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Abstract. Object recognition can be formulated as matching image features to model features. When recognition is
exemplar-based, feature correspondence is one-to-one. However, segmentation errors, articulation, scale difference,
and within-class deformation can yield image and model features which don’t match one-to-one but rather many-to-
many. Adopting a graph-based representation of a set of features, we present a matching algorithm that establishes
many-to-many correspondences between the nodes of two noisy, vertex-labeled weighted graphs. Our approach
reduces the problem of many-to-many matching of weighted graphs to that of many-to-many matching of weighted
point sets in a normed vector space. This is accomplished by embedding the initial weighted graphs into a normed
vector space with low distortion using a novel embedding technique based on a spherical encoding of graph structure.
Many-to-many vector correspondences established by the Earth Mover’s Distance framework are mapped back into
many-to-many correspondences between graph nodes. Empirical evaluation of the algorithm on an extensive set of
recognition trials, including a comparison with two competing graph matching approaches, demonstrates both the
robustness and efficacy of the overall approach.
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1. Introduction

The problem of object recognition is often formulated
as that of matching configurations of image features to
configurations of model features. Such configurations
are often represented as vertex-labeled graphs, whose

nodes represent image features (or their abstractions),
and whose edges represent relations (or constraints)
between the features. For scale-space structures, rep-
resented as directed graphs, relations can represent
both parent/child relations as well as sibling rela-
tions. To match two graph representations (hierarchical
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Figure 1. The need for many-to-many matching. In the two im-

ages, the two objects are similar, but the extracted features are not

necessarily one-to-one. Specifically, the ends of the fingers in the left

hand have been over-segmented in the right hand.

or otherwise) means to establish correspondences be-
tween their nodes. To evaluate the quality of a match,
an overall distance measure is defined, whose value
depends on both node and edge similarity.

Previous work on graph matching has typically fo-
cused on the problem of finding a one-to-one corre-
spondence between the vertices of two graphs. How-
ever, the assumption of one-to-one correspondence is
a very restrictive one, for it assumes that the primitive
features (nodes) in the two graphs agree in their level of
abstraction. Unfortunately, there are a variety of con-
ditions that may lead to graphs that represent visually
similar image feature configurations yet do not contain
a single one-to-one node correspondence.

The limitations of the one-to-one assumption are il-
lustrated in Fig. 1, in which an object is decomposed
into a set of ridges and blobs extracted at appropri-
ate scales (Shokoufandeh et al., 2002). The ridges and
blobs map to nodes in a directed acyclic graph, with
parent/child edges directed from coarser scale nodes to
overlapping finer scale nodes. Although the two images
clearly contain the same object, the decompositions are
not identical. Specifically, the ends of the fingers in
the right hand have been over-segmented with respect
to the left hand. It is quite common that due to noise
or segmentation errors, a single feature (node) in one
graph can correspond to a collection of broken fea-
tures (nodes) in another graph. Or, due to scale differ-
ences, a single, coarse-grained feature in one graph can
correspond to a collection of fine-grained features in
another graph. Hence, we seek not a one-to-one corre-
spondence between image features (nodes), but rather a
many-to-many correspondence. The space of possible
many-to-many correspondences between two graphs
is exponential. In the worst case, without restricting a

subset of nodes to be connected, any subset of nodes in
one graph can match any subset of nodes in the other.
For a given graph, the number of partitions of the graph
into subsets is the Bell number (Bell, 1934), which is
exponential. Since any partition in one graph can match
any partition in the other graph, the size of the space of
possible correspondences is bounded by the product of
the Bell numbers of the two graphs. We formulate our
problem as finding the pair of partitions, one per graph,
along with a mapping from the elements of one partition
to the elements of the other, that optimizes a measure
of similarity of the corresponding subsets defined by
the mapping. Our approach searches for corresponding
partitions that maintain coherent (i.e., connected) sub-
sets while preserving the relational structure among the
subsets.

In our approach, we will transform the graphs into an
alternative domain in which approximating the many-
to-many matching becomes tractable. We draw on re-
cent low-distortion graph embedding techniques which
embed the nodes in a graph into points in a low-
dimensional geometric space. Although each point in
this embedding space represents a node in the origi-
nal graph, the edges in the original graph do not ex-
plicitly find their way to this new space. Instead, the
points are positioned in the embedded space such that
the Euclidean distance between pairs of points reflects
the shortest-path distances between their correspond-
ing nodes in the original graph.

Matching two graphs can now be formulated as the
problem of matching their two embeddings, which
we’ll assume are roughly aligned in space. However,
this has not solved our original problem, for any sub-
set of points in one embedding may correspond to any
set of points in the second. If we make the assumption
that the weight of a graph edge reflects the probability
that the two nodes the edge spans should be grouped as
part of a many-to-many correspondence, then the em-
bedding process ensures that nodes to be grouped get
mapped to points in close geometric proximity. Fur-
thermore, if we assume that a node’s attributes can be
mapped to a vector of “masses”, then our many-to-
many point matching problem can be formulated as
finding corresponding subsets of points, such that the
points are in close proximity and the subsets have sim-
ilar mass.

Such a formulation is ideally suited to the Earth
Mover’s Distance (Cohen and Guibas, 1999) algorithm,
whose solution computes the mass flows from one
weighted point set to another that minimize the total
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Figure 2. Overview of the approach: (1) two graphs to be matched

(top) are embedded into the same normed space, with point mass (size

of pile or hole) a function of a node’s attributes; (2) the points are

matched many-to-many using the EMD algorithm; and finally (3) the

computed flows define explicit many-to-many node correspondences

between the original graphs.

work. The computed flows, in turn, explicitly define
the many-to-many node correspondences between the
original graphs. The approach is illustrated in Fig. 2, in
which two graphs are embedded into the same space.
EMD is used to match the embedded point masses
many-to-many, and the computed flows define a many-
to-many correspondence between the two graphs.

Following a review of related work, we review
the basics of low-distortion graph embedding in
Section 3, leading to our first solution based on the
graph embedding work of Matous̆ek (1999), described
in Section 3.1. The method begins by transforming a
graph into a metric tree which, in turn, is embedded
into a normed vector space. Although effective, the
approach suffers from a significant limitation. Namely,
each graph is embedded into a vector space whose
dimensionality is a property of the graph. Thus before
two embeddings can be matched, a dimensionality
reduction step (on the space of larger dimension) is
required, which is both costly and prone to error. In
Section 3.2, we present a novel embedding method
based on a spherical coding algorithm. This efficient
(linear-time) method embeds metric trees into vector
spaces of prescribed dimensionality, precluding the
need for a dimensionality reduction step. In Section 4,
we address the problem of dealing with directed

edges, allowing the framework to be applied to
hierarchical graphs, such as scale space structures.
We evaluate and compare both embedding functions
on two different view-based recognition domains in
Section 6. Moreover, we perform a direct head-to-head
comparison of our approach with two competing graph
matching algorithms: a one-to-one algorithm and a
many-to-many algorithm. We close the paper with a
discussion of limitations of the approach, in Section 7,
and our conclusions, in Section 8.

