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Abstract 

W e  have been developing a theory for  the generic 
representation of 2-0  shape, where structural descrip- 
tions are derived f rom the shocks (singularities) of  a 
curve evolution process, acting on bounding contours. 
W e  now apply the theory t o  the problem of shape match- 
ing. The shocks are organized into a directed, acyclic 
shock graph, a n d  complexity is managed b y  attending 
to  the most significant (central) shape components first. 
The space of all such graphs is highly structured and can 
be characterized b y  the rules of a shock graph gram- 
mar. The grammar permits a reduction of a shock 
graph to  a unique rooted shock tree. We introduce a 
novel tree matching algorithm which finds the best set 
of corresponding nodes between two shock trees an poly- 
nomial time. Using a diverse database of shapes, we 
demonstrate our system’s performance under articula- 
tion, occlusion, and changes in viewpoint. 

1 Introduction 

Upon entering a room, one first notices the presence 
of a particular object, such as a dog, before realizing 
it is either a Siberian Husky or that it is “Loki”, a 
particular Siberian. This example, modified from im- 
portant studies by Rosch [15], suggests that there is 
an organization to our object memory, and that this 
organization facilitates recognition. Initially, particu- 
lar instances are not recognized; rather, objects are 
first categorized generically at a “basic level of abstrac- 
tion” [15]. The object is recognized as belonging to 
the category-dog-before more detailed, or subordi- 
nate levels, are refined. This motivating example is at  
the heart of this paper: we seek a technique for object 
recognition based on such entry-level, generic descrip- 
tions. 

In recent work on this subject, Sclaroff and Pent- 
land have used a modal representation corresponding 
to a shape’s generalized axes of symmetry[l6]; Zhu 
and Yuille have designed a 2-D shape matching system 
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Figure 1: A coloring of shocks into four types. A l-shock 
derivesfrom a protrusion, and traces out a curve segment o f  1- 
shocks. A 2-shock arises a t  a neck, and  is immediately followed 
by two l-shocks flowing away from it i n  opposite directions. 
3-shocks correspond to  a n  a n n i h i l a t i o n  into a curve segment 
due to a bend, and a 4-shock a n  annih i la t ion  into a point or 
a seed. The loci of these shocks gives Blum’s medial axis. 

based on a decomposition into connected mid-grained 
skeletal parts [19]; Pauwels et al. have proposed the use 
of semi-differential invariants for planar shape recog- 
nition under affine distortions [13]; Basri et ab. have 
proposed various models for measuring the cost of de- 
forming one contour into another [3]; and FranCois and 
Medioni have used a connection hierarchy of parts [6]. 
Whereas these efforts, together with a large body of lit- 
erature on 2-D shape, have contributed a positive set 
of desiderata, no technique exists that satisfies all of 
them. Thus, we seek a representation that is viewpoint 
dependent to start; through which a notion of equiva- 
lence classes of (qualitatively similar) shapes emerges; 
that is applicable to natural as well as man-made ob- 
jects; that is reliably and stably computable; and that 
supports efficient (e.g., polynomial-time) recognition in 
the presence of occlusion and noise. We build our rep- 
resentation on the singularities of a curve evolution pro- 
cess, described next. 

In the application of curve evolution theory to visual 
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shape analysis, Kimia, Tannenbaum, and Zucker stud- 
ied the following evolution equation, acting on simple 
closed curves in the plane [9]: 

(1) 
et = (1 + aK)N 
C ( S ,  0) = CO(S). 

