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Matching configurations of image features, represented as attributed graphs, to configurations of model
features is an important component in many object recognition algorithms. Noisy segmentation of
images and imprecise feature detection may lead to graphs that represent visually similar configurations
that do not admit an injective matching. In previous work, we presented a framework which computed
an explicit many-to-many vertex correspondence between attributed graphs of features configurations.
The framework utilized a low distortion embedding function to map the nodes of the graphs into point
sets in a vector space. The Earth Movers Distance (EMD) algorithm was then used to match the resulting
points, with the computed flows specifying the many-to-many vertex correspondences between the
input graphs. In this paper, we will present a distortion-free embedding, which represents input graphs
as metric trees and then embeds them isometrically in the geometric space under the l1 norm. This not
only improves the representational power of graphs in the geometric space, it also reduces the complex-
ity of the previous work using recent developments in computing EMD under l1. Empirical evaluation of
the algorithm on a set of recognition trials, including a comparison with previous approaches, demon-
strates the effectiveness and robustness of the proposed framework.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Feature matching is a fundamental problem in computer vision,
and plays a critical role in many tasks such as object recognition
and localization. The problem of matching can be defined as estab-
lishing a mapping between features in one image and similar fea-
tures in another image. Representing image feature configurations
as attributed graphs has long been a powerful paradigm in com-
puter vision, in which the nodes represent the abstraction of image
features and the edges capture spatial relations among features.
When feature configurations are represented as graphs, the feature
matching problem translates into establishing correspondence (or
isomorphism) between the associated graphs.

The problem of computing the similarity between pairs of ob-
jects using their graph representations has been the subject of
extensive studies in the computer vision and pattern recognition
communities for over two decades. Most of the work on the match-
ing of attributed graphs has focused on the problem of establishing
injective correspondences between the vertices of two graphs.
Haralick and Shapiro [21] proposed one of the earliest such frame-
works for subgraph isomorphism based on inexact matching of
weighted primitives (weighted attributes and weighted relation
ll rights reserved.

ci).
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tuples) associated with each graph. Their algorithm inspired inex-
act injective graph matching algorithms based on tree search tech-
niques with backtracking [24]. Heuristic-based graph traversal
[26], graph editing [5,25], probabilistic relaxation [12], linear pro-
gramming [3], and optimization techniques [4] exemplify inexact
graph matching algorithms. Recently, heuristics are used in some
frameworks to speed up the search time of the algorithms in this
class (e.g., [14,13]).

The assumption of one-to-one correspondence is a very restric-
tive one, for it assumes that the primitive features in the two
graphs agree in all aspects of their abstraction. Unfortunately,
there are a variety of conditions that may lead to graphs that en-
code similar image feature configurations yet fail to match in a
one-to-one fashion. This can be due to noisy feature detection, seg-
mentation errors, or failure in detection of features at their appro-
priate scales. This, in turn, implies that a single feature (node) in
one graph (image) may map to a collection or cluster of features
(nodes) in another graph. The limitation of exact (or, one-to-one)
graph matching is depicted in Fig. 1, where the silhouettes of
two shapes and their undirected shock graphs [22] are shown at
the top and bottom rows, respectively. Although the elephant sil-
houettes are similar, no graph or subgraph isomorphism exist be-
tween their graphs. Some parts that exist in one graph do not
appear in the other. Moreover, some parts such as rear legs of
the left silhouette are shown in a different appearance on the right,
ature matching under the l1 norm, Comput. Vis. Image Understand. (2011),
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Fig. 1. The need for many-to-many matching. Although the silhouettes of two
elephants are similar, a one-to-one matching does not exist between their shock
graphs. Some parts which exist in one silhouette do not appear in the other. A
robust algorithm should establish many-to-many correspondence between image
features.
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resulting in a different structure in the graph. As a result, a robust
matching algorithm should be able to establish many-to-many cor-
respondence between image features.