2. Related Work

The problem of many-to-many graph matching has
been studied most often in the context of edit-distance
(see, e.g., Messmer and Bunke 1995; Liu and Geiger
1999; Myers et al. 2000; Sebastian et al. 2001). In
such a setting, one seeks a minimal set of re-labelings,
additions, deletions, merges, and splits of nodes and
edges that transform one graph into another. However,
the edit-distance approach has its drawbacks: (1) it
is computationally expensive (polynomial-time algo-
rithms are available only for trees); (2) the method does
not deal well with occlusion and scene clutter, resulting
in much effort spent in “editing out” extraneous graph
structure; and (3) the cost of an editing operation often
fails to reflect the underlying visual information (for
example, the visual similarity of a contour and its cor-
responding broken fragments should not be penalized
by the high cost of merging the many fragments).

Keselman and Dickinson (2005) explored the prob-
lem of many-to-many region matching in the context of
model-based abstraction from images. Given a set of re-
gion adjacency graphs representing region segmented
images of different exemplars belonging to a known
class, they search the space of pairwise region group-
ings in each graph that lead to an abstract region adja-
cency graph which has isomorphic counterparts in the
other exemplars’ spaces. The resulting lowest common
abstraction, or LCA, represents the most informative
abstraction common to each exemplar. Although effec-
tive for supervised structure learning, the technique, in
its current form, is not applicable to the problem of
matching two graphs for which a common abstraction
does not exist.

A spectral abstraction of hierarchical graph structure
was originally proposed by Siddiqi et al. (1999) for the
problem of matching hierarchical trees, and latter ex-
tended by Shokoufandeh et al. (2005) for the problem of
structural indexing. Given a rooted directed graph, the
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eigenvalues of its subgraphs’ adjacency matrices were
used to derive a low-dimensional vector encoding of
the graph structure rooted at that node. Not only could
this vector be used for fast structural indexing, the vec-
tor formed the heart of a matching algorithm that found
corresponding graphs (or subgraphs). Although the re-
cursive algorithm could be used to flesh out explicit
one-to-one node correspondences further down the hi-
erarchies, one-to-one node correspondences at higher
levels effectively defined a many-to-many matching be-
tween their underlying nodes. Belongie et al. (2002)
used a similar idea to encode the qualitative shape oc-
cupancy characteristics of a neighborhood surrounding
a point. In a bipartite matching framework, correspon-
dences were formed between points with similar shape
contexts, despite the fact that the neighborhoods could
have differing numbers of points.

Carcassoni and Hancock (2003) decomposed the
problem of matching two point sets of different cardi-
nality into three related subproblems: point clustering,
cluster matching, and matching points from matching
clusters. These subproblems were jointly solved by an
iterative method that combined the eigenvector tech-
nique for matching sets of the same cardinality with
the EM approach for likelihood computation. The re-
sulting hierarchical matching approach proved to be
very robust to noise and occlusion. Gold and Rangara-
jan (1996) addressed the problem of partial matching
of attributed sparse graphs by an EM-like graduated as-
signment approach that efficiently revised earlier map-
pings based on local constraints encoded by the graphs.
While the final result is a one-to-one matching, the al-
gorithm maintains an intermediate doubly-stochastic
matrix that closely resembles a many-to-many match-
ing matrix. The resulting framework was success-
fully applied to non-rigid matching of image feature
sets.

In a novel generalization of Scott and Longuet-
Higgins (1991), Kosinov and Caelli (2002) showed
how inexact graph matching could be solved using
the re-normalization of projections of vertices into the
eigenspaces of graphs combined with a form of re-
lational clustering. However, the framework cannot
accommodate occlusion, directed graphs, or node at-
tributes, and may yield high embedding distortion.
Low-distortion embedding techniques haven proven
to be useful in a number of graph algorithms, in-
cluding clustering and, most recently, on-line algo-
rithms. Gupta (1999) proposed a randomized proce-
dure for embedding metric trees into a vector space

of prescribed dimensions. However, if the goal is for
two structurally similar graphs to yield embeddings
that are easily aligned or matched, such a randomized
procedure is problematic. Athitsos et al. (2004) devel-
oped an approach for learning a low-distortion, high-
dimensional embedding as a combination of several
one-dimensional (potentially high-distortion) embed-
dings. While the approach proved to be valuable for fast
database retreival, its usefulness for matching is less
clear, since one-dimensional embeddings chosen by the
approach for two different objects may differ signifi-
cantly. Indyk (2001) provides a comprehensive survey
of recent advances and applications of low-distortion
graph embedding. For recent results related to the prop-
erties of low-distortion tree embedding, see (Agarwala
et al., 1999; Matous̆ek, 1999).

Grauman and Darrell (2004) developed an embed-
ding procedure in support of image retrieval. Image
feature distributions, like color histograms, do not pro-
vide a convenient mechanism for indexing into large
image databases. In a two-step procedure, they first em-
bed the feature distribution to a vector and then use the
Locality Sensitive Hashing (LSH) algorithm of Gionis
et al. (1999) to retrieve nearby candidates. The em-
bedding method was designed so that the distance be-
tween two such embeddings mimics the Earth Movers
Distance (EMD) between their respective feature dis-
tributions. However, the abstract nature of the embed-
ding means that the explicit many-to-many correspon-
dences between two feature sets cannot be recovered.
Grauman and Darrell (2004) applied the framework to
matching 2D contours represented as shape context-
like distributions. Our earlier work that combines low-
distortion embedding and EMD is reported in Demirci
et al. (2004) and Keselman et al. (2003).

3. Metric Embedding of Graphs

The problem of many-to-many graph matching is an
intractable one, for any subgraph of one graph can
be assigned to any subgraph of another. Our goal
in graph embedding is to map the graphs to an al-
ternative space in which approximating the many-to-
many matching of the mapped graphs is computation-
ally tractable. This view of embedding is consistent
with the assumption that the weight of a graph edge
reflects the probability that the two nodes the edge
spans should be grouped as part of a many-to-many
correspondence.
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One such transformation is a mapping of the nodes
of a graph to points in a geometric space—a process
known as graph embedding. Then, as we shall see in
Section 5, the points (embedded graph nodes) can be
matched many-to-many in polynomial time. To ensure
that the solution of the many-to-many point matching
problem in the embedded space reflects a solution to
the many-to-many graph matching problem in the orig-
inal graph space, the geometric structure of the points
must somehow reflect the topological structure of the
graph. This requires the embedding process to ensure
that nodes to be grouped get mapped to points in close
geometric proximity.

During the last decade, low-distortion embedding
has become recognized as a very powerful tool for de-
signing efficient algorithms. In low-distortion embed-
ding of metric spaces into normed spaces, we consider
mappings f : V → B, where V is a set of points in the
original metric space, with distance function D(., .), B
is a set of points in the (host) d-dimensional normed
space || · ||k , and for any pair p, q ∈ V we have

1

c
D(p, q) ≤ || f (p) − f (q)||k ≤ D(p, q) (1)

for a certain parameter c, known as the distortion. In-
tuitively, such an embedding will enable us to reduce
problems defined over difficult metric spaces, (V,D),
to problems over easier normed spaces, (B, ||.||k).
Clearly, the closer c is to 1, the better the target set B
mimics the original set V . Consequently, the distortion
parameter c is a critical characteristic of the embedding
f .

