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Abstract

A phylogenyis a tree capturing evolution and ancestral relationships of a set of taxa (e.g., species). Reconstructing
phylogenies from molecular data plays an important role in many areas of contemporary biological research. A
phylogeny is perfect if (in rough terms) it correctly captures all input data. Determining if a perfect phylogeny exists
was shown to be intractable in 1992 by Mike Steel [32] and independently by Bodlaender et al. [4]. In light of this, a
related problem was proposed in [32]: given a perfect phylogeny, determine if it is the unique perfect phylogeny for
the given dataset, where the dataset is provided as a set of quartet (4-leaf) trees. It was suggested that this problem
may be more tractable [32], and determining its complexity became known as the Quartet Challenge [33].

In this paper, we resolve this question by showing that the problem is CoNP-complete. We prove this by relating
perfect phylogenies to satisfying assignments of Boolean formulas. To this end, we cast the question as a chordal
sandwich problem. As a particular consequence of our method, we show that the unique minimal chordal sandwich
problem is CoNP-complete, and counting minimal chordal sandwiches is #P-complete.
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1. Introduction

One of the major efforts in molecular biology has been the computation of phylogenetic trees, orphylogenies,
which describe the evolution of a set of species from a commonancestor. A phylogenetic tree for a set of species is a
tree in which the leaves represent the species from the set and the internal nodes represent the (hypothetical) ancestral
species. One standard model for describing the species is interms ofcharacters, where a character is an equivalence
relation on the species set, partitioning it into differentcharacter states. In this model, we also assign character states
to the (hypothetical) ancestral species. The desired property is that for each state of each character, the set of nodes
in the tree having that character state forms a connected subgraph. When a phylogeny has this property, we say it
is perfect. The Perfect Phylogeny problem [20] then asksfor a given set of characters defining a species set, does
there exist a perfect phylogeny?Note that we allow that states of some characters are unknownfor some species;
we call such characterspartial, otherwise we speak offull characters. This approach to constructing phylogenies
has been studied since the 1960s [8, 25, 26, 27, 35] and was given a precise mathematical formulation in the 1970s
[12, 13, 14, 15]. In particular, Buneman [7] showed that the Perfect Phylogeny problem reduces to a specific graph-
theoretic problem, the problem of finding a chordal completion of a graph that respects a prescribed colouring. In fact,
the two problems are polynomially equivalent [23]. Thus, using this formulation, it has been proved that the Perfect
Phylogeny problem is NP-hard in [4] and independently in [32]. These two results rely on the fact that the input
may contain partial characters. In fact, the characters in these constructions only have two states. If we insist on full
characters, the situation is different as for any fixed number r of character states, the problem can be solved in time
polynomial [1] in the size of the input (and exponential inr). In particular, forr = 2 (or r = 3), the solution exists if
and only if it exists for every pair (or triple) of characters[15, 24]. Also, when the number of characters isk (even if
there are partial characters), the complexity [28] is polynomial in the number of species (and exponential ink).
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Another common formulation of this problem is the problem ofa consensus tree[10, 19, 32], where a collection
of subtrees with labelled leaves is given (for instance, theleaves correspond to species of a partial character). Here,we
ask for a (phylogenetic) tree such that each of the input subtrees can be obtained by contracting edges of the tree (we
say that the treedisplaysthe subtree). The problem does not change [31] if we only allow particular input subtrees, the
so-calledquartet trees, which have exactly six vertices and four leaves. This follows from the fact that everyternary
phylogenetic tree(all internal nodes have degree 3) can be uniquely describedby a collection of quartet trees [31].
However, a collection of quartet trees does not necessarilyuniquely describe a ternary phylogenetic tree. (Note that
some authors use the termbinary tree[5, 31] orsubcubic treefor what we call here aternary treeas defined in [30].)

This leads to a natural question (first posed in [32]):What is the complexity of deciding whether or not a collection
of quartet trees uniquely describes a (ternary) phylogenetic tree?Initially, it was suggested [32] that this problem may
be more tractable. Indeed,a priori it is possible that unique solutions only exist for special collections of quartet trees
and thus have special structure which could be easy to test. However, as the problem was open for a number of years,
and perhaps from experience with real datasets, it became more clear that this probably is not the case. This was
reflected in the problem being conjectured to be intractableby Mike Steel who named it Quartet Challenge and listed
it on his personal webpage [33] alongside with other challenging research problems from the area of phylogenetics. In
particular, to emphasize the importance of the problem, a price of $100 was offered for the first proof of intractability.

In this paper, we resolve the problem by showing that it is indeed intractable. Namely, we show the following.

Theorem 1. It is CoNP-complete to determine, given a ternary phylogenetic X-treeT and a collectionQ of quartet
subtrees onX, whether or notT is the only phylogenetic tree that displaysQ.

To prove this theorem, we investigate the graph-theoretical formulation of the problem [7] and view it through the
notion of chordal sandwich [17]. In contrast, an alternative proof of the theorem, which recently appeared as [5], is
based on the betweenness property, extending the hardness result of [32]; our proof extends the hardness from [4].

In light of this, we note that there are special cases of the problem that are known to be solvable in polynomial
time. For instance, this is so if the collectionQ contains a subcollectionQ′ with the same setL of labels of leaves
and with|Q′| = |L| − 3. However, finding such a subcollection is known to be NP-complete. For these and similar
results, we refer the reader to [3].

We prove Theorem 1 by describing a polynomial-time reduction from the uniqueness problem forONE-IN-THREE-
3SAT, which is CoNP-complete by [22].

Theorem 2. [22] It is CoNP-complete to decide, given an instanceI of ONE-IN-THREE-3SAT, and a truth assignment
σ that satisfiesI, whether or notσ is the unique satisfying truth assignment forI.

We extract this from [22] by encoding the problem as the ternary relation{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. We check
that this relation is not: 0-valid, 1-valid, Horn, anti-Horn, affine, 2SAT, or complementive. Thus the uniqueness of the
satisfiability problem corresponding to this relation is CoNP-complete by [22].

Our construction in the reduction is essentially a modification of the construction of [4] which proves NP-hardness
of the Perfect Phylogeny problem. Recall that the construction of [4] produces instancesQ that have a perfect phy-
logeny if and only if a particular boolean formulaΦ is satisfiable. While studying this construction, we immediately
observed that these instancesQ have, in addition, the property thatΦ has a unique satisfying assignment if and only
if there is a unique minimal restricted chordal completion of the partial partition intersection graph ofQ (for defini-
tions see§2). This is precisely one of the two necessary conditions foruniqueness of perfect phylogeny as proved
by Semple and Steel in [30] (see Theorem 5). Thus by modifyingthe construction of [4] to also satisfy the other
condition of uniqueness of [30], we obtained the construction that we present in this paper. Note that, however, unlike
[4] which uses 3SAT, we had to use a different problem in order for the construction to work correctly. Also, to prove
that the construction is correct, we employ a variant of the characterization of [30] that uses the more general chordal
sandwich problem [17] instead of the restricted chordal completion problem (see Theorem 8). In fact, by way of The-
orems 6 and 7, we establish a direct connection between the problem of perfect phylogeny and the chordal sandwich
problem, which apparently has not been yet observed. (Note that the connection to the (restricted) chordal completion
problem of coloured graphs as mentioned above [7, 23] is a special case of this.)

Finally, as a corollary, we obtain the following result which is very interesting by itself.
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Corollary 3. The unique minimal chordal sandwich problem is CoNP-complete. The problem of counting the number
of minimal chordal sandwiches is#P-complete.

The first part follows directly from Theorems 2 and 9, while the second part follows from Theorem 9 and [9].

The paper is structured as follows. In§2, we describe some preliminary definitions and results needed for the
construction in our reduction. In particular, we describe,based on [30], necessary and sufficient conditions for the
existence of a unique perfect phylogeny in terms of the minimal chordal sandwich problem (cf. [16, 17]). The proof
of this characterization is postponed until§5.

In §3 and§4, we present our hardness reduction, first informally and then formally. We state the two uniqueness
conditions (Theorems 9 and 10) relating satisfying assignments of an instanceI of ONE-IN-THREE-3SAT to minimal
chordal sandwiches and phylogenetic trees uniquely determined by these assignments. The proofs are presented later
in §6 and§7. In §8, we put these results together to prove Theorem 1.

We conclude in§9 with some other consequences and open questions related tothis work.