In previous work [8], we presented an inexact graph matching
algorithm that establishes many-to-many correspondences among
the vertices of two graphs by first embedding them in a metric
space as two distributions and then solving a geometric transpor-
tation problem to align the two sets. More specifically, the frame-
work maps vertices of the input graphs into the same geometric
space through a graph embedding technique based on spherical
coding. Throughout the embedding, attributed vertices in each
graph map to weighted points, and shortest path distances be-
tween the vertices are mapped to the Euclidean distances between
their corresponding points.

The embedding can be used only if the input graphs are trees. If
the input graphs are not trees, i.e., they contain cycles, then a
preprocessing step for constructing the metric tree approximation
of the input graph is necessary. Next, the problem of many-to-many
graph matching will be reformulated as that of many-to-many point
matching. The approach for solving the many-to-many matching of
the weighted point sets is based on using the Earth Mover’s Distance
(EMD) [19] algorithm.

The approach provides favorable matching results, but suffers
from a major drawback. Namely, the graph embedding used in
this work results in distortion, i.e., shortest-path distances between
the vertices are not always equal to the Euclidean distances be-
tween their corresponding points. Although the distortion is theo-
retically bounded, this reduces the representative power of graphs
and thus results in an approximate representation in the geometric
space.

In this paper, we overcome the problem of approximate graph
representation in the geometric space through an isometric
embedding technique. Drawing on an important theorem from
graph theory, we ensure that the distances in the input graphs
(trees) are preserved exactly in the geometric space under the l1
norm [17], which is of particular interest to many applications such
as music retrieval and approximate matching. Armed with a distor-
tion-free embedding of an input graph’s structure, many-to-many
graph matching is reduced to the problem of matching point sets,
for which we use the EMD algorithm. We show that the many-to-
many point matching that realizes the minimum EMD corresponds
to the desired many-to-many matching between vertices of the
Please cite this article in press as: M.F. Demirci et al., Efficient many-to-many fe
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original graphs. Moreover, experimental evaluation of the pro-
posed work demonstrates that the framework is a more efficient,
more effective and more stable approach to many-to-many graph
matching over the previous algorithm. Our preliminary work on
many-to-many matching under l1 is reported in [7].

The rest of the paper is organized as follows. After providing a
brief overview of the previous many-to-many matching algorithm
in Section 2, we describe the extension of this algorithm and ana-
lyze its complexity in Section 3. Performing an isometric embed-
ding not only improves the efficacy of the framework, it also
reduces the overall complexity using recent developments in
EMD under the l1 norm. We evaluate and compare the proposed
approach and previous work on a view-based recognition domain
using two different datasets in Section 4. Finally, we close the pa-
per with a conclusion in Section 5.
2. Overview of the many-to-many matching algorithm

Our previous many-to-many matching algorithm starts by rep-
resenting input graphs as trees. The problem of fitting a distance
matrix by a tree metric is known as the Numerical Taxonomy prob-
lem. Since construction of the numerical taxonomy tree is NP-hard
under l1 and l2 norms and it is an open problem for general dis-
tance metrics under l1, an approximation framework proposed
by Agarwala et al. is used [1]. Given a graph, the objective of its tree
construction procedure is to minimize the distance given by
kT � Dkk, where T is the tree metric, D is the metric defined on
the vertices of the input graphs using shortest path distances,
and k P 1. Agarwala et al.’s procedure allows us to use the
many-to-many matching technique for any type of graph. How-
ever, if we assume that database silhouettes can be represented di-
rectly by trees, this process is not needed. In this paper, we
compute a tree representation for each silhouette in the database
without employing Agarwala et al.’s procedure. The details of the
tree representation algorithm are defined in Section 4.

Given two trees, the many-to-many matching algorithm em-
beds them into a geometric space of prescribed dimensionality.
This step is performed by a graph embedding technique using
spherical coding. The goal of the graph embedding is to map a
graph’s structure to a set of vectors in a low-dimensional space.
This mapping simplifies the original graph representation and re-
tains important information about both local (neighborhood) as
well as global graph structure. In addition, this mapping is stable
with respect to noise in the graph structure.

Having defined a low-dimensional, robust vector representation
of an input graph’s structure, many-to-many graph matching is re-
duced to the much simpler problem of matching weighted distri-
butions of points in a geometric space using a distribution-based
dissimilarity measure, known as EMD. The EMD algorithm evalu-
ates the dissimilarity between two multi-dimensional distribu-
tions. The main advantage of using EMD is that it subsumes
many histogram distances and permits partial matches in a natural
way. This important property allows the similarity measure to deal
with uneven clusters and noisy datasets.