The above definition of low-distortion embedding
maps a set of points in the original metric space to a set
of points in the target space. Since our domain is graphs,
we must choose a suitable metric for our graphs, i.e.,
we must define a distance between any two vertices.
Let G = (V, E) denote an edge-weighted graph with
real edge weights W(e), e ∈ E . We will say that D is
a metric for G if, for any three vertices u, v, w ∈ V ,
D(u, v) = D(v, u) ≥ 0, D(u, u) = 0, and D(u, v) ≤
D(u, w) + D(w, v). In general, there are many ways
to define metric distances on a weighted graph. The
best-known metric is the shortest-path metric δ(·, ·),
i.e., D(u, v) = δ(u, v), the length of the shortest path
between u and v for all u, v ∈ V .

The problem of low-distortion embedding has a long
history for the case of planar graphs, in general, and
trees, in particular. More formally, the most desired
embedding is the subject of the following conjecture:

Conjecture 1. (Gupta, 1999). Let G = (V, E) be a
planar graph, and let M = (V,D) be the shortest-path
metric for the graph G. Then there is an embedding of
M into || · ||k with O(1) distortion.

This conjecture has only been proven for the case in
which G is a tree. One such deterministic tree embed-
ding algorithm was given by Matous̆ek (1999), sug-
gesting that if we could somehow map our graphs into
trees, with small distortion, we could adopt Matous̆ek’s
framework.

The problem of approximating (or fitting) an n × n
distance matrixD by a tree metric T is known as the Nu-
merical Taxonomy problem. Since the numerical tax-
onomy problem is an open problem for general distance
metrics, we must explore approximation methods. The
numerical taxonomy problem can be approximated by
converting the distance matrix D to the weaker ultra-
metric distance matrix. An ultra-metric is a special type
of tree metric defined on rooted trees, where the dis-
tance to the root is the same for all leaves in the tree,
an approximation that introduces small distortion. A
metric D is an ultra-metric if, for all points x, y, z, we
haveD[x, y] ≤ max{D[x, z],D[y, z]}. Unfortunately,
an ultra-metric does not satisfy all the properties of a
metric distance. To create a general tree metric from an
ultra-metric, we need to satisfy the 4-point condition
(see Buneman 1971):

D[x, y] + D[z, w]

≤ max{D[x, z] + D[y, w],D[x, w] + D[y, z]},
(2)

for all x, y, z, w. A metric that satisfies the 4-point
condition is called an additive metric, and a metric D
is additive if and only if it is a tree metric (see Buneman
1971).

Our construction of a tree metric will therefore con-
sist of: (1) constructing an ultra-metric from D, and (2)
modifying the ultra-metric to satisfy the 4-point con-
dition. One such approximation framework, called the
centroid metric tree T, has been proposed by Agarwala
et al. (1999). Their algorithm, which follows the two-
step procedure outlined above, generates T in time
O(n2). Specifically, the path-length between any two
vertices u, v in T will mimic the metric δ(u, v) in G.
A metric D(·, ·) on n objects {v1, . . . , vn} is a centroid
metric if there exist labels �1, . . . , �n such that for all
i �= j , D(vi , v j ) = �i + � j . If G is not a tree, its cen-
troid metric tree T is a star on vertex-set V ∪ {c} and
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Figure 3. Metric tree representation of the Euclidean distances between nodes in a graph. The gesture image (a) consists of 6 regions (the

region representing the entire hand is not shown). The complete graph in (b) captures the Euclidean distances between the centroids of the

regions, while (c) is the metric tree representation of the multi-scale decomposition (with additional vertices).

weighted edge-set {(c, vi )| W(c, vi ) = �i , vi ∈ V}.
It is easy to see that the path-lengths between vi and
v j in T will correspond to D(vi , v j ) in G. For details
on the construction of a metric labeling �i of a metric
distance D(·, ·), (see Agarwala et al. 1999). It should
be noted that this construction does not necessarily
maintain the vertex set of G invariant. We will have
to ensure that in the embedding process, the extra ver-
tices generated during the metric tree construction are
eliminated.

An example of constructing a metric tree from a
graph is shown in Fig. 3, in which a hierarchical blob
decomposition of an image, shown in (a), yields a graph
whose edge weights reflect the Euclidean distances be-
tween the nodes (centroids of their corresponding re-
gions), shown in (b). The metric tree representation of
the graph is shown in (c). Note that the additional ver-
tices introduced by the construction (shown in white)
will be later removed.

Given a metric tree approximation of our original
graph, we use the concept of caterpillar decomposi-
tion and caterpillar dimension to capture its topolog-
ical structure. We illustrate the caterpillar decomposi-
tion of a rooted tree with no edge weights in Fig. 4.
The three darkened paths from the root represent three
edge-disjoint paths, called level 1 paths. If we remove
these three level 1 paths from the tree, we are left with
the 7 dashed, edge-disjoint paths. These are the level
2 paths, and if removing them had left additional con-
nected components, the process would be repeated until
all the edges in the tree had been removed. The union

Figure 4. Path partition of a tree.

of the paths is called the caterpillar decomposition,
denoted by P, and the number of levels in P is called
the caterpillar dimension, denoted by cdim(T).

The caterpillar decomposition P can be constructed
using a modified depth-first search in linear time. Given
a caterpillar decomposition P of T, we will use L to
denote the number of leaves of T, and let P(v) rep-
resent the unique path between the root and a ver-
tex v ∈ V . The first segment of P(v) of weight l1

follows some path P1 of level 1 in P, the second
segment of weight l2 follows a path P2 of level 2,
and the last segment of weight lα follows a path
Pα of level α ≤ m. The sequences 〈P1, . . . , Pα〉
and 〈l1, . . . , lα〉 will be referred to as the decom-
position sequence and the weight sequence of P(v),
respectively.
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3.1. Matous̆ek’s Embedding

The metric tree approximation of our original graph,
along with its caterpillar decomposition, are the pre-
requisites for Matous̆ek’s embedding technique, which
maps the nodes in the metric tree to points in some low-
dimensional Euclidean space. Given a metric tree, the
dimensionality of the embedding is specified by the
number of paths in its caterpillar decomposition. To
define the embedding f : V → B under || · ||2, we let
the relevant coordinates in B be indexed by the paths
in P. The vector f (v), v ∈ V , has non-zero coordi-
nates corresponding to the paths in the decomposition
sequence of P(v). Returning to Fig. 4, the vector f (v)
will have 10 components (defined by three level 1 paths
and seven level 2 paths). Furthermore, due to the struc-
ture of the caterpillar decomposition, every vector f (v)
will have at most two non-zero components. Details of
this method can be found in Matous̆ek (1999).