Here C(s, t) is the vector of curve coordinates, N(s ,  t)  
is the inward normal, s is the path parameter, and t 
is the evolutionary timle of the deformation. The con- 
stant CY > 0 controls the regularizing effects of cur- 
vature K .  When a is large, the equation becomes a 
geometric heat equation; when CY = 0, the equation 
is equivalent to Blum ‘s grassfire transformation. In 
this paper, we shall only be interested in the latter 
case, under which the evolution equation is hyperbolic 
and shocks [lo], or entmpy-satisfying singularities, can 
form. Here we shall ignore the dynamics of the shock 
formation process, ancl will consider only the static 
picture obtained in the limit: the locus of shock po- 
sitions gives Blum’s medial axis. However, even in this 
static limit, the shocks provide additional information 
beyond that available from their loci: consider a “col- 
oring” of the shocks according to the local variation 
of the radius function along the medial axis (see Fig- 
ure 1). The colored description provides a much richer 
foundation for recognition than that obtained from an 
unlabeled (Blum) skeleton. 

To illustrate the coloring, imagine traversing a path 
along the medial axis. At a 1-shock the radius function 
varies monotonically, as is the case for a protrusion. 
At a 2-shock the radius function achieves a strict lo- 
cal minimum such that i;he medial axis is disconnected 
when the shock is removed, e.g., at a neck. At a 3-shock 
the radius function is constant along an interval, e.g., 
for a bend with parallel sides.l Finally, at a 4-shock 
the radius function achieves a strict local maximum, as 
is the case when the evolving curve annihilates into a 
single point or a seed. 

With the above picture in mind, the coloring can 
be formalized as follows. Let X be the open interior 
of a simple closed curve, and M e ( X )  its medial axis 
(the set of points reached simultaneously by two or 
more fire fronts). Let B(x, E) be an open disk of 
radius E centered at 3: 6: X ,  and let R(z)  denote the 
radius of the largest such disk contained in X .  Let 
N ( x ,  e )  = M e ( X )  n B(x ,  E)\{x) define a “punctured” 
E-neighborhood of x, one that does not contain x itself. 
A medial axis point x E M e ( X )  is 

1. type 4 if 36 > 0 s.t. R(s) > R(y) Vy E N ( z ,  E); 

2. type 3 if IE > O s.t. R(z)  = R(y) Vy E N(~,E) 
and N(~,E) # 0; 

lThis “parallel” conditiort reflects the non-genericity of 3- 
shocks. 

3. type 2 if 36 > 0 s.t. R(z)  < R(y) Vy E N ( z , e )  
and N ( z ,  E) # 0 and N ( z ,  E) is not connected; and 

4. a 1-shock otherwise. 

The relationship between the above coloring of the 
medial axis and an Arnold classification of singular- 
ities [2] remains to be investigated. In Figure 4 we 
provide several numerical examples of colored medial 
axis descriptions. As we shall now show, the coloring 
coupled with a measure of szgnzficance derived from 
the time of shock formation, is the key to  abstracting a 
representation that supports generic shape matching. 

2 The Shock Graph 

We shall now abstract the system of shocks derived 
from the curve evolution process into a graph, which we 
call the Shock Graph, or SG. This construction is in- 
spired by Blum’s classic work on axis-morphologies [4]; 
the shock types will label each vertex in the graph and 
the shock formation times will direct edges to  provide 
an ordering for matching, and a basis for subgraph ap- 
proximation. 

By the Jordan Curve Theorem, any simple closed 
curve divides the plane R2 into exactly two compo- 
nents, one bounded and the other unbounded. We are 
interested in the bounded interiors of Jordan curves. 

Definition 1 A 2-D shape 0 is the bomded anterior 
of a simple closed (Jordan) curve. 

From the coloring of shocks into four types in the pre- 
vious section, it can be seen that 2-shocks and 4-shocks 
are isolated points, whereas 1-shocks and 3-shocks are 
neighbored by other shocks of the same type. To build 
the shock graph we shall group together shocks of the 
same type that form a _conn_ected component, denoting 
the groups with labels 1 ,2 ,3  and 4, and breaking apart 
the 1’s at  branch-points.2 Let each shock group be in- 
dexed by a distinct integer i, and let ti denote its time 
(or times) of formation, corresponding to the radius 
function evaluated at the shocks in the group. Hence, 
ti will be an interval for a I ;  for 2’s, 3’s and 4’s it will 
be a single number. Finally, let # denote a start sym- 
bol and q5 a termanalsymbol. The SG is a connected 
graph, rooted at a vertex labeled #, such that all other 
(non-terminal) vertices are shock groups, and directed 
edges to non-terminal vertices indicate the genesis of 
new shock groups. 