Computing the EMD is based on the well-known transportation
problem [2], which is formulated as linear programming. Assume
that the elements in the first distribution indicate supplies and
the elements in the second distribution indicate demands at their
positions. The EMD then computes the minimum amount of work
required to transform one distribution into the other. Formally, let
P ¼ fðp1;wp1

Þ; . . . ; ðpn;wpn
Þg be the first distribution of size n and

Q ¼ fðq1;wq1 Þ; . . . ; ðqm;wqm
Þg be the second distribution of size m,

where pi (or qi) is the position of the ith element and wpi
(or wqi

)
is its weight, and let dij denote the ground distance between points
pi and qj. The objective function of this problem is to find a flow
ature matching under the l1 norm, Comput. Vis. Image Understand. (2011),
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Fig. 2. Overview of the many-to-many matching algorithm. After representing two
silhouettes as shock graphs (transition 1), the graphs are embedded into geometric
spaces of the same dimensionality (transition 2). To compute the matching between
the two distributions, the Earth Mover’s Distance (EMD) algorithm is used. The
bottom part illustrates the many-to-many correspondences between the vertices of
the input graphs, defined by the computed flows from the EMD. Each dashed
ellipsoid represents a set of vertices from the original graph.
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matrix F = [fij], with fij being the amount of flow between pi and qj,
which minimizes the overall cost:

EMDðP;QÞ ¼
Xn

i¼1

Xm

j¼1

fijdij

subject to
Pn

i¼1fij 6 wpi
;
Pm

j¼1fij 6 wqj
,
Pn

i¼1

Pm
j¼1fij ¼min

Pn
i¼1wpi

;
�

Pm
j¼1wqj

Þ, and fij P 0. An efficient solution to the EMD problem plays
critical role in the effectiveness of many-to-many applications, e.g.,
image retrieval and shape matching in computer vision. Transporta-
tion-simplex methods, interior-point algorithms, and minimum
cost network flow techniques are some examples of approaches
for solving the transportation problem efficiently. In this paper,
we use the transportation-simplex method [11].

The solution of the EMD yields three different types of corre-
spondences: one-to-one, one-to-many, and many-to-one. While
one-to-one correspondence is usually obtained when the weight
of each point in the input distributions is uniform, one-to-many
and many-to-one correspondences can result from point distribu-
tions with distinct weights. In a one-to-many correspondence, a
set of points fðq1;wq1 Þ; . . . ; ðqk;wqk

Þg 2 Q receive flow from a com-
mon point ðp0;wp0 Þ 2 P such that

Pk
i¼1fp0 i 6 wp0 . Similarly, in a

many-to-one correspondence, a set of points
fðp1;wp1

Þ; . . . ; ðpl;wpl
Þg 2 P send flow to a single point ðq0;wq0 Þ 2 Q

such that
Pl

i¼1fiq0 6 wq0 . Overall, the solution provided by the
EMD leads a many-to-many correspondence.

An extension of the original EMD approach matches point sets
that are non-rigidly embedded into the Euclidean space by allow-
ing sets to undergo transformations [6]. Assuming that a transfor-
mation is applied to the second distribution, distances dT

ij are
defined as dT

ij ¼ dðpi; TðqjÞÞ and the objective function becomes
EMDðP;QÞ ¼

Pm
i¼1

Pn
j¼1fijd

T
ij . The minimal value of the objective

function EMD(P,Q,T) defines the Earth Mover’s Distance between
the two distributions that are allowed to undergo a transformation.