It is important to note that embeddings produced
by the above graph embedding algorithm can be of
different dimensions and are defined only up to a
distance-preserving transformation (a translated and
rotated version of a graph embedding will also be a
graph embedding). Therefore, in order to match the
two embeddings, we must first perform a “registration”
step, whose objective is to project the two distributions
into the same normed space. The resulting transforma-
tion is expected to minimize the initial EMD between
the distributions. Details of a PCA-based alignment
technique applied to weighted point sets are presented
in Keselman et al. (2003).

3.2. Spherical Coding

The previous embedding procedure suffers from a sig-
nificant drawback. Namely, each graph is embedded
into a vector space whose dimensionality is graph-
dependent. Before the embeddings can be matched,
a dimensionality reduction step is required, which is
both costly and prone to error. In this section, we in-
troduce a novel, linear-time method to embed metric
trees into vector spaces of prescribed dimensionality,
thereby avoiding the need for a dimensionality reduc-
tion step. Like Matous̆ek’s embedding, our embedding
is based on the caterpillar decomposition of the met-
ric tree. The paths of this decomposition will be em-
bedded along maximally spaced rays in some fixed-
dimension metric space. In this construction, the rays
share the origin as their end-points. The main step of

Figure 5. The minimum distance d and minimum angle θ between

2 points.

the embedding is to identify the principal direction for
each ray to guarantee that the rays are maximally apart.
In practice, this can be achieved by placing maximally
spaced points on the surface of a unit sphere and using
the unit-length vectors between the origin and these
points as the principle directions of the rays. One may
observe that Matous̆ek’s method is a special case of
this embedding when the dimension of the embedding
space is equal to the number of paths in the decompo-
sition and the corresponding rays form an orthogonal
basis for the embedding space.

A spherical code is a finite set of n points on the
surface of a multi-dimensional unit radius sphere. For
our purposes, we identify a spherical code with an em-
bedding of a parent node (the center of the sphere) and
its child nodes (points on the sphere). To minimize the
distortion of distances between child nodes, we are in-
terested in positioning the points on the sphere so as to
maximize the minimum distance between any pair of
points (Conway and Sloane, 1998). Equivalently, one
can try to minimize the radius r of a multi-dimensional
sphere such that n points can be placed on the surface,
where any two of the points are at angular distance 2
from each other. Recall that the angular distance be-
tween two points is the acute angle subtended by them
at the origin. Figure 5 shows the relationship between
the minimum distance and minimum angle between 2
points.

The embedding framework is best illustrated through
an example, in which a weighted tree is embedded into
R2, as shown in Fig. 6. To ease visualization, we will
limit the discussion to the first quadrant. The weighted
tree contains 4 paths 〈a, b, c〉, 〈a, d, f, h〉, 〈d, e〉, and
〈 f, g〉 in its caterpillar decomposition. In the embed-
ding, the root is assigned to the origin. Next, we seek
a set of 4 vectors, one for each path in the caterpillar
decomposition, such that their inner products are mini-
mized, i.e., their endpoints are maximally apart. These
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Figure 6. An edge weighted tree and its spherical code in 2D. The Cartesian coordinates of the vertices are: a = (0, 0), b = (0, 1.0), c = (0, 1.5),

d = (2.0, 0), e = (2.5, 0.87), f = (3.5, 0), g = (3.93, 0.25), and h = (4.5, 0).

vectors define the general directions in which the ver-
tices on each path in the caterpillar decomposition will
be embedded.

Three of the four vectors will be used by the cater-
pillar paths belonging to the subtree rooted at vertex d,
and one vector will be used by the path belonging to
the subtree rooted at vertex b. This effectively subdi-
vides the first quadrant into two cones, Cb and Cd . The
volume of these cones is a function of the number of
caterpillar paths belonging to the subtrees rooted at b
and d. The cone Cd , in turn, will be divided into two
smaller cones, Ce and C f , corresponding to the sub-
trees rooted at e and f , respectively. The extreme rays
of sub-cones Cb, Ce, and C f will correspond to the four
directions defining the embedding. Finally, to complete
the embedding, we translate the sub-cones away from
the origin along their directional rays to positions de-
fined by the path lengths in the tree. For example, to
embed point b, we will move along the extremal ray
of Cb and will embed b at (0, 1.0). Similarly, the sub-
cone Cd will be translated along the other extremal ray,
embedding d at (2.0, 0).

In d-dimensional Euclidean space Rd , computing
the embedding f : V → B under || · ||2 is more
involved. Let L denote the number of paths in the
caterpillar decomposition. The embedding procedure
defines L vectors in Rd that have a large angle with re-
spect to each other on the surface of a hypersphere Sd

of radius r . These vectors are chosen in such a way
that any two of their endpoints on the surface

∑
d

are at least spherical distance 2 from each other. We

will refer to such vectors as well-separated. Consider
the set of hyperplanes Hi = (0, 2, 4, . . . , 2i), and let∑

d (i) = Hi ∩ ∑
d . Since each of the

∑
d (i) are hy-

percircles, i.e., surfaces of spheres in dimension d − 1,
we can recursively construct well-separated vectors on
each hypercircle

∑
d (i). Our construction stops when

the sphere becomes a circle and the surface becomes
a point in 2 dimensions. It is known that taking r to
be O(d L1/d−1), and the minimum angle between two
vectors to be 2/r , provides us with L well-separated
vectors (Conway and Sloane, 1998). In Fig. 6, we have
4 such vectors emanating from the origin.

Now that the embedding directions have been es-
tablished, we can proceed with the embedding of the
vertices. The embedding procedure starts from the root
(always embedded at the origin) and embeds vertices
following the embedding of their parents. For each ver-
tex in the metric tree T, we associate with every subtree
Tv a set of vectors Cv , such that the number of vectors
in Cv equals the number of paths in the caterpillar de-
composition of Tv . Initially, the root has the entire set
of L vectors. Consider a subtree rooted at vertex v, and
let us assume that vertex v has k children, v1, . . . , vk .
We partition the set of vectors into k subsets, such that
the number of vectors in each subset, Sv , equals the
number of leaves in Tv . We then embed the vertex vl

(1 ≤ l ≤ k) at the position f (v) + wl ∗ xl , where wl

is the length of the edge (v, vl) and xl is some vector
in Cv . We recursively repeat the same process for each
subtree rooted at every child of v, and stop when there
are no more subtrees to consider.
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Figure 7. Trade-off between distortion and dimension. Increasing the dimensionality of the embedding space will reduce the the distortion.

However, this trend does not continue indefinitely to produce isometric embeddings.

A natural question that one may ask is what dimen-
sionality of Euclidean space should be chosen so that
the embedding preserves pairwise distances with mini-
mum distortion. To answer this question, we conducted
a set of experiments in which 200 randomly selected
edge-weighted trees were embedded into Euclidean
spaces of varying dimensions, and measured the av-
erage distortion in each dimension. For a given tree,
we used the following method to measure its average
distortion in one particular dimension. First, we com-
puted all of its pairwise node distances before and after
the embedding. We then measured the maximum fac-
tor by which any pairwise distance was changed by
the embedding algoritm. After repeating this proce-
dure for all trees, the average distortion for one partic-
ular dimension was calculated. The trade-off between
distortion and dimension is shown in Fig. 7. It should
be noted that, while increasing the dimensionality of
the embedding space will improve the quality by de-
creasing the distortion, this trend does not continue in-
definitely to produce isometric embeddings. This can
be attributed to the fact that the original distances
are non-additive, making an isometric embedding
impossible.