2. Preliminaries

We mostly follow the terminology of [30, 31] and the graph-theoretical notions of [34].
In this paper, a graph is always simple, undirected, with no loops or parallel edges. For a graphG = (V, E), we

write V(G) to denote its vertex set andE(G) to denote its edge set. We writeuv for the edge(u, v) ∈ E(G), and
say thatu, v areneighboursor adjacentin G. For a vertexv ∈ V(G), we denote byNG(v) theneighbourhoodof v
in G, i.e, the set of neighbours ofv in G. We write NG[v] for NG(v) ∪ {v}. When appropriate, we drop the index
G and simply writeN(v) and N[v]. For a setX ⊆ V(G), we denote byG[X] the subgraph ofG inducedby X,
i.e., the graph with vertex setX and edgesuv such thatu, v ∈ X anduv ∈ E(G). We writeG − X for the graph
G[V(G) \ X]. Similarly, for a set of edgesF ⊆ E(G), we writeG − F for the graph with vertex setV(G) and edge
setE(G) \ F. We writeG − x as a shorthand forG −{x}. We say thatX is acliqueof G if G[X] is acomplete graph
(i.e., has all possible edges). A vertexv ∈ V(G) is asimplicial vertexof G if all its neighbours are pairwise adjacent.

A graph is achordal graphif it does not contains an induced cycle of length four or more. A perfect elimination
orderingof a graphG is an orderingv1, v2, . . . , vn of the vertices ofG such that for everyi ∈ {1 . . . n}, the vertex
vi is a simplicial vertex ofG

[

{v1, . . . , vi}
]

, i.e., all its neighbours among{v1 . . . , vi−1} are pairwise adjacent. It is
well-known [11] that a graph is chordal if and only if it admits a perfect elimination ordering.

Let X be a non-empty set. AnX-tree is a pair(T, φ) whereT is tree andφ : X → V(T) is a mapping such that
φ−1(v) 6= ∅ for all verticesv ∈ V(T) of degree at most two. AnX-tree(T, φ) is ternary if all internal vertices ofT
have degree three. TwoX-trees(T1, φ1), (T2, φ2) areisomorphicif there exists an isomorphismψ : V(T1) → V(T2)
betweenT1 andT2 that satisfiesφ2 = ψ ◦ φ1.

An X-tree(T, φ) is aphylogeneticX-tree (or a free X-tree in [30]) if φ is a bijection betweenX and the set of
leaves ofT. A partial partition of X is a partition of a non-empty subset ofX into at least two sets. IfA1, A2, . . . ,
At are these sets, we call themcellsof this partition, and denote the partitionA1 A2 . . . At. If t = 2, we call the

partition apartial split. A partial splitA1 A2 is trivial if |A1| = 1 or |A2| = 1.
A quartet treeis a ternary phylogenetic tree with a label set of size four, that is, a ternary treeT with 6 vertices,

4 leaves labelleda, b, c, d, and with only one non-trivial partial split{a, b} {c, d} that it displays. Note that such a
tree is unambiguously defined by this partial split. Thus, inthe subsequent text, we identify the quartet treeT with
the partial split{a, b} {c, d}, that is, we say that{a, b} {c, d} is both a quartet tree and a partial split.

Let T = (T, φ) be anX-tree, and letπ = A1 A2 . . . At be a partial partition ofX. Let F ⊆ E(T) be a set of
edges ofT. We say thatF displaysπ in T if for all distinct i, j ∈ {1 . . . t}, the setsφ(Ai) andφ(Aj) are subsets of
the vertex sets of different connected components ofT − F. We say thatT displaysπ if there is a set of edges that
displaysπ in T . Further, an edgee of T is distinguishedby π if every set of edges that displaysπ in T containse.

LetQ be a collection of partial partitions ofX. An X-treeT displaysQ if it displays every partial partition inQ.
An X-treeT = (T, φ) is distinguishedby Q if every internal edge ofT is distinguished by some partial partition in
Q; we also say thatQ distinguishesT . The setQ definesT if T displaysQ, and all otherX-trees that displayQ
are isomorphic toT . Note that ifQ definesT , thenT is necessarily a ternary phylogeneticX-tree, since otherwise
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Figure 1:a) quartet treesQ, b), c) two X-trees displayingQ and distinguished byQ, d) int∗(Q); dotted lines represent the edges inforb(Q).

“resolving” any vertex either of degree four or more, or withmultiple labels results in a non-isomorphicX-tree that
also displaysQ (also, see [30, Proposition 2.6]). See Fig. 1 for an illustration of these concepts.

Thepartial partition intersection graphof Q, denoted byint(Q), is a graph whose vertex set is{(A, π) | where
A is a cell ofπ ∈ Q} and two vertices(A, π), (A′, π′) are adjacent just if the intersection ofA andA′ is non-empty.

A chordal completionof a graphG = (V, E) is a chordal graphG′ = (V, E′) with E ⊆ E′. A restricted chordal
completionof int(Q) is a chordal completionG′ of int(Q) with the property that ifA1,A2 are cells ofπ ∈ Q,
then(A1, π) is not adjacent to(A2, π) in G′. A restricted chordal completionG′ of int(Q) is minimal if no proper
subgraph ofG′ is a restricted chordal completion ofint(Q).

The problem of perfect phylogeny is equivalent to the problem of determining the existence of anX-tree that dis-
plays the given collectionQ of partial partitions. In [7], it was given the following graph-theoretical characterization.

Theorem 4. [7, 31, 32]LetQ be a set of partial partitions of a setX. Then there exists anX-tree that displaysQ if
and only if there exists a restricted chordal completion ofint(Q).

Of course, theX-tree in the above theorem might not be unique. For the problem of uniqueness, Semple and Steel
[30, 31] describe necessary and sufficient conditions for when a collection of partial partitions defines anX-tree.

Theorem 5. [30] LetQ be a collection of partial partitions of a setX. LetT be a ternary phylogeneticX-tree. Then
Q definesT if and only if:

(i) T displaysQ and is distinguished byQ, and
(ii) there is a unique minimal restricted chordal completion ofint(Q).

In order to simplify our proof of Theorem 1, we now describe a variant of the above theorem that, instead, deals
with the notion of chordal sandwich [17].

Let G = (V, E) andH = (V, F) be two graphs on the same set of vertices withE ∩ F = ∅. A chordal sandwich
of (G,H) is a chordal graphG′ = (V, E′) with E ⊆ E′ andE′ ∩ F = ∅. We say thatE are theforcededges andF
are theforbiddenedges. (For other possible formulations of this notion, see[17].) A chordal sandwichG′ of (G,H)
is minimal if no proper subgraph ofG′ is a chordal sandwich of(G,H).

Thecell intersection graphof Q, denoted byint∗(Q), is the graph whose vertex set is{A | whereA is a cell of
π ∈ Q} and two verticesA, A′ are adjacent just if the intersection ofA andA′ is non-empty. Letforb(Q) denote
the graph whose vertex set is that ofint∗(Q) in which there is an edge betweenA andA′ just if A,A′ are cells of
someπ ∈ Q. See Fig. 1d for an example.

The relationship between the notion of partial partition intersection graph and the cell intersection graph is cap-
tured by the following theorem.

Theorem 6. LetQ be a collection of partial partitions of a setX. Then there exists a bijective mapping between the
minimal restricted chordal completions ofint(Q) and the minimal chordal sandwiches of(int∗(Q), forb(Q)).

(The proof of this theorem is rather technical and it is presented as§5.)
This combined with Theorem 4 yields that there exists a phylogeneticX-tree that displaysQ if and only if there

exists a chordal sandwich of(int∗(Q), forb(Q)). Conversely, we can express every instance of the chordal sandwich
problem as a corresponding instance of the problem of perfect phylogeny as follows.
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Theorem 7. Let (G, H) be an instance of the chordal sandwich problem. Then there exists a collectionQ of partial
splits such that there is a bijective mapping between the minimal chordal sandwiches of(G, H) and the minimal
restricted chordal completions ofint(Q). In particular, there exists a chordal sandwich for(G, H) if and only if there
exists a phylogenetic tree that displaysQ.

PROOF. Consider the instance(G, H) whereG = (V, E) andH = (V, F) are two graphs withE ∩ F = ∅.
Without loss of generality, we may assume that each connected component ofG has at least three vertices. (We

can safely remove any component with two or fewer vertices without changing the number of minimal chordal com-
pletions, since every such component is already chordal.)