Applying the many-to-many point correspondences produced
by the EMD back to the original graphs yields the many-to-many
graph matching. The solution of the EMD also represents the dis-
tance between the point sets. This distance is then used as a dis-
similarity score between the original graphs. Thus, given a query
and a database, the database graph which most resembles the
query graph can be retrieved by computing the dissimilarity score
between the query and each database graph, and choosing the
closest graph. An overview of the many-to-many matching algo-
rithm is given in Fig. 2.
3. Embedding trees under the l1 norm and many-to-many point
matching

The many-to-many matching approach outlined in the previous
section transforms a combinatorial inexact graph matching prob-
lem into an instance of the geometric point-set matching problem.
Since the efficacy of the algorithm depends on the distribution of
edge weights in the original graphs, i.e., the weight of an edge is in-
versely proportional to the chance that the endpoints (vertices) of
the edge map to the same conic section of spherical their encoding.
Preserving the vertex proximity when embedding them in Euclid-
ean space will allow them to receive flow from a common source
during the EMD algorithm. However, embedding a tree into Euclid-
ean space under the l2 norm may introduce considerable distortion
in the original edge weights. Since distances between the vertices
of a tree are not represented accurately by those of the points in
the Euclidean space, the final many-to-many matching obtained
by the EMD algorithm may result in both undesired vertex corre-
spondences and dissimilarity values between the trees. The follow-
ing result, due to Gupta [10], provides an upper-bound on the
Please cite this article in press as: M.F. Demirci et al., Efficient many-to-many fe
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magnitude of distortion in embedding a tree into a geometric space
under l2.

Theorem 1. For a tree T with ‘(T) leaves, there exists an embedding
/ : VðTÞ ! ld2 with distortion:

Dð/Þ 6 O ‘1=ðd�1Þ minflog ‘ðTÞ;dgð Þ1=2
� �

ð1Þ

where d is the dimension of the geometric space.
In practice, for large trees, embedding algorithms under l2 may

result in distortion. In fact, experimental results of Demirci et al.
[8] indicate that spherical embedding under l2 can cause an aver-
age of 17% distortion in a 100-dimensional space.

In this paper, we will overcome this problem by embedding
trees under l1. The idea is to use an isometric embedding under
the l1 norm [10] that can ensure no distortion is introduced when
transforming the many-to-many matching problem from the graph
domain to geometric space. In a d-dimensional metric space, the
distance U1, between two points X = [x1,x2, . . . ,xd]t and
Y = [y1,y2, . . . ,yd]t can be computed under the l1 norm as

U1ðX;YÞ ¼
Xd

k¼1

jxk � ykj: ð2Þ

Our proposed embedding uses the caterpillar decomposition that
captures the topological structure of the tree and is defined as the
collection of edge-disjoint (sub)root-leaf paths. This concept is illus-
trated in a sample tree shown in Fig. 3. The three paths between a
and c, a and g, a and m are called level 1 paths and represent the first
three paths in the caterpillar decomposition. If we remove these
three level 1 paths from the tree, we are left with three edge-dis-
joint paths. These are the paths between e and f, i and j, k and l,
called level 2 paths, which represent the other three paths in the
caterpillar decomposition. If removing the level 2 paths had left
additional connected components, the process would be repeated
until all the edges in the tree had been removed. The union of the
paths is called the caterpillar decomposition, denoted by P. The
total number of paths in P specifies the dimensionality of the
ature matching under the l1 norm, Comput. Vis. Image Understand. (2011),
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Fig. 3. Edge-disjoint paths extracted from the caterpillar decomposition of a tree.

4 M.F. Demirci et al. / Computer Vision and Image Understanding xxx (2011) xxx–xxx
geometric space into which the graph is embedded. For a detailed
description of the Caterpillar decomposition and its properties
and computation, see Matous̆ek [18].

To compute the coordinates of vertex v in the geometric space,
we first find the unique path P(v) between v and the root r. Assume
that the first segment of P(v) of weight ‘1 follows some path P1 2 P,
the second segment of weight ‘2 follows a path P2 2 P, and the last
segment of weight ‘a follows a path Pa 2 P. Let the sequences
hP1, . . . ,Pai and h‘1, . . . ,‘ai be the decomposition sequence and the
weight sequence of P(v), respectively. Since each path in P corre-
sponds to a coordinate axis, the following process is used to find
the coordinates of v: if the decomposition sequence of P(v) consists
of a path Pi 2 P, its corresponding coordinate will have a value of ‘i

as defined in the weight sequence. Otherwise, the corresponding
coordinate will have a value of 0. It is easy to see that the embed-
ding obtained through this procedure is isometric under l1. To illus-
trate this procedure, we turn back to Fig. 3 in which the tree is
embedded into a 6-dimensional space. For example, to compute
the coordinates of vertex f, observe that the path between a and f
Fig. 4. Sample silhouettes fro