4. Encoding Directed Edges

The distance metric defined on the graph structure is
based on the undirected edge weights. While the above
embedding has preserved the distance metric, it has
failed to preserve any oriented relations, such as the hi-
erarchical relations common to scale-space or coarse-
to-fine structures. This is due to the fact that oriented
relations do not satisfy the symmetry property of a met-
ric. We can retain this important information in our em-
bedding by moving it into the nodes as node attributes,
a technique used in the encoding of directed topologi-
cal structure in Siddiqi et al. (1999), directed geometric
structure in Shokoufandeh et al. (2002), and shape con-
text in Belongie et al. (2002). Encoding in a node the
attributes of the oriented edges incident to the node
requires computing distributions on the attributes and
assigning them to the node. For example, a node with
a single parent at a coarser scale and two children at
a finer scale might encode a relative scale distribution
(histogram) as a node attribute. The resulting attribute
provides a contextual signature for the node which will
be used by the matcher (Section 5) to reduce matching
ambiguity.
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We will motivate this encoding in the context
of directed graphs for qualitative shape representa-
tion using a blob/ridge decomposition, two example
graphs are shown in Fig. 2; details can be found
in Shokoufandeh et al. (2002). Blobs (compact re-
gions) and ridges (elongated structures) are extracted as
scale-space maxima of

∇2
normL = t (Lxx + L yy). (3)

and

RnormL = t3/2 ((Lxx − L yy)2 + 4L2
xy) (4)

respectively (Lindeberg, 1998a, b). For color images,
the feature detection is performed in the R, G and B
channels. To represent the spatial extent of a detected
image structure, a windowed second moment matrix

� =
∫

η∈R2

(
L2

x Lx L y

Lx L y L2
y

)
g(η; tint) dη (5)

is computed at the detected feature position and at an
integration scale tint proportional to the scale tdet of
the detected image feature. The orientation and the
anisotropy of the feature are estimated from the eigen-
values of � and the corresponding eigenvectors. The
spatial extent of the feature is thus given by the scale,
the anisotropy and the orientation. Figure 8 shows an
image of a hand with the extracted features superim-
posed. Blobs and ridges are graphically represented by
circles and ellipses defining support regions, with radii
(for ridges the minor radius) proportional to

√
t .

Spatially overlapping and aligned ridges are linked
and spatially overlapping blobs are merged. Directed
acyclic graphs are then built in a coarse-to-fine manner.
Specifically, let G = (V, E) be a graph to be embedded.

Figure 8. Feature extraction: Extracted blobs and ridges at appro-

priate scales.

Each feature will be a node in the graph and associated
with each node (blob/ridge) are a number of attributes,
including position, orientation, and support region. A
feature at the coarsest scale is chosen as the root. Next,
finer-scale features that overlap with the root become
its children through hierarchical edges. These children,
in turn, select overlapping features at finer scales to be
their children, etc. From the unassigned features, the
feature at the coarsest scale is chosen as a new root.
Children of this root are selected from unassigned as
well as assigned features and the process is repeated
until all features are assigned to a graph. A child node
can, in this way, have multiple parents. To yield one
rooted graph, which is needed in the matching step, a
virtual top root node is inserted as the parent of all root
nodes in the image.

Associated with each edge are a number of impor-
tant geometric attributes. For an edge E , directed from a
vertexVA representing featureFA, to a vertexVB repre-
senting feature FB , we define the following attributes,
as shown in Fig. 9:

• Distance. Two measures of inter-feature distance are
associated with the edge: (1) the smallest distance d
from the support region of FA to the support region
of FB , normalized to the the largest of the radii rA

and rB ; and (2) the distance between their centers
normalized to the radius rA of FA in the direction of
the distance vector between their centers.

• Relative orientation. The relative orientation be-
tween FA and FB .

• Bearing. The bearing of a feature FB , as seen from
a feature FA, is defined as the angle of the distance
vector xB − xA with respect to the orientation of A
measured counter-clockwise.

• Scale ratio. The scale invariant relation between FA

and FB is a ratio between scales tFA and tFB .

Examples of graphs for hand images, showing hierar-
chical edges, are shown in Fig. 1.

For every pair of vertices, (u, v), we let Ru,v de-
note the attribute vector associated with the pair. The
entries of each such vector represent the set of ori-
ented relations; for the example domain of blob graphs,
R = {distance, relative orientation, bearing, scale
ratio} between u, v, as shown in Fig. 9 (Shokoufandeh
et al., 2002). For a vertex u ∈ V , we let N (u) denote the
set of vertices v ∈ V adjacent to u. For a relation p ∈ R,
we will denote P(u, p) as the set of values for relation
p between u and all vertices in N (u), i.e., P(u, p) cor-
responds to entry p of vector Ru,v for v ∈ N (u). Fea-
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Figure 9. Directed graph relations and their resulting node-centric distributions.

ture vector Pu for point u is the set of all P(u, p)’s for
p ∈ R. Observe that every entry P(u, p) of vector Pu

can be considered as a local distribution (histogram) of
feature p in the neighborhood N (u) of u. We adopt the
method of Shokoufandeh et al. (2002), in which the dis-
tance function for two such vectors Pu and Pp is com-
puted through a weighted combination of Hausdorff
distances between P(u, p) and P(u′, p) for all values
of p.

5. Distribution-Based Many-to-Many Matching

By embedding vertex-labeled graphs into normed
spaces, we have reduced the problem of many-to-many
matching of graphs to that of many-to-many matching
of weighted distributions of points in normed spaces.
Given a pair of weighted distributions in the same
normed space, the Earth Mover’s Distance (EMD)
framework (Rubner et al., 2000) is then applied to find
an optimal match between the distributions. The EMD
approach computes the minimum amount of work (de-
fined in terms of displacements of the masses asso-
ciated with points) it takes to transform one distribu-
tion into another. The EMD approach assumes that a

distance measure between single features, called the
ground distance, is given. The EMD then “lifts” this
distance from individual features to full distributions.
The main advantage of using EMD lies in the fact that it
subsumes many histogram distances and permits partial
matches in a natural way. This important property al-
lows the similarity measure to deal with uneven clusters
and noisy datasets. Details of the method, along with
an extension, are presented in Rubner et al. (2000) and
Keselman et al. (2003).

The standard EMD formulation assumes that the
two distributions have been aligned. However, recall
that a translated and rotated version of a graph em-
bedding will also be a graph embedding. To accom-
modate pairs of distributions that are “not rigidly
embedded”, Cohen and Guibas (1999) extended the
definition of EMD, originally applicable to pairs
of fixed sets of points, to allow one of the sets
to undergo a transformation. They also suggested
an iterative process (which they call FT, short for
“an optimal Flow and an optimal Transformation”)
that achieves a local minimum of the objective
function. Details on how we compute the optimal
transformation can be found in Keselman et al. (2003)
and Demirci et al. (2003).
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5.1. The Final Algorithm

Our algorithm for many-to-many graph matching is a
combination of the previous procedures, and is sum-
marized as follows:

Algorithm 1: Many-to-many graph matching

1: Compute the metric tree Ti corresponding to Gi

according to Section 3 (see Agarwala et al. 1999 for
details).