We define the collectionQ of partial splits (of the setE) as follows: for every edgexy ∈ F, we construct the
partial splitDx Dy, whereDx are the edges ofE incident tox, andDy are the edges ofE incident toy. By definition,
the vertex set of the graphint∗(Q) is precisely{Dv | v ∈ V}. Further, it can be easily seen that the mappingψ
that, for eachv ∈ V, mapsv to Dv is an isomorphism betweenG andint∗(Q). (Here, one only needs to verify that
Du = Dv impliesu = v; for this we use that each component ofG has at least three vertices.) Moreover,forb(Q)
is precisely{ψ(x)ψ(y) | xy ∈ F} by definition. Therefore, by Theorem 6, there is a one-to-onecorrespondence
between the minimal chordal sandwiches of(G, H) and the minimal restricted chordal completions ofint(Q). This
proves the first part of the claim; the second part follows directly from Theorem 4. 2

As an immediate corollary, we obtain the following desired characterization.

Theorem 8. LetQ be a collection of partial partitions of a setX. LetT be a ternary phylogeneticX-tree. ThenQ
definesT if and only if:

(i) T displaysQ and is distinguished byQ, and

(ii) there is a unique minimal chordal sandwich of
(

int∗(Q), forb(Q)
)

.

We remark that the main technical advantage of this theorem over Theorem 5 is that it is less restrictive; it allows
us to construct instances with arbitrary sets of forbidden edges rather than just with forbidden edges between vertices
of the same colour. This makes our proof of Theorem 1 much simpler and more manageable.

3. Overview of the proof

Consider an instanceI of ONE-IN-THREE-3SAT. The instanceI consists ofn variablesv1, . . . , vn andm clauses
C1, . . . , Cm each of which is a disjunction of exactly threeliterals (i.e., variablesvi or their negationsvi).

To simplify the presentation, we shall denote literals by capital lettersX, Y, etc., and indicate their negations by
X, Y, etc. (For instance, ifX = vi thenX = vi, and if X = vi thenX = vi.)

A truth assignmentfor the instanceI is a mappingσ : {v1, . . . , vn} → {0, 1} where 0 and 1 representfalseand
true, respectively. To simplify the notation, we writevi = 0 andvi = 1 in place ofσ(vi) = 0 andσ(vi) = 1,
respectively, and extend this notation to literalsX,Y, etc., i.e., writeX = 0 andX = 1 in place ofσ(X) = 0 and
σ(X) = 1, respectively. A truth assignmentσ is asatisfying assignment forI if in each clauseCj exactly one of the
three literals evalues to true. That is, for each clauseCj = X ∨Y ∨ Z, eitherX = 1, Y = 0, Z = 0, or X = 0, Y = 1,
Z = 0, or X = 0, Y = 0, Z = 1.

By standard arguments, we may assume that no variable appears twice in the same clause, since otherwise we can
replace the instanceI by an equivalent instance with this property. In particular, we can replace each clause of the
form vi ∨ vi ∨ vj by clausesvi ∨ x ∨ vj andvi ∨ x ∨ vj wherex is a new variable, and replace each clause of the form
vi ∨ vi ∨ vj by clausesvi ∨ vj ∨ x, vi ∨ vj ∨ x, andvi ∨ vj ∨ x wherex is again a new variable. Note that these two
transformations preserve the number of satisfying assignments, since in the former the new variablex has always the
truth value ofvi while in the latterx is always false in any satisfying assignment of this modifiedinstance.

In what follows, we discuss the following objects arising from the instanceI:

– the set of labelsXI ,
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– the collectionQI of quartet trees whose leaves are labelled by elements ofXI ,

– the ternary treeTI , and

– the labellingφσ : XI → V(TI) of the leaves ofTI , whereσ is a satisfying assigment forI,

which together yield

– the phylogeneticXI-treeTσ = (TI , φσ).

The formal definitions of these objects is given as§4.
We then prove that the satisfying assignments toI are in bijection with the minimal chordal sandwiches of

int∗(QI), the cell intersection graph ofQI , and forb(QI). Further, we show that every satisfying assignmentσ
for I defines a perfect phylogeny forQI , namely the treeTσ = (TI , φσ), that is distinguished byQI . These together
will imply Theorem 1, the main result of this paper. We summarize this as the following two theorems.

Theorem 9. There is a bijective mapping between the satisfying assignments of the instanceI and the minimal
chordal sandwiches of(int∗(QI), forb(QI)).

Theorem 10. If σ is a satisfying assignment forI, thenTσ = (TI , φσ) is a ternary phylogeneticXI-tree that displays
QI and is distinguished byQI .

We present the proofs of these theorems as§6 and§7, respectively. In the rest of this section, we informally discuss
the constructions involved to prepare the reader for the technical nature of the proofs that will follow.

Before describing the collectionQI , let us briefly review the construction from [4] that proves NP-hardness of the
Perfect Phylogeny problem. For convenience, we describe itin terms of the chordal sandwich problem whose input
is a graph with (forced) edges and forbidden edges. In [4], one similarly considers a collectionC1, . . . , Cm of 3-literal
clauses, and treats it as an instanceI of 3-SATISFIABILITY . From this instance, one constructs a graph where each
variablevi corresponds to twoshouldersSvi

andSvi
, and where each literalW in a clauseCj corresponds to a pair of

kneesK
j
W andK

j

W
. In addition, there are two special verticesthe headH andthe footF. All shoulders are adjacent to

the head while all knees are adjacent to the foot. Further, ifvi occurs in the clauseCj (positively or negatively), then

the verticesH, Svi
, K

j
vi

, F, K
j
vi

, Svi
form an induced 6-cycle (see Fig. 2a). Also, ifCj = X ∨Y ∨ Z, then the vertices

K
j
X, K

j
Y, K

j
Z induce a triangle with pendant edgesK

j
XK

j

Y
, K

j
YK

j

Z
, andK

j
ZK

j

X
(theclause gadget, see Fig. 2b).

Finally, the edge betweenH andF is forbidden in the desired chordal sandwich, and so is the edge betweenSvi

andSvi
, and betweenK j

vi
andK

j
vi

(the dotted edges in Fig. 2) for all indicesi andj for which these vertices exist.
The main idea of this construction is that each of the 6-cycles allows only two possible chordal sandwiches:

either the pathH, K
j
vi

, Svi
, F is added, or the pathH, K

j
vi

, Svi
, F is added (the authors of [4] call this path the “Mark

of Zorro”). These two choices correspond to assigningvi the valuetrue or false, respectively, and the construction
ensures that this choice is consistent over all clauses. This only produces satisfying assignments to 3-SATISFIABILITY ,

since we notice that no chordal sandwich adds a triangle onK
j

X
, K

j

Y
, K

j

Z
.

One can try to use this construction to prove Theorem 1 (we explain later why this fails). Indeed, it can be observed
that the truth assignments satisfying the clausesC1, . . . , Cm are in one-to-one correspondence with the minimal chordal
sandwiches of the above graphG. To see this, one describes all edges that we are forced to have in the sandwich after
the marks of Zorro are added according to a satisfying assignment. It turns out that these edges yield a chordal
sandwich, and thus a minimal chordal sandwich.

From G, using Theorems 6 and 7, one can further construct a collectionQ of partial splits (phylogenetic trees)
such that the satisfying assignments of the clausesC1, . . . , Cm are in a one-to-one correspondence with the minimal
chordal sandwiches of(int∗(Q), forb(Q)). In particular, this collectionQ satisfies the condition (ii) of Theorem 8
if and only if the clausesC1, . . . , Cm have a unique satisfying assignment. Since this is CoNP-complete to determine
[22], it would seem like we almost have a proof of Theorem 1. Unfortunately, we are missing a crucial piece which is
the phylogenetic treeT satisfying the condition (i) of Theorem 8 for the collectionQ. A straightforward construction
of such a tree based on [30] yields a phylogenetic tree that isdistinguished byQ, but whose internal nodes may have
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Figure 3: Configurations from our construction (note that, on the left,W is a literal, eithervi or vi, and is thep-th literal of the clauseCj)

degree higher than three. If we try to fix this (by “resolving”the high-degree nodes in order to get a ternary tree), the
resulting tree may no longer be distinguished byQ. Moreover, the collectionQ may not consist of quartet trees only.
For all these reasons, we need to modify the construction ofG.

First, we discuss how to modifyG so that it corresponds to a collection of quartet trees. To dothis, we must ensure
that the neighbourhood of each vertex consists of two cliques (with possibly edges between them).