Fig. 5. Representative silhouettes of eac

Please cite this article in press as: M.F. Demirci et al., Efficient many-to-many fe
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consists of one level 1 path (between a and e) of weight 1.5 and
one level 2 path (between e and f) of weight 1.5. Since these paths
correspond to the 2nd and 4th paths in the caterpillar decomposi-
tion of the tree, only the 2nd and 4th coordinates of the point rep-
resenting f will be non-zero. Thus, the coordinates of vertex f in the
geometric space are (0,1.5,0,1.5,0,0). Although the caterpillar
decomposition P is not unique, the resulting embeddings are all
isometric under l1. However, to be consistent in our embedding
procedure, the order in which the paths in the caterpillar decom-
position are selected is defined by their weights. After computing
the coordinates of each vertex in the tree, the distance between
any pair of vertices in the tree is preserved by the l1 distance be-
tween their corresponding coordinates. Since the geometric prop-
erties of a tree are represented exactly under the l1 norm, this
embedding is distortion-free.

It is important to note that embeddings produced by the above
algorithm can be of different dimensions. Therefore, in order to
match the two embeddings, we must first perform a registration
step, whose objective is to project the two distributions into the
m the first dataset (db1).

h class from the MPEG-7 database.

ature matching under the l1 norm, Comput. Vis. Image Understand. (2011),
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same normed space. As done in our previous work [9], we could,
for instance, project the distributions onto the first K right singular
vectors of their covariance matrices. This technique is based on
Principal Component Analysis and retains the maximum informa-
tion about the original vectors among all projections onto subspac-
es of dimension K. Although this method equalizes the dimensions
of the two distributions while losing minimal information, it still
introduces distortion in the geometric space. Since our objective
is to perform a distortion-free embedding in the proposed frame-
Fig. 6. Matching results for some MPEG-7 shapes. The skeleton groups

Please cite this article in press as: M.F. Demirci et al., Efficient many-to-many fe
doi:10.1016/j.cviu.2010.12.012
work, this technique is not suitable for our purpose. Our solution
for equalizing the dimensions of the distributions is simply based
on padding zeros to the lower dimensional distribution. Since this
increases the complexity of the EMD algorithm, we seek a more
efficient implementation of this technique in our framework.

Having isometrically embedded the trees into the same dimen-
sion, we can now proceed with finding the matching between the
points. As mentioned earlier, this step is performed using the EMD
algorithm. To generate the many-to-many matching efficiently
shown inside corresponding ellipses are matched many-to-many.

ature matching under the l1 norm, Comput. Vis. Image Understand. (2011),
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under l1, we use the EMD-L1 approach presented in [16], which has
a simplified structure and improved complexity in comparison to
the original EMD formulation. The authors also describe an effi-
cient tree-based algorithm to solve the EMD-L1. In addition, they
showed that the EMD-L1 is equivalent to the original EMD with l1
ground distance without approximation.

3.1. Complexity

The proposed algorithm consists of several components. Thus,
we start by stating the complexity of each component. Computing
the tree for a given graph takes O(jVj2) (see [1] for details). Perform-
ing an isometric embedding of trees into the geometric space un-
der l1 can be done in linear time using depth first search as
shown before. The EMD is formulated as a linear programming
problem and can be solved using a network flow algorithm in
O(jVj3). However, using EMD-L1, the complexity of the EMD is re-
duced to O(jVj2). Finally, mapping the EMD solution back to the
graph is O(jVj). Thus, the overall complexity of the proposed
approach is bounded by O(jVj2). This shows that by employing
a distortion-free embedding and using the EMD-L1 approach,
the proposed framework has a better time complexity than the
previous work (i.e., O(jVj7/6jEj)).
Fig. 7. The actual many-to-many correspondences between skeleton groups within
the upper left ellipses of the two apple images shown in Fig. 6. The skeleton groups
are rotated for better visibility.