2: Construct low-distortion embeddings Ei = fi (Ti )
of Ti into (Bi , || · ||2) according to one of the algo-
rithms presented in Sections 3.1 and 3.2.

3: Compute the EMD between Ei ’s by applying the FT
iteration, computing the optimal transformation T
according to Section 5 (see Keselman et al. 2003 for
details).

4: Interpret the resulting optimal flow between Ei ’s as
a many-to-many vertex matching between Gi ’s.

5.2. Complexity Analysis of Algorithm 1

We now proceed to analyze the computational com-
plexity of Algorithm 1. Computing the metric tree Ti

for a given graph Gi takes O(|V |2) in Step 1 (see Agar-
wala et al. 1999 for details). The complexity of Step 2
depends on the complexity of the corresponding em-
bedding algorithm. While this may take O(|V | × |E |)
using graph-dependent dimensionality, it can also be
done in linear time through spherical coding. Since
computing the EMD (Step 3) is based on the trans-
portation problem, it can be formulated as a linear pro-
gramming problem and can be solved using a network
flow algorithm in O(|V |3). The FT iteration alternates
between finding the optimal transformation for a given
flow and the optimum flow for a given transformation.

Figure 10. Left: the silhouette and its medial axis. Right: the shock tree constructed from the medial axis. Darker nodes reflect larger radii.

While the exact bound on the complexity of the it-
erative EMD is not known, in almost all our experi-
ments no more than 6 iterations were necessary for the
matching procedure to converge. Finally, Step 4, the
mapping of the EMD solution back to the graph solu-
tion, is O(|V |). Assuming that the number of FT iter-
ations is constant, the overall complexity of the algo-
rithm is therefore O(|V |3). Note that the overall com-
plexity can be further improved by using more com-
putationally efficient algorithms for the transportation
problem. For example, Atkinson and Vaidy (2004) pre-
sented an O(n2.5 log n log W ) algorithm for solving the
transportation problem, where W is the magnitude of
the largest supply or demand in the EMD formulation
and n is the total number of nodes in G1 and G2.

6. Experiments

To demonstrate our approach to many-to-many graph
matching, we apply it to the problem of view-based
3-D object recognition using two different graph-based
shape representations. We first turn to the domain of
view-based object recognition using silhouettes. For
a given view, an object’s silhouette is represented
by an undirected shock tree, whose nodes represent
shocks (Siddiqi et al., 1999) (or, equivalently, skele-
ton points) and whose edges connect adjacent shock
points.1 To make the tree suitable for embedding and
for EMD matching, it is made rooted and node- and
edge-weighted. The tree is constructed from the tree-
like discrete skeleton as follows.

We will assume that each shock point p on the dis-
crete skeleton is labeled by a 3-dimensional vector
v(p) = (x, y, r ), where (x, y) are the Euclidean coor-
dinates of the point and r is the radius of the maximal bi-
tangent circle centered at the point.2 Each shock point
becomes a node in the newly constructed graph. Each
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Figure 11. Sample views of the 9 objects.

pair of shock points is connected by an edge whose
weight is the Euclidean distance between the points’
vector labels. Node and edge weights therefore reflect
mass and grouping strength, respectively. The graph is
converted into a tree by computing its minimum span-
ning tree. Thus, tree nodes correspond to shock points,
and tree edges connect nearby shock points. We choose
the root of the tree to be the node that minimizes the
sum of the tree-based shortest path distances to all other
nodes.3 Each node is weighted proportionally to its ra-
dius, with the total tree weight being 1. In effect, our
conversion of the discrete skeleton to a shock tree re-
places step 1 (computation of the metric tree) of the
many-to-many matching algorithm.

An illustration of the procedure is given in Fig. 10.
The left portion shows the initial silhouette and its
shock points (skeleton). The right portion depicts the
constructed shock tree. Darker nodes correspond to
fragments whose average radii are larger. To reduce
the size of the graph, we first subdivided the skeleton
into a number of small fragments of approximately 5
shock points each. Each fragment was labeled by the
vector average of the vector labels of the fragment’s
constituent shock points.

Our database consists of 1620 silhouettes of 9 ob-
jects, with 180 views per object. A representative view
of each object is shown in Fig. 11. For the experiments,
we compute the shock tree representation of every sil-
houette, and use Matous̆ek’s embedding to embed each
tree into a normed space with low distortion. This pro-
cedure results in a database of weighted point-sets, each
representing an embedded graph. As an object is ro-
tated in depth, its views undergo distortion as some
parts become more or less foreshortened. This results
in skeletal branches of varying length, setting up an
ideal many-to-many matching problem.

To test our approach, we randomly selected 19
equidistant views of each object and computed dis-
tances between these views and each of the remaining

database entries (the distance between a view and it-
self is always zero). To compute the distance between
objects A and B, for each of the 19 views of object
A, we find the closest view of object B and average
over the resulting distances. These object distances are
summarized in Fig. 12, Table 1. Each small square in
Table 1 corresponds to a set of 19×19 matching re-
sults between the views of the two objects associated
with the row and the column. For simplicity of visual-
ization, we computed a normalized matching score for
each 19×19 block. The magnitudes of the distances are
denoted by shades of gray, with black and white repre-
senting the smallest and largest distance, respectively.
Due to symmetry of the resulting distances, we only
included the upper triangle of results. Intra-object dis-
tances, shown along the main diagonal, are very close
to zero. The average intra-object distance for all ob-
jects was found to be 15.9. According to the table,
inter-object distances were near intra-object distances
in only 3 out of 36 cases (BINOCULAR and CLOCK, CAM-
ERA and PHONE, and CAR and TEAPOT). The average
inter-object distance for all for all objects was found to
be 39.3.

To better understand the differences in the recogni-
tion rates for different objects, we have selected a subset
of the matching results among the 4 views of TEAPOT,
taken at 20◦, 30◦, 60◦, and 90◦, respectively, as shown
in Fig. 12, Table 2. Due to the highly symmetric struc-
ture of the object, implying that neighboring views are
more likely to be similar, the distance between a view
of TEAPOT and its neighboring view is closer than its
distance to other objects’ views. Conversely, Fig. 12,
Table 3 illustrates the fact that due to a low view sam-
pling resolution, certain views of certain objects are
more similar to certain views of other objects than they
are to neighboring views of the same object. For exam-
ple, the best (non-identical) match for the third view
of CUP is the first view of PHONE. Upon closer inspec-
tion of these two degenerate views, it turns out that
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Figure 12. Summary of many-to-many matchings of object silhouettes. Every entry of Table 1 corresponds to a set of 19×19 matching results

between the views of the two objects associated with the row and the column. The shade of gray in each cell denotes average matching distance

of each 19×19 block, with black and white representing the smallest and largest distances, respectively. Averaging across all experiments the

intra-object distance is 15.9, while the average inter-object is 39.3. Table 2 shows a close up look at the matching results for 4 views of TEAPOT.