Definit ion 2 The Shock Graph of a 2-0 shape, 
SG(O), is a labeled graph G = (V, E ,  y), with: 

2The - symbol is used to denote a curve segment. A branch- 
point, where the maximal inscribed disc “touches” the boundary 
at more than two points, will be shared by all i’s that overlap 
at it. 
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vertices V = {I, ..., n } ;  

edges (i,j) E E E V x V dzrected from vertex i 
to vertex j zf and only af i # j ,  ti 2 t j ,  and i U j 
as connected an the plane; 

labels y : V + 1, wzth 1 E {I, 2 , s .  4, #, q5}; and 

topology such that, V j  E V with ~ ( j )  # #, 3i E 
V wzth ( i , j )  E E.  

The SG is built by “reversing” the grassfire evolu- 
tion, analogous to growing a shape by adding lumps of 
material onto its seeds. The children of the unique ver- 
tex labeled #, at which the graph is rooted, are the last 
shock groups to form. Vertices with label q5 are leaves 
of the SG, whose parents are the first shock groups to 
form. This reverse-time dependency is important be- 
cause the last shocks to form correspond to the most 
significant (central) shape features. 

Propos i t ion  1 A n y  2 -0  shape 0 has a unique corre- 
sponding shock graph SG(0). 

PROOF: The proof appears in [18]. 

2.1 The Shock Graph Grammar 

The notion of entry-level categories for shape that 
we seek is intimately connected to the topological 
structure of the shock graph. This structure is highIy 
constrained because the events that govern the birth, 
combination, and death of shock groups can be ab- 
stracted into a small number of rewrite rules, shown 
in Figure 2. In analogy to Leyton’s Process Gram- 
mar [ll], the rules have been grouped according to the 
semantic processes that they characterize, although the 
alphabet of shock types that they operate on is quite 
different from boundary-based codons. 

Definition 3 The Shock Graph Grammar, SGG, is a 
quadruple G = (V, C ,  R, S ) ,  wzth 

1. V = { i ,2 ,3 ,4 ,  #, @I, the alphabet; 

2. C = {a}, the set of termznals; 

3. S = #, the start symbol; and 

4. R = { R I ,  ..., RIO}, the set of rules gz’uen zn Fzg- 

The rewriting system emphasizes the generative pro- 
cess of growing a shape by placing seeds, adding pro- 
trusions, forming unions, and so on. It operates by 
beginning a t  the start symbol and repeatedly replac- 
ing the left-hand side of a rule by the corresponding 
right-hand side until no further replacements can be 
made. It is the SGG that captures the beauty of shock 
graphs, because the rules embody constraints from the 
domain of curve evolution. In particular, 

ure 2. 

b 
d 

\y 
Rule7: 4-4 Rule8: ?-? Rule9:  2-2 

Figure 2: The Shock Graph Grammar, SGG. 

lo: -1 
Dashed lines 

partition distinct ends of  a 3 .  The rules are grouped accord- 
ing t o  the different semantic processes (on the left) that  they 
characterize. Note t h a t  the grammar is not context-free, e.g., 
rule 3 indicates that a 1 can only be added onto an end o f  a 
3 that has no parent I. 

Propos i t i on  2 The rewrite rules of the SGG are suf- 
ficient t o  derive the shock graph SG(0) of any 2 - 0  
shape 0. 

PROOF: A constructive proof appears in [18]. The 
strategy is to derive the rules by enumerating all le- 
gal parents and children for each vertex type. 