We construct a new graphGI by modifyingG as follows. Instead of one headH, we introduce, for each variable

vi, two headsHvi
, Hvi

, and anauxiliary headAi. For a literalW in the clauseCj, we introduce twoshouldersS
j
W

andS
j

W
, and, as before, twokneesK

j
W andK

j

W
, but also an additionalauxiliary kneeL

j
W . Further, for each clause

Cj, we introduce afoot Fj and threeauxiliary feetD
j
1
, D

j
2, andD

j
3. Finally, we add one additional vertexB known

as the backbone. The resulting modifications to the 6-cycles and the clause gadgets can be seen in Fig. 3a and 3b.
(The forbidden edges are again indicated by dotted lines.) Note that, unlike in the case ofG, this is not a complete
description ofGI as we need to add some additional (forced) edges and forbidden edges not shown in these diagrams
in order to make the reduction work. This is rather technicaland we omit this for brevity.

From the construction, we conclude that, just like inG, the “6-cycles” ofGI (Fig. 3a) admit only two possible
kinds of sandwiches, and this is consistent over different clauses. However, unlike inG, the chordal sandwiches
of GI no longer correspond to satisfying assignments of 3-SATISFIABILITY but rather to satisfying assignments of
ONE-IN-THREE-3-SAT. Fortunately, the uniqueness variant of this problem is CoNP-complete (see Theorem 2).

Now, from GI , we construct a collectionQI of quartet trees. To do this, we cannot simply use Theorem 7 as
before, since this may create partial partitions that do notcorrespond to quartet trees. Moreover, even if we use [31]
to replace these partitions by an equivalent collection of quartet trees, this process may not preserve the number of
solutions. We need a more careful construction.

We recall that each vertexv of GI belongs to two cliques that completely cover its neighbourhood; we assign
greek letters to these two cliques (to distinguish them fromvertices), and associate them withv.

In particular, we use the following symbols:αW , β
j
W, γ

j
1
, γ

j
2
, γ

j
3
, λj, δ, µ whereW is a literal andj ∈ {1 . . . m}.

They define specific cliques ofGI as follows. The letterαW defines the clique ofGI consisting of all heads and
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shoulders ofW. The letterβj
W corresponds to the clique formed by the shoulderS

j
W and the kneesK j

W
, L

j

W
(if exists).

Further,λj is the clique onFj, D
j
1
, D

j
2
, D

j
3
, K

j
X, K

j
Y, K

j
Z whereCj = X ∨ Y ∨ Z, while the clique forγj

p where

p ∈ {1, 2, 3} is formed byD
j
p, K

j

W
, L

j
U whereW andU are thep-th and(p − 1)-th (modulo 3) literals ofCj. Finally,

δ corresponds to the clique containingB and all headsHW , while µ corresponds to the clique withB and all feetFj.
From this, we construct the collectionQI by considering every forbidden edgeuv of GI and by constructing a

partial partition with two cells in which one cell is the set of cliques assigned tou and the other is the set of cliques
assigned tov. Since we assign to each vertex ofGI exactly two cliques, this yields partitions correspondingto quartet

trees. For instance, in Fig. 3b, we have a forbidden edgeK
j
XK

j

X
whereK

j
X is assigned cliquesβj

X
, λj, andK

j

X
is

assignedβj
X , γ

j
1
. This yields a quartet tree{β

j

X
, λj} {β

j
X , γ

j
1
}. Finally, since by construction every vertex ofGI is

incident to at least one forbidden edge, we conclude thatGI = int∗(QI).
This completes the overview of the construction. From this,the proof of Theorem 9 follows, essentially along

the same lines as the uniqueness property we discussed forG. That is, we describe the edges that are forced in the
sandwich by a satisfying assignment forI, treated as an instance ofONE-IN-THREE-3SAT, and prove that this yields
a chordal sandwich, i.e., a minimal chordal sandwich.

To complete the result, we need to explain how to construct a phylogenetic tree corresponding to a satisfying
assignmentσ for I, namely the treeTσ = (TI , φσ), and show that it displays and is distinguished by the trees in QI ,
as stated in Theorem 10. As this is rather technical, we instead discuss a small example here.

The example instanceI+ consists of four variablesv1, v2, v3, v4 and three clausesC1 = v1 ∨ v2 ∨ v3, C2 =
v1 ∨ v2 ∨ v4, andC3 = v3 ∨ v2 ∨ v4. The unique satisfying assignment assigns true tov1, v4 and false tov2, v3. The
corresponding phylogenetic treeT = (T, φ) is shown in Fig. 4.

β1
v1

β2
v1

αv1

αv1

β1
v2

β2
v2

β3
v2

αv2

αv2

β1
v3

β3
v3

αv3

αv3

β2
v4

β3
v4

αv4

αv4

γ1
1

γ1
3

γ1
2

γ2
3

γ2
2

γ2
1

γ3
2

γ3
1

γ3
3

λ1 λ2 λ3

β1
v1

β1
v2

β1
v3

β2
v4

β2
v1

β2
v2

β3
v2

β3
v4

β3
v3

δ µ

Figure 4: The phylogenetic tree for the example instanceI+ .

For instance, one of the quartet trees inQI+ is π = {αv1
, β1

v1
} {αv1

, β1
v1
} representing the forbidden edge of

GI+ betweenS1
v1

andS1
v1

. It is easy to verifyT displaysπ. Another example fromQI+ is π′ = {β1
v1

, λ1} {β1
v1

, γ1
1
}

representing the forbidden edgeK1
v1

K1
v1

. Again, it is displayed byT , but this time one internal edge ofT is contained
in every set of edges ofT that displaysπ′ in T ; hence, this edge is distinguished byπ′. This way we can verify all
other quartet trees inQI+ and conclude that they are displayed byT and they distinguishT .

Now, with the help of Theorem 8, this allows us to prove that given an instanceI of ONE-IN-THREE-3SAT and a
satisfying assignmentσ for I, one can in polynomial time construct a phylogenetic treeT and a collection of quartet
treesQ such thatT is the unique tree defined byQ if and only if σ is the unique satisfying assignment forI. Combined
with Theorem 2, this proves Theorem 1.

That concludes this section.

4. Formal Construction

Let I be an instance ofONE-IN-THREE-3SAT consisting ofn variablesv1, . . . , vn andm clausesC1, . . . , Cm each
of which is a disjunction of exactly threeliterals. Assume that no variable appears twice in the same clause.
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For eachi ∈ {1 . . . n}, we let∆i denote all indicesj such thatvi or vi appears in the clauseCj. In the following,
we define the setXI , introduce notation for some of its 2-element subsets, and using these define the collectionQI .

4.1. Definition ofXI

The setXI consists of the following elements:

– αvi
, αvi

for eachi ∈ {1 . . . n},

– β
j
vi

, β
j
vi

for eachi ∈ {1 . . . n} and j ∈

∆i,

– γ
j
1
, γ

j
2
, γ

j
3
, λj for eachj ∈ {1 . . . m},

– δ andµ.

4.2. Selected subsets ofXI

B =
{

µ, δ
}

For eachi ∈ {1, . . . , n}:

Hvi
= {αvi

, δ
}

, Hvi
= {αvi

, δ
}

, Ai =
{

αvi
, αvi

}

,

S
j
vi
=

{

αvi
, β

j
vi

}

, S
j
vi
=

{

αvi
, β

j
vi

}

for all j ∈ ∆i

For eachj ∈ {1 . . . m} whereCj = X ∨ Y ∨ Z:

Fj =
{

λj, µ
}

,

K
j

X
=

{

β
j
X, γ

j
1

}

, K
j

Y
=

{

β
j
Y, γ

j
2

}

, K
j

Z
=

{

β
j
Z, γ

j
3

}

,

K
j
X =

{

β
j

X
, λj

}

, K
j
Y =

{

β
j

Y
, λj

}

, K
j
Z =

{

β
j

Z
, λj

}

,

L
j
X =

{

β
j

X
, γ

j
2

}

, L
j
Y =

{

β
j

Y
, γ

j
3

}

, L
j
Z =

{

β
j

Z
, γ

j
1

}

,

D
j
1
=

{

γ
j
1
, λj

}

, D
j
2
=

{

γ
j
2
, λj

}

, D
j
3
=

{

γ
j
3
, λj

}

4.3. Definition ofQI

The collectionQI of quartet trees is defined as the union of the following sets:

–
⋃

i∈{1...n}

{

Ai B
}

–
⋃

j∈{1...m}

{

D
j
1

B , D
j
2

B , D
j
3

B
}

–
⋃

i∈{1...n}
j,j′∈∆i

{

S
j
vi

S
j′

vi

}

–
⋃

i∈{1...n}
j,j′∈∆i and j<j′

{

S
j
vi

K
j′

vi
, S

j
vi

K
j′

vi

}

–
⋃

i∈{1...n}
j∈∆i and j<j′≤m

{

K
j
vi

Fj′ , K
j
vi

Fj′
}

–
⋃

i∈{1...n}
j∈{1...m}

{

Hvi
Fj , Hvi

Fj
}

–
⋃

1≤i′<i≤n
j∈∆i

{

Hvi′
S

j
vi

, Hvi′
S

j
vi

, Hvi′
S

j
vi

, Hvi′
S

j
vi

}

–
⋃

j∈{1...m}
where C j=X∨Y∨Z

{

K
j

X
K

j
X , K

j

Y
K

j
Y , K

j

Z
K

j
Z , K

j

X
L

j
X , K

j

Y
L

j
Y , K

j

Z
L

j
Z

S
j
Y K

j
X , S

j
Z K

j
Y , S

j
X K

j
Z , S

j
Z L

j
X , S

j
X L

j
Y , S

j
Y L

j
Z

}

Note that in each clauseCj = X ∨ Y ∨ Z there is a particular type of symmetry between the literalsX, Y, and
Z. In particular, if we replace, in the above, the indicesX, Y, Z and 1, 2, 3 as follows:X → Y → Z → X and
1 → 2 → 3 → 1, we obtain precisely the same definition ofQI as the above. We shall refer to this as therotational
symmetrybetweenX, Y, Z.

Now, we formally define the treeTI corresponding to the instanceI. For satisfying assignmentsσ, we also define
the labellingφσ of the leaves ofTI by the elements ofXI . This (as we prove later in Theorem 10) will constitute a
perfect phylogeny, anXI-treeTσ = (TI , φσ), for the collectionQI .
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. . . . . .
u1 u2 umy1 y2 yny0 u0

...
...

...

A1 A2 An
B1 B2 Bm

Figure 5: The treeTI.

4.4. Definition of the treeTI

V(TI) =
{

y0 , y1 , y′1 , . . . , yn , y′n

}

∪
{

a1 , a′1 , . . . , an , a′n

}

∪
{

c
j
i , z

j
i

∣

∣

∣
i ∈ {1 . . . n} andj ∈ ∆i

}

∪
{

u0 , u1 , . . . , um

}

∪
{

x
j
1

, x
j
2

, x
j
3

, x
j
4

, x
j
5

, x
j
6

, b
j
1

, b
j
2

, b
j
3

, g
j
1

, g
j
2

, g
j
3

, ℓj
∣

∣

∣
j ∈ {1 . . . m}

}

E(TI) =
{

y1y′1 , y2y′2 , . . . , yny′n

}

∪
{

a1y′1 , a2y′2 , . . . any′n

}

∪
{

c
j
iz

j
i

∣

∣

∣
j ∈ ∆i

}n

i=1

∪
{

y0y1 , y1y2 , y2y3 , . . . , yn−1yn

}

∪
{

ynu1 , u1u2 , u2u3 , . . . , um−1um , umu0

}

∪
{

ujx
j
1

, x
j
1
x

j
2

, x
j
2
x

j
3

, x
j
2
x

j
4

, x
j
4
x

j
5

, x
j
4
x

j
6

, b
j
1
x

j
6

, b
j
2
x

j
3

, b
j
3
x

j
5

, g
j
1
x

j
6

, g
j
2
x

j
1

, g
j
3
x

j
3

, ℓjx
j
5

∣

∣

∣
j ∈ {1 . . . m}

}

∪
{

a′iz
j1
i , z

j1
i z

j2
i , . . . , z

jt−1

i z
jt
i , z

jt
i y′i

∣

∣

∣
i ∈ {1 . . . n} andj1 < j2 < . . . < jt are elements of∆i

}

4.5. Definition of the labellingφσ

Let σ be a satisfying assignment for the instanceI. The mappingφσ : XI → V(TI) is defined as follows:

– φσ(δ) = y0 andφσ(µ) = u0,

– for eachi ∈ {1 . . . n}:

if vi = 1, thenφσ(αvi
) = ai, φσ(αvi

) = a′i, andφσ(β
j
vi
) = c

j
i for all j ∈ ∆i,

if vi = 0, thenφσ(αvi
) = ai, φσ(αvi

) = a′i, andφσ(β
j
vi
) = c

j
i for all j ∈ ∆i,

– for eachj ∈ {1 . . . m} whereCj = X ∨ Y ∨ Z:

if X = 1, thenφσ(β
j
X) = b

j
1
, φσ(β

j

Y
) = b

j
2
, φσ(β

j

Z
) = b

j
3
,

φσ(γ
j
1
) = g

j
1
, φσ(γ

j
2
) = g

j
2
, φσ(γ

j
3
) = g

j
3
, φσ(λj) = ℓj,

if Y = 1, thenφσ(β
j
Y) = b

j
1
, φσ(β

j

Z
) = b

j
2
, φσ(β

j

X
) = b

j
3
,

φσ(γ
j
2
) = g

j
1
, φσ(γ

j
3
) = g

j
2
, φσ(γ

j
1
) = g

j
3
, φσ(λj) = ℓj,

if Z = 1, thenφσ(β
j
Z) = b

j
1
, φσ(β

j

X
) = b

j
2
, φσ(β

j

Y
) = b

j
3
,

φσ(γ
j
3
) = g

j
1
, φσ(γ

j
1
) = g

j
2
, φσ(γ

j
2
) = g

j
3
, φσ(λj) = ℓj,

For illustration of the construction ofTI andφσ, see Fig. 5 and 6.
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Figure 6:a) subtreeAi for the variablevi, b) subtreeBj for the clauseCj, c) labelling of leaves ofBj whenσ(X) = 1, σ(Y) = σ(Z) = 0.

5. Perfect Phylogenies and Minimal Chordal Sandwiches

In this section, we prove Theorem 6. As a particular consequence of this theorem, we obtain Theorem 8, which
allows us to cast the problem of uniqueness of perfect phylogenies as a minimal chordal sandwich problem.

We need to introduce some additional tools. The following isa standard property of minimal chordal completions.

Lemma 11. Let G′ be a chordal completion ofG. ThenG′ is a minimal chordal completion ofG if and only if for all
uv ∈ E(G′) \ E(G), the verticesu, v have at least two non-adjacent common neighbours inG′.

PROOF. Suppose thatG′ is a minimal chordal completion. Letuv ∈ E(G′) \ E(G), and letG′′ = G′ − uv. Since
G′ is a minimal chordal completion anduv 6∈ E(G), we conclude thatG′′ is not chordal. Thus, there exists a set
C ⊆ V(G′) that induces a cycle inG′′. SinceG′ is chordal,C does not induce a cycle inG′. This impliesu, v ∈ C,
and hence,uv is the unique chord ofG′[C]. So, we conclude|C| = 4, because otherwiseG′[C] contains an induced
cycle. Letx, y be the two vertices ofC \ {u, v}. Clearly,xy 6∈ E(G′) and bothx andy are common neighbours ofu
andv in G′, as required.

Conversely, suppose thatG′ is not a minimal chordal completion. Then by [29], there exists an edgeuv ∈
E(G′) \ E(G) such thatG′ − uv is a chordal graph. If the verticesu, v have non-adjacent common neighboursx, y
in G′, then{u, x, v, y} induces a 4-cycle inG′ − uv. This is impossible as we assume thatG′ − uv is chordal.

That concludes the proof. 2

Using this tool, we prove the following two important lemmas.

Lemma 12. Let G be a graph andG′ be a minimal chordal completion ofG. If G contains verticesu, v with
NG(u) ⊆ NG(v), then alsoNG′(u) ⊆ NG′(v).

PROOF. Let u, v be vertices ofG with NG(u) ⊆ NG(v). Let B = NG′(u) \ NG′(v) andA = NG′(u) ∩ NG′(v).
Assume for contradiction thatB 6= ∅, and letA1 denote the vertices ofA with at least one neighbour inB. Look at
the graphG1 = G′[A1 ∪ B ∪ {v}].

By the definition ofA1 andB, the vertexv is adjacent to each vertex inA1 and non-adjacent to each vertex inB.
Hence, no vertex inA1 is a simplicial vertex ofG1, since it is adjacent tov and at least one vertex inB.

Now, considerw ∈ B. By the definition ofB, we have thatw is adjacent inG′ to u but notv. Thus,uw is not
an edge ofG, sinceNG(u) ⊆ NG(v) andNG(v) ⊆ NG′(v). So, by Lemma 11, the verticesu, w have non-adjacent
common neighboursx, y in G′. Sincex, y are adjacent tou, we havex, y ∈ A ∪ B. In fact, sincew has no neighbours
in A \ A1, we concludex, y ∈ A1 ∪ B. Thus,w is not a simplicial vertex ofG1.