The distance between an object’s view and its neighboring view is closer than the distance between an object’s view and other objects’ views.

Table 3 depicts a subset of results from three separate blocks, highlighting that in some cases, certain views of some objects are more similar to

views of other objects than neighboring views of the same object.

there is considerable similarity in their shock tree rep-
resentations. On the other hand, the first two views
of CUP have been optimally matched to each other,
along with the last two views of PHONE. The top row of
Fig. 13 shows two adjacent views (30◦ and 40◦) of the
TEAPOT. The bottom row illustrates the many-to-many
feature correspondences that our matching algorithm
yields. Corresponding node clusters from each graph
(many-to-many mappings) have been shaded with the
same color. Note that the extraneous branch in the left
view was not matched in the right view, reflecting the
method’s ability to deal with noise.

Based on the overall matching statistics, we observed
that in only 5.74% of the experiments, the closest match
selected by our algorithm was not a neighboring view
of the correct object. We expect that with increased
view sampling resolution, ensuring that for each object
view there exists a similar neighboring view, this er-
ror rate would decrease significantly. We repeated the
experiment using the spherical embedding, resulting
in a 4.9% error rate. This is a clear improvement in
performance, at a reduced computational cost.

It should be noted that both the embedding and
matching procedures can accommodate perturbation,
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Figure 13. Illustration of the many-to-many correspondences. The

top row shows two adjacent views (30◦ and 40◦) of the TEAPOT. The

bottom row illustrates the many-to-many feature correspondences

that our matching algorithm yields. Corresponding node clusters

from each graph (many-to-many mappings) have been shaded with

the same color.

such as noise and occlusion. This is due to the fact that
the path partitions for unperturbed portions of the graph
are unaffected by perturbation. Moreover, the projec-
tions of unperturbed nodes will also be unaffected by
perturbation. Finally, the matching procedure is an it-
erative process driven by flow optimization which, in
turn, depends only on local features whose attributes
can act as matching constraints.

To test the sensitivity of the matching algorithm to
perturbation of the query, we performed the follow-
ing experiment for each of the 9 objects. Each view,
in turn, was used as a query (with replacement) and
perturbed by deleting a randomly selected connected
subset of the skeleton points whose size was cho-
sen randomly to fall between 5% and 25% of the to-
tal number of skeleton points. If the closest view to
the query was the unperturbed view, matching was
scored as correct. For the 9 objects, the average correct
score was 89%, reflecting the algorithm’s robustness
to missing data, a form of occlusion. For the spheri-
cal embedding, we observed an average correct score
of 91.4%.

We now turn to the domain of blob graphs, a brief
overview of which was presented in Section 4. Again,
node and edge weights therefore reflect mass and
grouping strength, respectively. The results of applying
our method to these two images is shown in Fig. 14,
in which many-to-many feature correspondences have
been colored the same. For example, a set of blobs and
ridges describing a finger in the left image is mapped

Figure 14. Applying our algorithm to the images in Fig. 1. Many-

to-many feature correspondences have been colored the same.

to a set of blobs in ridges on the corresponding finger
in the right image.

To provide a more comprehensive evaluation, we
also tested our framework on the two separate image
libraries shown in Fig. 15: the Columbia University
COIL-20 (Murase and Nayar, 1995) (20 objects, 72
views per object) and the ETH Zurich ETH-80 (Leibe
and Schiele, 2003) (8 categories, 10 exemplars per cat-
egory, 41 views per exemplar).4 Figure 15 shows rep-
resentative views of objects from each database. For
each view, we compute a multi-scale blob decompo-
sition, using the algorithm described in Shokoufandeh
et al. (2002). Next, we compute the tree metric corre-
sponding to the complete edge-weighted graph defined
on the regions of the scale-space decomposition of the
view. The edge weights are computed as a function of
the distances between the centroids of the regions in the
scale-space representation. Each tree is then embedded
into a normed space of prescribed dimension. This pro-
cedure results in two databases of weighted point sets,
each point set representing an embedded graph.

For the COIL-20 database, we begin by removing 36
(of the 72) representative views of each object (every
other view), and use these removed views as queries
to the remaining view database (the other 36 views for
each of the 20 objects). We then compute the distance
between each “query” view and each of the remain-
ing database views, using our proposed matching algo-
rithm. Ideally, for any given query view i of object j ,
vi, j , the matching algorithm should return a neighbor-
ing view. We will classify this as a correct matching.
Based on the overall matching statistics, we observe
that for the spherical embedding, in all but 4.8% of the
experiments, the closest match selected by our algo-
rithm was a neighboring view. Moreover, among the
mismatches, the closest view belonged to the same ob-
ject in 81.02% of the cases. In comparison, Matous̆ek’s
embedding yielded a 10.74% matching error where,
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Figure 15. Views of sample objects from the Columbia University Image Library (COIL-20) and the ETH Zurich (ETH-80) Image Set.

among the mismatches, the closest view belonged to
the same object in 80.0% of the cases.

For the ETH-80 database, we chose a subset of 32
objects (4 from each of the 8 categories) with full sam-
pling (41 views) per object. For each object, we re-
moved each of its 41 views from the database, one
view at a time, and used the removed view as a query
to the remaining view database. We then computed the
distance between each query view and each of the re-
maining database views. The criteria for correct classi-
fication were similar to the COIL-20 experiment. Our
experiments showed that in all but 6.2% of the experi-
ments using the spherical embedding, the closest match
selected by our algorithm was a neighboring view.
Among the mismatches, the closest view belonged to
the same object in 77.19% of the cases, and the same
category in 96.27% of the cases. For Matous̆ek’s em-
bedding, in all but 17.5% of the experiments, the closest
view was a neighboring view, while among the mis-
matches, the closest view belonged to the correct ob-
ject in 67.4% of the cases, and the same category in
81.3% of the cases. The results clearly demonstrate the
improved performance offered by the spherical embed-
ding technique.

To demonstrate the framework’s robustness, we per-
formed four perturbation studies on the COIL-20 and
ETH-80 databases, represented using spherical embed-
ding. The experiments are identical to the COIL-20
and ETH-80 experiments described above, except that
the query graph was perturbed by adding/deleting 5%,
10%, 15%, and 20% of its nodes (and their adjoining
edges). The choice of spherical embedding was moti-

vated by its better performance over that of Matous̆ek’s
embedding. The results are shown in Table 1, and re-
veal that, like our skeleton tree matching example, the
error rates increase gracefully as a function of increased
perturbation.

It should be noted that both the skeleton tree and
blob graph experiments can be considered worst case
for two reasons. First, the sampling resolutions of the
viewing sphere were high in each case, meaning that
more than the immediate neighbors of a particular view
may be similar to it. Given the high similarity among
neighboring views, it could be argued that our match-
ing criterion is overly harsh, and that perhaps a measure
of “viewpoint distance”, i.e., “how many views away
was the closest match” would be less severe. In any
case, we anticipate that with fewer samples per ob-
ject (e.g., collapse similar views into view classes and
choose one prototype, or “aspect”, per class), neighbor-
ing views would be more dissimilar, and our matching
results would improve. Second, and perhaps more im-
portantly, many of the objects are symmetric, and if a
query neighbor has an identical view elsewhere on the
object, that view might be chosen (with equal distance)
and scored as an error.