We can now make several observations. First, since 
the same shock cannot be born at two distinct times, 
the SG is a directed acyclic graph. This has important 
consequences for object matching because the problem 
of searching directed acyclic graphs is computationally 
much simpler than that of searching arbitrary graphs. 
Second, since there exist rules in the SGQ whose left- 
hand sides do not consist of single nonterkinals, the 
SGG is not context-free. Third, the rewritqrules in- 
dicate that a 2-shock and a 4-shock can only be added 
by rules 5 and 1, respectively, and that equivalent rules 
exist for a 3 (rules 6 and 1). Hence, a 2-shock-and a 
4-shock are each semantically equivalent to a 3 i n  a 
specific context. 

The SG’s for a variety of shapes are shown in Fig- 
ure 5 .  All the graphs were generated automatically 
from the output of the shock detection process [17] 
displayed in Figure 4. Following the third observation, 
only label types 1 and 3 have been explicitly assigned. 
A 3 with a parent 7 at each end acts as a “neck”, and 
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a 3 with a # as a parent acts as a “seed”. In the 
next Section we show that a shock graph can be re- 
duced to a unique rooted shock tree, which in turn 
implies a hierarchical (ordering of shape information 
(shock vertices). We then develop a formal approach 
to signijcance-based matching, where the key idea is 
to defeat complexity (when the database of shapes is 
diverse and large) by attending to most significant com- 
ponents first, via a depth-first search of the underlying 
shock trees. 

3 Shock Graph Matching 

3.1 Problem Formulation 

Given two shock graphs, one representing an object 
in the scene (V2) and one representing a database ob- 
ject (VI) ,  we seek a method for computing their sim- 
ilarity. Unfortunately, due to occlusion and clutter, 
the shock graph representing the scene object may, in 
fact, be embedded in a larger shock graph represent- 
ing the entire scene. Thus we have a largest subgraph 
isomorphism problem, which can be formulated as a 
( 0 , l )  integer optimization problem. The optimal so- 
lution is a ( 0 , l )  bijective mapping matrix M ,  which 
defines the correspondence between the vertices of the 
two graphs G and H ,  and which minimizes an appropri- 
ately defined distance measure between corresponding 
edge and/or node labels in the two graphs. More for- 
mally, we seek the matrix M, the global optimizer of 
the following [5]: 

V€Vl 
M ( W )  E i o ,  1},VZ E Vl, Y € v2 

where (I.\\ is a measure of the similarity between the 
labels of corresponding nodes in two shock graphs (see 
Section 3.4). 

The above minimization problem is known to be NP- 
hard for general graphs [8]. However, polynomial time 
algorithms exist for finite rooted trees, e.g., see [14]. In 
fact, based on the grammar in Figure 2, it is easy to 
show that the shock graph can be reduced to  a unique 
rooted tree [18]. Hence, we can purse a polynomial 
time solution to the problem of matching shock trees. 

3.2 An Eigenvalue Characterization of a Shock 
Tree 

The shock tree can be represented as a (0 , l )  adja- 
cency matrix, with 1’s indicating adjacent nodes in the 

tree. Any shock subtree therefore defines a submatrix 
of the adjacency matrix. If, for a given shock subtree, 
we compute the eigenvalues of its corresponding sub- 
matrix, then the sum of the eigenvalues is invariant 
to  any similarity transformation applied to  the subma- 
trix. This means that the eigenvalue sum is invariant 
to any consistent re-ordering of the subtrees! In terms 
of our largest subgraph isomorphism problem, finding 
the two shock subtrees whose eigenvalue sums are clos- 
est represents an approximation to  finding the largest 
isomorphic sub tree^.^ 