This proves that no vertex ofG1, except possibly forv, is simplicial inG1. Also, G1 is not a complete graph, since
B 6= ∅, andv has no neighbour inB. Recall thatG1 is chordal becauseG′ is. Thus, by the result of Dirac [11], it
follows thatG1 must contain at least two non-adjacent simplicial vertices, but this is clearly impossible.

Hence, we must concludeB = ∅. In other words,NG′(u) ⊆ NG′(v) as promised. 2
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Lemma 13. Let G be a graph, and letH be a graph obtained fromG by substituting complete graphs for the vertices
of G. Then there is a one-to-one correspondence between minimalchordal completions ofG andH.

PROOF. Let v1,v2,. . . ,vn be the vertices ofG. SinceH is obtained fromG by substituting complete graphs, there is
a partitionC1 ∪ . . . ∪ Cn of V(H) where eachCi induces a complete graph inH, and for all distincti, j ∈ {1 . . . n}:

(⋆) eachx ∈ Ci, y ∈ Cj satisfyvivj ∈ E(G) if and only if xy ∈ E(H).

We define the following mappingΨ: if G′ is a graph with vertex setV(G), thenH′ = Ψ(G′) denotes be the
graph constructed fromG′ by considering eachi ∈ {1 . . . n}, substituting the setCi for the vertexvi, and making all
vertices inCi pairwise adjacent. Thus, for all distincti, j ∈ {1 . . . n}:

(⋆⋆) eachx ∈ Ci, y ∈ Cj satisfyvivj ∈ E(G′) if and only if xy ∈ E(H′).

We prove thatΨ is a bijection between the minimal chordal completions ofG andH which will yield the lemma.
Let G′ be a minimal chordal completion ofG, and letH′ = Ψ(G′). Clearly,H′ is chordal, sinceG′ is chordal,

and chordal graphs are closed under the operation of substituting a complete graph for a vertex. Also, observe that
V(H) = V(H′). If xy ∈ E(H) wherex, y ∈ Ci for somei ∈ {1 . . . n}, then alsoxy ∈ E(H′), sinceCi induces
a complete graph inH′. If xy ∈ E(H) andx ∈ Ci, y ∈ Cj for distinct i, j ∈ {1 . . . n}, thenvivj ∈ E(G) by (⋆),
implying vivj ∈ E(G′), sinceE(G) ⊆ E(G′). Hence,xy ∈ E(H′) by (⋆⋆). This proves thatE(H) ⊆ E(H′), and
thus,H′ is a chordal completion ofH.

To prove thatH′ is a minimal chordal completion ofH, it suffices, by Lemma 11, to show that for allxy ∈ E(H′) \
E(H), the verticesx, y have at least two non-adjacent common neighbours inH′. Considerxy ∈ E(H′) \ E(H), and
let i, j ∈ {1 . . . n} be such thatx ∈ Ci andy ∈ Cj. Sincexy 6∈ E(H) andCi induces a complete graph inH, we
concludei 6= j. Thus, by (⋆⋆), we havevivj ∈ E(G′), and so,vivj ∈ E(G′) \ E(G) by (⋆). Now, recall thatG′ is a
minimal chordal completion ofG. Thus, by Lemma 11, the verticesvi, vj have non-adjacent common neighboursvk,
vℓ in G′. So, we letw ∈ Ck andz ∈ Cℓ. By (⋆⋆), we concludewz 6∈ E(H′), sincevkvℓ 6∈ E(G′). Moreover, (⋆⋆)
also implies thatz, w are common neighbours ofx, y, sincevk, vℓ are common neighbours ofvi, vj. This proves that
x, y have non-adjacent common neighbours, and thus shows thatH′ is a minimal chordal completion ofH.

Conversely, letH′ be a minimal chordal completion ofH. Let G′ be the graph withV(G′) = V(G) such that
vivj ∈ E(G′) if and only if there existsx ∈ Ci, y ∈ Cj with xy ∈ E(H′). Let i ∈ {1 . . . n} and consider vertices
x, y ∈ Ci in the graphH. Recall thatCi induces a complete graph inH. This implies thatxy ∈ E(H) and bothx
andy are adjacent inH to everyz ∈ Ci \ {x, y}. Further, by (⋆), if z ∈ Cj wherej 6= i, thenx, y are both adjacent
to z if vivj ∈ E(G), andx, y are both non-adjacent toz if vivj 6∈ E(G). This shows thatNH(x) = NH(y), and
hence,NH′(x) = NH′(y) by Lemma 12 and the fact thatH′ is a minimal chordal completion ofH. This proves that
H′ = Ψ(G′), and hence,G′ is chordal. In fact,E(G) ⊆ E(G′) by (⋆) and (⋆⋆). ThusG′ is a chordal completion ofG.

It remains to show thatG′ is a minimal chordal completion ofG. Again, it suffices to show that for eachvivj ∈

E(G′) \ E(G), the verticesvi, vj have non-adjacent common neighbours inG′. Considervivj ∈ E(G′) \ E(G), and
let x ∈ Ci andy ∈ Cj. So, i 6= j andxy ∈ E(H′) by (⋆⋆). Further,xy ∈ E(H′) \ E(H) by (⋆) and the fact that
vivj 6∈ E(G). So, the verticesx, y have non-adjacent common neighboursw, z in H′ by Lemma 12 and the fact that
H′ is a minimal chordal completion ofH. Let k, ℓ ∈ {1 . . . n} be such thatw ∈ Ck andz ∈ Cℓ. Sincexz ∈ E(H′)
but wx 6∈ E(H′), we conclude by (⋆⋆) that i 6= k. By symmetry, alsoi 6= ℓ, j 6= k, and j 6= ℓ. Further,k 6= ℓ,
sincewx 6∈ E(H′) andCk induces a complete graph inH′. Thus, (⋆⋆) implies thatvk, vℓ are non-adjacent common
neighbours ofvi, vj in G′, sincew, z are non-adjacent common neighbours ofx, y in H′. This proves thatG′ is indeed
a minimal chordal completion ofG.

That concludes the proof. 2

Now, we are finally ready to prove Theorem 6.

PROOF OFTHEOREM 6. We observe that the graphint(Q) can be obtained by substituting complete graphs for the
vertices ofint∗(Q). Namely, for each vertexA of int∗(Q), we substituteA by the complete graph on vertices
CA = {(A, π) | π ∈ Q and A is a cell ofπ}. Thus, by Lemma 13, there is a bijectionΨ between the minimal
chordal completions ofint(Q) and int∗(Q). By translating the condition (⋆⋆) from the proof of Lemma 13, we
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conclude that ifG′ is a minimal chordal completion ofint∗(Q), thenH′ = Ψ(G′) is the graph whose vertex set is
that ofint(Q) and in which for allA, A′ ∈ V(G′):

(⋆⋆) all meaningfulπ, π′ ∈ Q satisfyAA′ ∈ V(G′) ⇐⇒ (A, π)(A′, π′) ∈ V(H′).

We show thatΨ is a bijection between the minimal restricted chordal completions ofint(Q) and the minimal
chordal sandwiches of(int∗(Q), forb(Q)).

First, let H′ be a minimal restricted chordal completion ofint(Q). ThenG′ = Ψ−1(H′) is a minimal chordal
completion ofint∗(Q). Consider two cellsA1, A2 of π ∈ Q. SinceH′ is a restricted chordal completion ofint(Q),
we have that(A1, π) is not adjacent to(A2, π) in H′. Thus,A1 A2 6∈ E(G′) by (⋆⋆). This shows thatG′ contains
no edge fromforb(Q). ThusG′ is a minimal chordal sandwich of(int∗(Q), forb(Q)), since it is also a minimal
chordal completion ofint∗(Q).

Conversely, letG′ be a minimal chordal sandwich of(int∗(Q), forb(Q)). Then H′ = Ψ(G′) is a minimal
chordal completion ofint(Q). Consider two cellsA1, A2 of π ∈ Q. SinceA1A2 is an edge offorb(Q), andG′ is
a minimal chordal sandwich of(int∗(Q),forb(Q)), we haveA1 A2 6∈ E(G′). Thus,(A1, π)(A2, π) 6∈ E(H′) by
(⋆⋆). This shows thatH′ is a minimal restricted chordal completion ofint(Q).