Table 1. Recognition rate as a function of increasing perturbation.

Note that the baseline recognition rate (with no perturbation) is 98.0%

for COIL-20 and 98.5% for ETH-80.

Perturbation 5% 10% 15% 20%

Recognition rate COIL 91.07% 88.13% 83.68% 77.72%

Recognition rate ETH 93.2% 90.1% 86.3% 82.2%
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6.1. Comparison to Other Approaches

In addition to demonstrating the effectiveness of our
many-to-many matching algorithm applied to shape
retrieval, we compare our matching results to two lead-
ing graph matching algorithms: a one-to-one matching
algorithm proposed by Pelillo et al. (1999) (using as-
sociation graphs) and a many-to-many matching algo-

Figure 16. The results of matching skeleton graphs for some pairs

of shapes in the Rutgers Tools Database. Same colors indicate cor-

responding segments. Observe that correspondences are intuitive in

all cases.

rithm proposed by Sebastian et al. (2004) (using graph-
edit distance). For the comparison, we use the Rut-
gers Tool Database (Siddiqi et al., 1999), which con-
sists of 25 shapes organized into eight classes: brush,
hammer, pliers, screwdriver, wrench, hand, profile, and
horse. Four of these classes, namely, hammer, pliers,
screwdriver, and wrench, can be further grouped into
a broader “tools” category. Sample views from each
class are shown in Fig. 17. In the experiment, we re-
move the first shape (the query) from the database and
compare it to all remaining database shapes. The shape
is then put back in the database, and the procedure is
repeated with the second database shape, etc., until all
25 shapes have been used as a query. After comput-
ing the similarity values between every database pair,
we look at the top matches to see how many of the
within-category shapes belong to the same class as the
query. Ideally, if an object has n shapes in the database,
the top n − 1 entries should belong to the same class
as the query. Figure 16 shows some examples of the
many-to-many feature matching results obtained from
our algorithm for some of the objects in the Rutgers
Tools Database.

Our results, along with those reported in Pelillo
et al. (1999) and Sebastian et al. (2004), are pre-
sented in Fig. 18, where correct matches retrieved from
the database are colored yellow, while the mismached
entries are colored red. Considering only the best
matches, we observe that while in Pelillo et al.’s shock
tree approach there is a total of 3 mismatched entries,
both Sebastian et al.’s graph-edit distance framework
and our approach yield only 1 mismatched entry. In
addition, considering all within-category matches, both
the shock tree and graph-edit distance approaches yield
a total of 5 errors, while our approach yields only 3 er-
rors. Moreover, if we further group the hammer, pliers,

Figure 17. Sample views of objects from the Rutgers Tools

Database.
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Figure 18. Comparison to two leading graph matching algorithms: Pelillo et al. (1999) (left), Sebastian et al. (2004) (center), and our algorithm

(right). In each case, the top seven matched database objects are sorted by their similarity to the query. Correct matches are colored yellow, while

mismatched entries are colored red; matches from other categories are colored white.

screwdriver, and wrench shapes into the same “tools”
category, our many-to-many matching approach pro-
duces a 100% correct matching, while the other two
approaches still have mismatched entries. One would
expect that as the incidence of many-to-many cor-
respondences increases, both the graph-edit distance
algorithm and our algorithm would yield improved
scores.

7. Limitations

Our proposed algorithm can be applied to many-to-
many matching problems on both undirected and di-
rected graphs. Still, the approach has its limitations.
An optimistic reader might think that our embedding
approach together with the EMD framework solve the
many-to-many graph matching problem. However, its
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efficacy is contingent on appropriate edge weights in
the original graph. Since these edge weights ultimately
govern the proximity of the embedded points and hence
their propensity to being combined during the EMD
step, the edge weights (distances) are effectively a per-
ceptual grouping or abstraction heuristic between fea-
tures (nodes). If they are chosen or defined poorly, the
EMD step will not converge on a meaningful solution.

The framework also assumes that a node’s attributes
can be mapped into a vector of masses whose split-
ting and combining during the EMD computation re-
flects meaningful many-to-many correspondences be-
tween the nodes in the original graphs. The EMD is
also a global distance that tries to account for all the
points. Although our experiments have shown that our
framework is robust to perturbation of the graphs in
terms of missing and spurious features, the method
is still global. If a graph includes a node represent-
ing an occluder with large mass, its presence will have
an adverse effect on the computed flows, for the al-
gorithm cannot selectively exclude the node. Note,
however, that if there are unique attributes shared
by nodes to be matched, these attributes can act as
constraints on the EMD matching, ensuring that dirt
from a pile of a particular “color” can flow only
to holes of the same color. We are also currently
exploring approaches that use EMD both to com-
pute local correspondences, and then to grow these
correspondences.

8. Conclusions

The ability to match image features many-to-many is a
critical prerequisite for less constrained object recog-
nition, such as object categorization. Rigid matching
schemes that assume one-to-one feature correspon-
dence will fail to match object instances where com-
monality exists at a higher level of abstraction. Given a
set of image features and pairwise relations, the com-
plexity of the resulting many-to-many graph match-
ing problem is intractable. We have presented a novel,
computationally efficient approximation algorithm for
the many-to-many matching of two graphs. We begin
by constructing metric tree representations of the two
graphs. Next, we embed them in a geometric space with
low distortion using novel encodings of the graph’s ver-
tices. Many-to-many graph matching now becomes a
many-to-many geometric point matching problem, for
which the Earth Mover’s Distance algorithm is ideally
suited. Moreover, by mapping a node’s geometric and

structural “context” in the graph to an attribute vector
assigned to its corresponding point, we can extend the
technique to deal with hierarchical graphs that repre-
sent multi-scale structures. We have successfully eval-
uated the technique on several image databases using
two different graph-based multi-scale shape represen-
tations that capture coarse shape structure, and include
a set of structural perturbation experiments that estab-
lish the algorithm’s robustness to graph “noise”. More-
over, the approach compares favorably to two lead-
ing graph matching algorithms on a specific image
database.
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Notes

1. Note that this representation is closely related to Siddiqi et al.’s

shock graph Siddiqi et al. (1999), except that our nodes (shock

points) are neither clustered nor are our edges directed.

2. This vector essentially encodes local shape information of the

silhouette.

3. Although we seek a canonical node as root, we note that the

shortest-path distance matrix, and hence the structure of the em-

bedding, is invariant to the choice of root.

4. Arguably, the COIL database is not the ideal testbed for an im-

age representation (in our case, a multi-scale blob decomposition)

whose goal is to describe the coarse shape of an object. Unlike the

PCA-based image characterization for which the COIL database

was originally created, the multi-scale blob and ridge decomposi-

tion provides invariance to translation, rotation, scale, minor part

deformation and articulation, and minor within-class shape de-

formation. Although a standard database for recognition testing,

the COIL database does not exercise these invariants.
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