In order to efficiently compute the submatrix eigen- 
value sums, we turn to the domain of semidefinite pro- 
gramming. A symmetric n x n matrix A with real 
entries is said to be positive semidefinite, denoted as 
A 0, if for all vectors z E Rn, ztAz 2 0, or equiv- 
alently, all its eigenvalues are non-negative. We say 
that U V if the matrix U - V is positive semidefi- 
nite. For any two matrices U and V having the same 
dimensions, we define U e V as their inner product, 
i.e., U V = y,y, Ui,jx,j. For any square matrix U ,  

we define trace(U) = Ci U*,*. Let I denote the iden- 
tity matrix having suitable dimensions. The following 
result, due to Overton and Womersley [12], will char- 
acterize the sum of the first k largest eigenvalues of a 
symmetric matrix in the form of a semidefinite convex 
programming problem: 

Theorem 1 For the sum of the first L eigenvalues of 
a symmetric matrix A, the following semidejnate pro- 
grammang characterization holds: 

A1(A) + . . . + &(A)  = max A e U 
s.t. trace(U) = R 

i J  

O A U 5 I I .  

Before applying the above theorem, we must first 
convert our shock trees to adjacency matrices. Given a 
bounded degree, rooted tree G = (V, E )  with IV[ = n 
and ( E (  = m, we define the adjacency matrix A of G 
to be a n x n symmetric, {0,1} matrix with its (i, j)-th 
entry Ai,j equal to 1 if ( i , j )  E E ,  and 0 otherwise. For 
each vertex v E G, let S(v) be the degree of U, and 
let S(G) be the maximum degree over all vertices in G. 
For every vertex U E G, we define x(u) to be a vector 
in Rs(G)-l, obtained through the following procedure: 

For any child v of U in G, construct the adjacency 
matrix A, of the induced subtree rooted at  U ,  and 
for A,,  compute the quantity A, = Al(A,) + . . . + 
Aq,,(A,). Construct x(u) as the vector formed by 
{A,,, . . . ,A , , ,u , }  for which Av1 2 . . . 3 

3This analysis considers only the topological structure of the 
shock graph. Later, we will factor in geometric information as- 
sociated with its vertices. 
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The above procedure yields a vector assigned to each 
vertex, whose elements are the individual eigenvalue 
sums corresponding to the node’s (subtree’s) adjacency 
submatrix. The power of this formulation is that for 
any iooted subtree, the vector coloring of the vertices 
is uniquely defined, and is invariant to a re-ordering of 
the subtrees rooted at each vertex. Furthermore, the 
A, function can be computed in polynomial time by 
solving the the equivalent semidefinite programming 
problem (Theorem 1) using a variant of the Interior 
Point method proposed by Alizadeh [l]. In section 3.4, 
we embed this procedure in our own algorithm for find- 
ing the largest isomorphic subtrees corresponding to 
two shock graphs. In addition, we factor in a measure 
of similarity between shock geometries, which we now 
discuss. 

3.3 The Distance Between Two Vertices 

The eigenvalue characterization introduced above 
applies to the problem of determining the topologi- 
cal similarity between two shoqk trees. Returning to 
the opening scenario, this, roughly speaking, defines 
an equivalence class of objects belonging to the same 
entry-level category. For example, a broad range of 
dogs will have very similar shock tree structures. On 
the other hand, when one is interested in discriminat- 
ing between a short-legged Daschund and a Siberian 
Husky, geometric properties will play a significant role. 

This geometry is encoded by information contained 
in eacq! vertex_of the shock tree. Specifically, recall that 
both 1’s and 3’s are curve segments of shocks. In the 
former case, the segment is directed, while in the lat- 
ter there is a partial order but no preferred direction, 
since all the shocks were formed at the same time. Each 
shock in a s-gment is further labeled by its position, its 
time of formation (radius of the skeleton), and its di- 
rection of flow (or orientation in the case of j’s), all 
obtained from the shock detection algorithm [17]. In 
order to measure the similarity between two vertices U 

and w, we interpolate a low dimensional curve through 
their respective shock trajectories, and assign a cost 
C(u, v) to an affine transformation that aligns\one in- 
terpolated curve with the other. The technical h a i l s  
are presented in [18]. Intuitively, a low cost is assigned 
if the underlying structures are scaled or rotated ver- 
sions of one another. 