Fig. 8. Percentage recall values of the proposed and previous recognition techniques for d
for each percentage recall value in both datasets.

Please cite this article in press as: M.F. Demirci et al., Efficient many-to-many fe
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4. Experiments

In this section, we present the experimental evaluation of the
proposed method and its comparison with the previous work [8]
in the context of an object recognition experiment using two dif-
ferent datasets, which both comprise 2D shapes of 3D objects.
The first dataset (db1) consists of 1620 silhouettes of 9 objects,
with 180 views for each; example silhouettes are shown in
Fig. 4. The second database is the MPEG-7 CE-Shape-1 (Part B)
database, consisting of 1400 shapes clustered into 70 classes with
20 shapes per class. Fig. 5 represents sample silhouettes of each
class from this dataset. Each silhouette in each dataset is repre-
sented by an undirected shock tree, whose nodes represent shock
points [22] and whose edges connect adjacent shock points. Each
vertex v in the tree is labeled by a triplet (x,y,r), where the pair
(x,y) denotes the Euclidean coordinates of the corresponding shock
point p and r is the radius of the maximal bi-tangent circle cen-
tered at p. Each shock point becomes a node in the shock graph.
Each pair of shock points will be connected by an edge whose
weight reflects the Euclidean distance between the corresponding
shock points. The graph is converted into a tree by computing its
minimum spanning tree. Thus, tree nodes correspond to shock
points, and tree edges connect nearby shock points. We choose
the root of the tree to be the node that minimizes the sum of the
tree-based shortest path distances to all other nodes. The root
choice may be sensitive to occlusion and noise. We plan to evaluate
other strategies such as selecting the node with maximum degree
as the root in the future.

As an illustration of our approach, in Fig. 6 we present some
examples of the many-to-many matchings obtained from our algo-
rithm for some object pairs selected from the MPEG-7 database. In
this figure, skeleton groups corresponding to each other are placed
inside ellipses and these ellipses are connected by a curve. The cor-
responding skeleton groups are matched many-to-many. One may
notice that the correspondences are intuitive in all examples. Fig. 7
displays the actual many-to-many correspondences between skel-
eton groups within the upper left ellipses of the two apple images
(first row of Fig. 6).

To provide a more comprehensive evaluation of the framework,
we conducted the following experiment for each dataset. We first
use each database graph as a query (with replacement) to the
remaining database. Then, we compute the distance between each
query and each of the remaining database graphs using our pro-
posed algorithm. Ideally, given a query view of an object, the
matching algorithm should return another view of the same object.
b1 (a) and the MPEG-7 dataset (b). Observe that the proposed algorithm is superior

ature matching under the l1 norm, Comput. Vis. Image Understand. (2011),
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This is classified as a correct object recognition. According to the
results, our framework and the previous work obtain 97.5% and
95.3% object recognition rates, respectively, for db1. Repeating
the same experiment for the MPEG-7 dataset, our framework
achieves 93.8%, while the previous work results in 89.6% object
recognition rate.

In the second experiment, we compute the total number of re-
trieved images that is necessary to retrieve the entire query class.
After computing the similarity values between every database pair,
we look at the top matches to see how many of the within-cate-
gory shapes belong to the same class as the query. Ideally, if an ob-
ject has k shapes in the database, the top k � 1 entries should
belong to the same class as the query. The results show that the
first 209 closest database objects always contain all the views
belonging to the query class for db1 using the proposed frame-
work. This quantity was 28 for MPEG-7 database. Performing the
same experiments using the previous work yields 244 for db1
and 44 for MPEG-7. These values indicate that the recall in each
dataset is 100% if the scope is set to the first 12.9% and 2% of the
closest database objects using our framework, and 15% and 3.1%
using the previous approach. In Fig. 8, we show percentage recall
values for various scopes for each dataset using both many-to-
many matching techniques.

The results clearly demonstrate the improved performance of-
fered by the isometric embedding technique, at a reduced compu-
Table 1
Recognition rate as a function of increasing perturbation. The baseline recognition
rate (with no perturbation) is 97.5% for db1 and 93.8% for MPEG-7.

