1 0 1
Lewy Body 1 0 1
Frontotemportal 3 2 1
No specific diagnosis 4 4 0

Admission Neuropsychiatric Inventory (NPI)
Total NPI 52.9 ± 22.6 52.1 ± 27.4 53.4 ± 20.3
NPI Agitation subscale 10.8 ± 2.4 11.6 ± 1.1 10.3 ± 2.9

Mobility aid (#)
Wheeled walker 2 0 2
None 18 8 10

Tinetti POMA
Gait 9.00 ± 2.11 8.4 ± 2.1 9.3 ± 2.1
Balance 10.2 ± 2.9 8.3 ± 1.9 11.3 ± 2.9

Severe Impairment Battery 32.2 ± 15.6 23.4 ± 15.01 35.9 ± 14.9
Katz index 2.3 ± 2.1 1.0 ± 1.1 3.1 ± 2.1
STRATIFY score 2.5 ± 1.1 2.8 ± 1.2 2.4 ± 1.2

Table 2
Summary of number and duration of gait bouts among 20 participants after excluding walks with fewer than 2 full gait cycles.

Duration* # cued walks # natural walks Duration of bouts

(days) Per participant per week Per participant per week (seconds)

Average ± std 27.7 ± 19.5 32.6 ± 36.5 8.3 ± 7 22.6 ± 24.4 8.6 ± 12.3 3.89 ± 1.11
Range (min-max) 2-76 1-138 1 - 28 2- 90 1 - 81 1 - 11

* Duration from first recorded gait bout to last recorded gait bout.
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4. Discussion

In this study, we have demonstrated that AMBIENT is a feasible
vision-based tool for longitudinal monitoring of gait in people with
dementia as they move around an inpatient environment. Within the 6-
month period of data collection, 1171 walking sequences were re-
corded, analyzed, and gait parameters successfully extracted. On a daily
basis, AMBIENT collected information about individuals’ walking pat-
terns during their enrollment in the study. We were able to successfully
compute the following gait measures from the recorded walking pat-
terns: mean and variability in step length, step time, cadence, step
length symmetry, and step time symmetry, and mean velocity.

When added to existing fall risk factors, quantitative gait and pos-
tural-stability measures improve fall risk assessment (Dolatabadi et al.,
2018; McGough et al., 2001; Sterke et al., 2012). Individuals with de-
mentia have slower gait, shorter strides, and greater cycle-to-cycle gait
variability (McGough et al., 2001; Sheridan et al., 2003; Wittwer,
Webster, & Menz, 2010), and these gait impairments predict falls in
older adults (Toebes et al., 2012). In particular, stride length variability
has been linked to fall risk in older adults both with (Nakamura,
Meguro, & Sasaki, 1996; Sterke et al., 2012) and without (Hausdorff
et al., 2001; Mbourou, Lajoie, & Teasdale, 2003) dementia. However,
most of these studies make use of a single cross-sectional assessment of
gait. Two studies have shown that there may be some value to frequent,
repeated measurement of a gait in older adults (Kearns et al., 2012;
Phillips et al., 2016). One found that the tortuosity of movement path in
LTC residents the week before a fall provides a more accurate risk es-
timate than baseline measurements several months earlier (Kearns
et al., 2012). The other found that a decrease in gait speed in com-
munity dwelling seniors of 0.05m/s over 7 days was associated with an
86% probability of an impending fall, compared to 20% probability in
those with no change (Phillips et al., 2016).

Frequent monitoring of mobility status allows for better

identification of potentially modifiable events in the causal pathway
preceding a fall (Klenk et al., 2017). It is significant that some of the
known predictors of falls in older adults relate to events that in some
way disrupt their homeostasis, such as the initiation of a new medica-
tion, a health event, or a hospitalization. For example, observational
studies have confirmed that individuals are at high risk of falling in the
days and weeks after starting on a new psychotropic medication (Payne
et al., 2013). In one LTC study, an acute illness preceded one out of four
falls (Boockvar & Lachs, 2003). The onset of delirium is associated with
an abrupt worsening in motor performance (Bellelli et al., 2011). De-
cline in stability of movement may thus be an important biomarker of a
decline in the overall resilience and well-being of the individual. If gait
and balance functions could be monitored as easily as other vital signs,
they could be used to flag an individual who is unwell and at risk of
falling, thus allowing for a more precision-based approach to falls
prevention in LTC (Rantz et al., 2015). One small pilot study used
sensor systems, including gait evaluation, to alert staff to deterioration
in function in a residential setting (Rantz et al., 2012). They found that
changes in the sensor data were observable 10–14 days preceding 42%
of significant health events, and that this facilitated earlier interven-
tion. Although they did not detect a decrease in falls over the course of
the study, the intervention group declined less than the control group
on functional measures.

The results of this study provide evidence that it is feasible to study
and monitor long-term changes in mobility through an unobtrusive
vision-based system in an inpatient setting. There has been a move
towards the development of sensor-based assessment tools that can
monitor changes in quantitative measures of gait and balance re-
peatedly over time, examples of which include wearable sensors such as
accelerometers (Caby et al., 2011). However, there are important lim-
itations to the use of wearable sensors for this purpose, including pro-
blems with battery life, data storage, comfort and acceptability, sup-
porting the move towards environmental or vision-based mobility data
capture (Dolatabadi et al., 2016b; Parra-Dominguez, Taati, &
Mihailidis, 2012; Rantz et al., 2015; Shany et al., 2012).

Through this feasibility study, we have identified several opportu-
nities for improving the AMBIENT technology. While RFID was effec-
tive for participant identification, it was also somewhat cumbersome,
requiring ironing of tags on clothing. As computer-vision technology
further develops, facial recognition would be a way to improve the
automatic identification of participants. Furthermore, we found that
approximately 50% of recordings were unsuccessful, primarily due to
failure in Kinect skeletal tracking. One improvement to the system
would be the installation of sensors facing in both directions in the
corridor to capture individuals walking both clockwise and counter-
clockwise. Replacing the Kinect sensors is another option, possibly with
regular video cameras, which are inexpensive and can be used in con-
junction with computer-vision and machine learning algorithms to es-
timate human 3D-joint position from video data (Cao et al., 2016;
Newell et al., 2016; Toshev & Szegedy, 2014; Bogo et al., 2016; Luo
et al., 2017). A final limitation of the AMBIENT technology at present is
that the recorded bouts require some manual processing prior to data
extraction. To be a feasible clinical tool, these steps would need to be
automated.

In summary, we have confirmed the feasibility of AMBIENT for
obtaining frequent and unobtrusive measurements of mobility in older
adults with moderate-severe dementia in an inpatient setting. This
feasibility study also allowed us to identify several opportunities for
improving both the technology and study design. This will guide a fu-
ture longitudinal observational study of AMBIENT for the development
of dynamic falls risk monitoring algorithms.
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