3.4 Algorithm for Matching Two Shock Trees 

Our recursive algorithm for matching the rooted 
shock subtrees, G and H ,  accounts for both the topo- 
logical similarity of the subtrees as well as the geomet- 
rical (shock) similarity of their corresponding nodes. 
Before stating our algorithm, inspired by Reyner [14], 
some definitions aFe in order. Let G = (VI, E l )  and 

H = (V2, E2) be the two shock graphs to be matched, 
with IV1l = n1 and IV2l = ”2. Define d to be 
the maximum degree of any vertex in G and H ,  Le., 
d = max(S(G),S(H)). For each vertex w, we define 
x(w) E Rd-l as the unique eigen-decomposition vec- 
tor introduced in Section 3.2.4 Furthermore, for any 
pair of vertices U and w, let C(u,w) denote the shock 
distance between U and U, as described in Section 3.3. 
Finally, let @(G, H) (initially empty) be the set of final 
node correspondences between G and H representing 
the solution to our matching problem. 

The algorithm begins by forming a n1 x n2 ma- 
trix I I (G ,H)  whose (u,v)-th entry has the value 
C(u,  w)(Ix(u)-x(v)II2, assuming that U and v are com- 
patible in terms of their shock order, and has the value 
00 otherwise. Next, we form a bipartite edge weighted 
graph g(V1, Vz, Eg) with edge weights from the matrix 
II(G, H).5  Using the scaling algorithm of Goemans, 
Gabow, and Williamson [7], we then find the maxi- 
mum cardinality, minimum weight matching in 5. This 
results in a list of node correspondences between G and 
H ,  called M I ,  that can be ranked in decreasing order 
of similarity. 

From M I ,  we choose (u1, w1) as the pair that has the 
minimum weight among all the pairs in M I ,  i.e., the 
first pair in M I .  (u1, wl) is removed from the list and 
added to the solution set @(G, H), and the remainder 
of the list is discarded. For the subtrees G,, and H,, of 
G and H, rooted at nodes u1 and V I ,  respectively, we 
form the matrix II(Gul, Hw1) using the same procedure 
described above. We then find the matching M z  in the 
bipartite graph defined by weight matrix II(Gul, H,,), 
yielding another ordered list of node correspondences. 
The procedure is recursively applied to (u2 ,74 ,  the 
edge with minimum weight in Ma, with the remainder 
of the list discarded. 

This recursive process eventually reaches the leaves 
of the subtrees, forming a list of ordered correspon- 
dence lists (or matchings) { M I , .  . . , Mb) .  In back- 
,tracking step i, we remove any subtrees from the graphs 
Gi and Hi whose roots participate in a matching pair 
in @(G, H )  (we enforce a one-to-one correspondence of 
nodes in the solution set). Then, in a depth-first man- 
ner, we first recompute M i  on the subtrees rooted at uz 
and w, (with solution set nodes removed). As before, we 
choose the minimum weight matching pair, and recur- 
sively descend. Unlike a traditional depth-first search, 
we dynamically recompute the branches at each node 

4Note that if the maximum degree of a node is d, then ex- 
cluding the edge from the node’s parent, the maximum number 
of childrenis d - 1. Also note that if S(v) < d ,  then then the last 
d - 6(u) entries of x are set to zero to ensure that all x vectors 
have the same dimension. 

5G(A,  B , E )  is a weighted bipartite graph with weight matrix 
W = [w,,] of size IAJ x IB1 if, for all edges of the form (i,j) 6 E ,  
i E A ,  j E B ,  and (i,j) has an associated weight = w , , ~ .  
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in the search tree. Processing at  a particular node will 
terminate when either subtree loses all of its nodes to 
the solution set. 