That concludes the proof. 2

6. Minimal Chordal Sandwiches and Boolean Satisfiability

In this section, we prove Theorem 9. We consider an instanceI of ONE-IN-THREE-3SAT, and carefully analyze
chordal sandwiches of(int∗(QI), forb(QI)). For a truth assignmentσ for the instanceI, we construct graphsGσ,
G′

σ, andG∗
σ, starting fromint∗(QI). We show that ifσ is a satisfying assignment forI, thenG∗

σ is a minimal chordal
sandwich of(int∗(QI), forb(QI)). Conversely, for every minimal chordal sandwichG′ of (int∗(QI), forb(QI)),
we describe a satisfying assignmentσ for I such thatG′ = G∗

σ. From this the theorem will follow.
For later, we need the following simple properties. The proofs are straightforward and left to the reader.

Lemma 14. LetG be a chordal graph, and leta, b be non-adjacent vertices ofG. Then every two common neighbours
of a andb are adjacent.

Lemma 15. Let G be a chordal graph, andC = {a, b, c, d, e} be a 5-cycle inG with edgesab, bc, cd, de, ae.

(a) If bd, ce 6∈ E(G), thenac, ad ∈ E(G), and
(b) if bd, be 6∈ E(G), thenac ∈ E(G).

Lemma 16. Let G be a chordal graph, andC = {a, b, c, d, e, f} be a 6-cycle inG with edgesab, bc, cd, de, e f , a f .

(a) If bd, ce, d f 6∈ E(G), thenac, ad, ae ∈ E(G),
(b) if bd, ce, c f 6∈ E(G), thenac, ad ∈ E(G), and
(c) if be, b f , ce, c f 6∈ E(G), thenad ∈ E(G).

To assist the reader in following the subsequent arguments,we now list here the cliques ofint∗(QI) according to
the elements from which they arise:

δ: B, Hv1
, . . . , Hvn , Hv1

, . . . , Hvn

µ: B, F1, . . . , Fm

For eachi ∈ {1 . . . n} wherej1, j2, . . . , jk are the elements of∆i:

αvi
: Hvi

, Ai, S
j1
vi

, S
j2
vi

, . . . ,S
jt
vi

, αvi
: Hvi

, Ai, S
j1
vi

, S
j2
vi

, . . . , S
jt
vi

,

For eachj ∈ {1 . . . m} whereCj = X ∨ Y ∨ Z:

λj: K
j
X, K

j
Y, K

j
Z, D

j
1
, D

j
2, D

j
3, Fj
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γ
j
1
: K

j

X
, L

j
Z, D

j
1

γ
j
2
: K

j

Y
, L

j
X, D

j
2

γ
j
3
: K

j

Z
, L

j
Y, D

j
3

β
j
X: S

j
X, K

j

X
β

j
Y: S

j
Y, K

j

Y
β

j
Z: S

j
Z, K

j

Z

β
j

X
: S

j

X
, K

j
X, L

j
X β

j

Y
: S

j

Y
, K

j
Y, L

j
Y β

j

Z
: S

j

Z
, K

j
Z, L

j
Z

We start with a useful lemma describing an important property of int∗(QI).

Lemma 17. Let G′ be a chordal sandwich of(int∗(QI), forb(QI)), and leti ∈ {1 . . . n}. Then

(a) there existsW ∈ {vi, vi} such that for allj ∈ ∆i, the vertexK
j
W is adjacent toB, and

(b) for eachj ∈ ∆i, and eachW ∈ {vi, vi}, if K
j
W is adjacent toB, then the verticesS

j
W , K

j
W , L

j
W (if exists) are

adjacent toB, Ai, HW, HW, Fj. (See Fig. 7a)

PROOF. Let i ∈ {1 . . . n}. First, we observe the following.

(⋆) for eachj ∈ ∆i, eachW ∈ {vi, vi}, at least one ofS
j

W
, K

j
W is adjacent toB.

We may assume thatSj

W
is not adjacent toB, otherwise we are done. Observe thatS

j

W
is adjacent toK j

W , since

β
j

W
∈ K

j
W ∩ S

j

W
. Moreover, there existsp ∈ {1, 2, 3} such thatK j

W ∩ D
j
p containsλj or γ

j
p, implying thatK j

W is

adjacent toD
j
p. Also, Fj is adjacent toD j

p andB, sinceλj ∈ D
j
p ∩ Fj andµ ∈ B ∩ Fj, respectively. Further,HW

is adjacent toSj

W
andB, sinceαW ∈ HW ∩ S

j

W
andδ ∈ HW ∩ B. Finally, HW is not adjacent toFj, andB is not

adjacent toD
j
p, sinceHW Fj andD

j
p B are inQI . So, by Lemma 16 applied to the cycle{K

j
W , S

j

W
, HW, B, Fj,

D
j
p}, we conclude thatK j

W is adjacent toB. This proves (⋆).

Now, to prove (a), suppose for contradiction that there arej, j′ ∈ ∆i such that bothK j
vi

andK
j′

vi
are not adjacent to

B. Then by (⋆), bothS
j
vi

andS
j′

vi
are adjacent toB. Note also thatAi is adjacent to bothSj

vi
, S

j′

vi
, sinceαvi

∈ Ai ∩ S
j
vi

andαvi
∈ Ai ∩ S

j′

vi
. Further, note thatAiB andS

j
vi

S
j′

vi
are not edges ofG′, sinceAi B andS

j
vi

S
j′

vi
are inQI . But

thenG′ contains an induced 4-cycle on{S
j
vi

, Ai, S
j′

vi
, B}, which is impossible, sinceG′ is chordal. This proves (a).

For (b), suppose thatK j
W is adjacent toB for j ∈ ∆i andW ∈ {vi, vi}. First observe thatK j

W is adjacent toSj

W
,

and the vertexK j

W
is adjacent toSj

W , sinceβ
j

W
∈ K

j
W ∩ S

j

W
andβ

j
W ∈ K

j

W
∩ S

j
W . Moreover, there existsp ∈ {1, 2, 3}

such thatK j
W ∩ D

j
p andK

j

W
∩ D

j
p containγ

j
p andλj, respectively, orλj andγ

j
p, respectively. This implies thatK

j
W

andK
j

W
are adjacent toD j

p. Also, Ai is adjacent toSj
W andS

j

W
, sinceαW ∈ Ai ∩ S

j
W andαW ∈ Ai ∩ S

j

W
. Further,

a)

Ai

D
j
p

S
j
W

S
j

W

HW HW

Fj

B

K
j
W

K
j

W

b)

K
j

X

K
j

Y

K
j

Z

L
j
X

K
j
X

L
j
Y

K
j
Y

L
j
Z

K
j
Z

Figure 7: Chordal completion edges fora) W = 1, b) X = 1, Y = 0, Z = 0.
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note thatD j
pB, AiB, K

j
WK

j

W
, andS

j
W S

j

W
are not edges ofG′, sinceD

j
p B, Ai B, K

j
W K

j

W
, andS

j
W S

j

W
are inQI .

This implies thatK j

W
is not adjacent toB, since otherwiseG′ contains an induced 4-cycle on{K

j
W , B, K

j

W
, D

j
p}.

So, by (⋆), we have thatSj
W is adjacent toB. Thus, Lemma 15 applied to{K

j
W , S

j

W
, Ai, S

j
W , B} yields thatK j

W is

adjacent toAi andS
j
W . So, by Lemma 14 applied to{S

j
W , K

j
W , D

j
p, K

j

W
}, we have thatSj

W is adjacent toD j
p.

Now, observe thatHW , HW are adjacent to bothAi and B, sinceαW ∈ HW ∩ Ai, αW ∈ HW ∩ Ai, andδ ∈

B ∩ HW ∩ HW . Thus, by Lemma 14 applied to{u, Ai, u′, B} whereu ∈ {S
j
W , K

j
W} andu′ ∈ {HW , HW} , we

conclude thatSj
W andK

j
W are adjacent to bothHW andHW . Similarly, we observe thatFj is adjacent toB andD

j
p,

sinceµ ∈ Fj ∩ B andλj ∈ D
j
p ∩ Fj. Thus, Lemma 14 applied to{u, B, Fj, D

j
p} yields thatS

j
W andK

j
W are also

adjacent toFj.