Perturbation 5% 10% 15% 20%

Recognition rate db1 95.13% 90.73% 84.25% 78.72%
Recognition rate MPEG-7 90.32% 85.28% 79.15% 74.41%

Fig. 9. Kimia’s dataset [20] consisting of 99 silhouettes in nine classes.

Table 2
The number of top 1–top 10 closest matches that fall into the correct class are shown fo
Observe that our approach performs comparably to the best approaches.

Algorithm 1st 2nd 3rd 4

Generative models [23] 99 97 99 9
Graph edit-distance [20] 99 99 99 9
Inner distance (IDSC + DP) [15] 99 99 99 9
Inner distance (MDS + SC + DP) [15] 99 98 98 9
Proposed method 99 99 98 9

Please cite this article in press as: M.F. Demirci et al., Efficient many-to-many fe
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tational cost. To demonstrate the framework’s robustness, we
performed four perturbation studies on both the databases. The
experiments are identical to the ones described above, except that
the query was perturbed by adding/deleting 5%, 10%, 15%, and 20%
of its nodes (and their adjoining edges). The results are shown in
Table 1, and reveal that the error rates increase gracefully as a
function of increased perturbation. Although this is not a true
occlusion experiment, which would require that a subtree is re-
placed with an occluder subtree, the results demonstrate the
framework’s ability to match local structure, which is essential
for handling occlusion.

We should note that upon investigation of our results, we found
that most mismatches in MPEG-7 were between similar classes.
Considering that there are seven different tool classes and several
4-legged animals in MPEG-7, our results should be considered as
worst-case. Despite being different objects, their shapes and thus
their skeletons are similar. Grouping these similar classes into
the same category will indeed improve our recognition rates.

Having demonstrated the improved performance of the pro-
posed technique over the previous many-to-many matching algo-
rithm and its robustness under perturbation, we compare our
approach to a leading graph edit-distance approach [20], a genera-
tive model approach [23], and an inner distance approach [15]
next. The database used for this experiment consists of 99 in-
stances from nine classes provided by Kimia’s group (Fig. 9). Sim-
ilar to the retrieval experiments presented above, each shape is
matched against all other shapes in the database. Recognition
scores are given as the number of kth closest matches that fall into
the correct class, where k = 1, . . . ,10. The best possible score in each
match is 99. The results are presented in Table 2 and reveal that
our approach performs comparably to the best approaches re-
ported on this dataset. The proposed framework is the second best
approach based on the total number of mismatches in top 10 ret-
rievals, which is recorded as 102, 34, 32, 26, and 29 for generative
models, graph edit-distance, inner distance (IDSC + DP), inner dis-
tance (MDS + SC + DP) and the proposed algorithm, respectively.
5. Conclusions

Matching object features many-to-many is a critical process for
object recognition and classification. One-to-one matching algo-
rithms cannot handle segmentation/articulation errors or scale dif-
ference, which may exist between features of similar objects. This
paper computes the dissimilarity between object pairs represented
as trees by computing the many-to-many matching between their
vertices. The proposed framework embeds the input trees isomet-
rically into a geometric space under the l1 norm. Unlike previous
work, the embedding approach used in the proposed framework
is distortion-free. The embedded points are efficiently matched
many-to-many using a recent development in the efficient Earth
Movers Distance (EMD) algorithm under l1. The resulting flows
specify the many-to-many vertex correspondences between the in-
put trees. We have successfully evaluated the proposed technique
on three image databases and include a set of structural perturba-
r several algorithms on Kimia’s dataset. The best possible score in each match is 99.

th 5th 6th 7th 8th 9th 10th

8 96 96 94 83 75 48
8 98 97 96 95 93 82
8 98 97 97 98 94 79
8 97 99 97 96 97 85
9 98 97 98 97 92 84
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tion experiments that establish the algorithm’s robustness to
noise. Moreover, we have shown that the approach compares
favorably to previous approaches on these datasets. Studying dif-
ferent isometric embedding techniques under various norms and
employing other distribution-based matching algorithms in our
framework are our future plans.
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