We can now state the algorithm more precisely: 

procedure isomorphism( G, H )  
@(G, H )  +- 0 

for U E VG compute x(u)  E Rd-’ (see Section 3.2) 
for t~ E VH compute x ( v )  E Rd-’ (see Section 3.2) 
call match(root( G),root( H ) )  
return(cost(@(G, H ) )  

d +- max(C(G), J ( H ) )  

end 

procedure match(u,v) 
do 

{ 
let G, + rooted subtree of G at U 

let H ,  + rooted subtree of H at v 
compute IVG,~ x It;rVl weight matrix II(G,, H,) 
M + max cardinality, minimum weight 

bipartite matching in ~ ( V G , ,  VH”) with 
weights from II(G,, H,) (see [7]) 

(u’,v’) c minimum weight pair in M 

call match(u’,v’) 
G, +- G, - {XI. E VG, and (2, w) E @(G, H ) }  
H ,  H ,  - {Y~Y E VH, and ( w ,  Y) E @(G, H ) )  
1 

@(G, H )  - @(G, H )  U {(U’, v’)) 

while (G, # 0 and H ,  # 0) 

In terms of algorithmic complexity, observe that 
during the depth-first construction of the matching 
chains, each vertex in G or H will be matched at 
most once in the forward procedure. Once a ver- 
tex is mapped, it will never participate in another 
mapping again. The total time complexity of con- 
structing the matching chains is therefore bounded by 
O ( n 2 d w ) ,  for n = max(nl ,n2)  [7]. Moreover, 
the construction of the x (v )  vectors will take O ( n f i L )  
time, implying that the overall complexity of the algo- 
rithm is m a x ( O ( n 2 , / m ) ,  O ( n 2 f i L ) .  

The above algorithm provides, in polynomial time 
better than O(n3),  an approximate optimal solution to 
the minimization problem in 2. The matching matrix 
M in (2) can be constructed using the mapping set 
O(G, H ) .  Our algorithm is particularly well-suited to 
the task of matching two shock trees since it can find 
the best correspondence in the presence of occlusion 
and/or noise in the tree. 

4 Examples 

We demonstrate our shape matching system with 
several examples. The database of shapes we used is 
shown in Figure 3. The shock-based descriptions of 
representative shapes, numerically computed using the 

Figure 3: TOP: The 18 tool images used in our experiments. 
MIDDLE: The silhouettes were segmented using a curve evo- 
lution based active contour. BOTTOM: The database was 
supplemented with 8 biological shapes, adapted from a range 
image of a hand and various da Vinci sketches. 

algorithms developed in [17], are shown in Figure 4, 
with the derived shock graphs in Figure 5. Notice how 
for each shape a hierarchy of components emerges, with 
the most significant components (e.g., the palm of the 
hand, and the neck of the pliers) placed closest to the 
root node. Similar descriptions were computed for each 
of the shapes in the database. 

To evaluate our matcher’s ability to compare objects 
based on their protypical or coarse shape, we chose as 
a prototype for each of our 9 object classes, that ob- 
ject whose total distance to the other members of its 
class was a minimum.6 We then computed the similar- 
ity between each remaining object in the database and 
each of the class prototypes, with the results shown in 
Figure 6. 

For each row in the table, a box has been placed 
around the most similar shape. We note .that for the 
15 test shapes, all but two are most similar to their 
class prototype, with the class prototype coming in a 
close second in the latter two cases. The recovered 
correspondences between nodes for the best matches 
in rows 4 and 15 are shown in Figure 7.  Three very 
powerful features of our system our worth highlight- 
ing. First, the method is truly generic: the matching 
scores impose a partial ordering in each row, which 
reflects the qualitative similarity between structurally 
similar shapes. An increase in structural complexity is 
reflected in a higher cost for the best match, e.g., in the 
bottom two rows of Figure 6. Second, the procedure is 
designed to handle noise or occlusion, manifest as miss- 
ing or additional vertices in the shock graph. Third, 
the depth-first search through subtrees is extremely ef- 
ficient. 

6For each of the three classes having only two members, the 
class prototype was chosen at random. 
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ff 12.46 19.0 27.40 14.58 24.26 17.10 8.85 7.49 6.93 
13.86 23.07 12.81 11.24 17.48 23.23 6.02 6.92 3.06 

@ 15.73 21.28 14.10 12.46 19.56 19.21 9.53 7.12 5.06 

Figure 6: Experiment 1: similarity between database shapes and class prototypes. In each 
row, a box i s  drawn around the most similar shape (see the text for a discussion). 

Query Distance to Class Exemplars 
\ I  L I  \ I  t 

0.57 10.01 

Query 

Table 1: Experiment 2: similarity between members of  a class. 
Each row of  the table highlights different aspects o f  matching 
invariance (in addition t o  translation): Rows 1 and 2: invari- 
ance t o  deformation, image rotation, and illumination; Row 3 : .  
invariance to deformation, scaling, and occlusion; and Row 4: 
invariance to  deformation, scaling, image rotation, and illumi- 
nation. 

Distance to Class Exemplars 
\ 1 \ 1 ' 1  I 

In Tables 1 and 2, we compare a number of objects 
to  other members of their class as well as to a member 
from a different class. The objects have been chosen to 
illustrate the power of the matcher to  deal with changes 
in image plane rotation, scale, deformation, occlusion, 
translation, and even slight rotation in depth. In both 
experiments, the results reflect the matcher's ability to 
compare shapes within the same class, at a finer scale. 

f 
4 

5 Conclusions 

10.091 0.29 0.16 5.42 
1.48 1.30 3.46 10.11 1 

In this paper, we have abstracted a representation of 
shape based on singularities of a curve evolution pro- 
cess into a shock graph, and have introduced a shock 
graph grammar to  characterize its structure. We have 

Figure 7: The computed corre- 
spondences between nodes for the 
best matches in rows 4 (top) and 
15 (bottom) of Figure 6. 

I 11 6.53 I 0.79 I 5.24 I 1 0.371 n 
Table 2: Experiment 3: similarity between members of  a class. 
Each row of  the table highlights different aspects of  matching 
invariance (in addition to  translation): Row 1: invariance t o  
scaling, deformation (different taper), and occlusion; Row 2: 
invariance to  scaling, image rotation, and slight rotation in  
depth; and Row 3: invariance to  image rotation, scaling, and 
occlusion. 

developed a shape matching algorithm that is generic 
and provides a powerful means for efficiently comput- 
ing the best correspondence between two shock graphs 
in the presence of noise and occlusion, as illustated by 
several examples. In future work, we shall address the 
problem of indexing 2-D objects in a large database. 
Using a vector of eigenvalue sums computed on the sub- 
trees of a shock tree, similar subtrees can be 'retrieved 
from a database via a simple vector norm. Further, 
building on ideas from aspect graphs we plan to extend 
our approach to a view-based strategy for generic 3-D 
object recognition. The intuitive idea is to concatenate 
the shock graphs associated with a collection of suffi- 
ciently distinct projected views of an object, and then 
use a similar matching algorithm. Whereas much work 
remains to be done on this front, empirical evidence 
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Figure 4: The shocks computed for a hand, a plier, a brush, 
and a hammer. The labels correspond to vertices in the derived 
shock graphs, as shown in Figure 5. 

I I 

I , f i r  
0 0  0 0  

# 

I -- I 

L 1 

I 

Figure 5: The shock graphs for the shapes in Figure 4. The 
vertices are labeled according to their type, with the arrows in 
the direction of shape growth. The distinct ends of a 3-shock 
are partitioned with a dashed line. 

indicates that the topological structure of the shock 
graph is quite stable under small changes in viewpoint. 
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