Lastly, suppose thatLj
W exists. Then there isq ∈ {1, 2, 3} such thatγj

q ∈ D
j
q ∩ L

j
W , implying thatLj

W is adjacent

to D
j
q. Moreover,Fj is adjacent toD j

q andB, sinceλj ∈ D
j
q ∩ Fj andµ ∈ Fj ∩ B. Also, HW is adjacent toB, S

j

W
,

and the vertexSj

W
is adjacent toLj

W , sinceδ ∈ B ∩ HW, αW ∈ HW ∩ S
j

W
, andβ

j

W
∈ S

j

W
∩ L

j
W . Further,HW Fj

andD
j
qB are not edges ofG′, sinceHW Fj andD

j
q B are inQI . Also, S

j

W
B is not an edge ofG′, since otherwise

G′ contains an induced 4-cycle on{S
j
W , B, S

j

W
, Ai}. Thus, by Lemma 15 applied to{L

j
W , S

j

W
, HW , B, Fj, D

j
q},

we conclude thatLj
W is adjacent toHW , B, andFj. Moreover, by Lemma 15 applied to{L

j
W , B, S

j
W , Ai, S

j

W
}, we

conclude thatLj
W is adjacent toAi. Finally, recall thatHW is adjacent to bothAi andB. Thus, Lemma 14 applied to

{L
j
W , Ai, HW , B} yields thatLj

W is also adjacent toHW .
That concludes the proof. 2

Now, let σ be a truth assignment for the instanceI. Recall that, for simplicity, we writeX = 0 andX = 1 in
place ofσ(X) = 0 andσ(X) = 1, respectively. To facilitate the arguments in the subsequent proofs, we introduce a
naming convention for the vertices inint∗(QI) similar to that of [4], as we already indicated in§3.

The verticesSj
W for all meaningful choices ofj andW are calledshoulders. For a fixedj, we call themshoulders

of the clauseCj, and for a fixedW, we call themshoulders of the literalW. A shoulder is aa true shoulderif W = 1.

Otherwise, it is afalse shoulder. The verticesK j
W , L

j
W for all meaningful choices ofj andW are calledknees. For a

fixed j, we call themknees of the clauseCj, and for a fixedW, we call themknees of the literalW. A knee is atrue

kneeif W = 1. Otherwise, it is afalse knee. The verticesAi, D
j
p, HW , Fj for all meaningful choices of indices are

calledA-vertices, D-vertices, H-vertices, andF-vertices, respectively.

Based onσ, we define the following three graphs:Gσ, G′
σ, andG∗

σ.

6.1. Definition ofGσ

The graphGσ is constructed fromint∗(QI) by performing the following steps:

(i) makeB adjacent to all true knees and true shoulders
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6.2. Definition ofG′
σ

The graphG′
σ is constructed fromGσ by performing the following steps:

(ii) make{true knees, true shoulders} pairwise adjacent,
(iii) for all i ∈ {1 . . . n}, makeAi adjacent to all true knees of the literalsvi andvi,
(iv) for all 1 ≤ i′ ≤ i ≤ n, makeHvi

, Hvi
adjacent to all true knees and true shoulders of the literalsvi′ andvi′,

(v) for all 1 ≤ j ≤ j′ ≤ m, makeFj adjacent to all true knees and true shoulders of the clauseCj′ ,

(vi) for all i ∈ {1 . . . n} and allj, j′ ∈ ∆i such thatj ≤ j′:

a) if vi = 1, makeS
j′

vi
adjacent toK j

vi
, L

j
vi

(if exists),

b) if vi = 0, makeS
j′

vi
adjacent toK j

vi
, L

j
vi

(if exists).

6.3. Definition ofG∗
σ

The graphG∗
σ is constructed fromG′

σ by adding the following edges:

(vii) for all j ∈ {1 . . . m} whereCj = X ∨ Y ∨ Z:

a) if X = 1, then add edgesFjL
j
Z, K

j
X L

j
Z, K

j
YK

j

Z
, D

j
2
K

j

Z
, D

j
2
S

j

Y
, D

j
3
S

j

Y
and also add all possible edges

between the verticesD j
1
, D

j
2
, D

j
3
, S

j
X, S

j

Z
, L

j
Z, K

j
Y,

b) if Y = 1, then add edgesFjL
j
X, K

j
YL

j
X , K

j
ZK

j

X
, D

j
3
K

j

X
, D

j
3
S

j

Z
, D

j
1
S

j

Z
and also add all possible edges

between the verticesD j
1
, D

j
2
, D

j
3
, S

j
Y, S

j

X
, L

j
X , K

j
Z,

c) if Z = 1, then add edgesFjL
j
Y, K

j
ZL

j
Y, K

j
XK

j

Y
, D

j
1
K

j

Y
, D

j
1
S

j

X
, D

j
2
S

j

X
and also add all possible edges

between the verticesD j
1
, D

j
2
, D

j
3
, S

j
Z, S

j

Y
, L

j
Y, K

j
X.

Lemma 18. G′
σ is a subgraph of every chordal sandwich of(Gσ, forb(QI)).

PROOF. Let G′ be a chordal sandwich of(Gσ, forb(QI)). We prove the claim by showing thatG′ contains all edges
defined in steps (ii)-(vi). We consider these steps one by one.

• for (ii), consider true shouldersSj
W , S

j′

W ′ and true kneesK j
W , K

j′

W ′ andL
j
W , L

j′

W ′ (if they exist). We allow that

W is possibly equal toW ′ and possiblyj = j′. First, we observe that, by (i), the true kneesK
j
W andK

j′

W ′

are adjacent toB. Therefore, by Lemma 17, the verticesS
j
W , K

j
W , L

j
W are adjacent toHW and Fj, whereas

S
j′

W ′ , K
j′

W ′ , L
j′

W ′ are adjacent toHW ′ and Fj′ . Also, HW is adjacent toHW ′, andFj is adjacent toFj′ , since

δ ∈ HW ∩ HW ′ andµ ∈ Fj ∩ Fj′ , respectively. Further,HW Fj, HW Fj′ , HW ′Fj, HW ′Fj′ are not edges ofG′,
sinceHW Fj, HW Fj′ , HW ′ Fj, HW ′ Fj′ are inQI . Thus, if j = j′ andW is equal toW ′, then, by Lemma 14

applied to cycles{u, HW, u′, Fj} whereu, u′ ∈ {S
j
W , S

j′

W ′ , K
j
W , K

j′

W ′, L
j
W , L

j′

W ′}, we conclude that{S
j
W , S

j′

W ′ ,

K
j
W , K

j′

W ′ , L
j
W , L

j′

W ′} are pairwise adjacent inG′. If j 6= j′ andW is not equal toW ′, we reach the same

conclusion by Lemma 16 applied to the cycles{u, HW , HW ′ , u′, Fj′ , Fj}. Otherwise, we obtain the conclusion
by applying Lemma 15 either to cycles{u, HW, u′, Fj′ , Fj} or cycles{u, Fj, u′, HW ′ , HW}. This proves (ii).

• for (iii), consider the vertexAi for i ∈ {1 . . . n}. Let W ∈ {vi, vi} be such thatW = 1. Then, for eachj ∈ ∆i,

the vertexK
j
W is adjacent toB by (i). Thus, by Lemma 17, bothK j

W and L
j
W (if exists) are adjacent toAi.

This proves (iii).

• for (iv), we consider1 ≤ i′ ≤ i ≤ n. Let W ′ ∈ {vi′ , vi′} be such thatW ′ = 1. Then, for all j ∈ ∆i′ ,

the vertexK
j
W ′ is adjacent toB by (i), and hence, the verticesSj

W ′ , K
j
W ′ andL

j
W ′ (if exists) are adjacent by
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Lemma 17 toHvi′
, Hvi′

. In other words, the verticesHvi′
, Hvi′

are adjacent to all true knees and true shoulders
of the literalsvi′ , vi′ . Thus, we may assume thati′ < i. Now, the vertexHvi′

is adjacent toHvi
,Hvi

, since

δ ∈ Hvi
∩ Hvi

∩ Hvi′
. Let W ∈ {vi, vi} be such thatW = 1. ThenK

j
W is adjacent toB by (i), and hence,Sj

W

is adjacent toHvi
, Hvi

by Lemma 17. Also,Sj
W is adjacent to all true knees and true shoulders of the literals

vi′ , vi′, by (ii), and the same is true forHvi′
as proved earlier in this paragraph. Further,S

j
W is not adjacent to

Hvi′
, sinceHvi′

S
j
W is in QI . Thus, by Lemma 14, bothHvi

andHvi
are adjacent to all true knees and true

shoulders of the literalsvi′ , vi′ . This proves (iv).

• for (v), consider1 ≤ j ≤ j′ ≤ m. Again, we observe that ifK j′

W ′ is a true knee, thenK j′

W ′ is adjacent toB by

(i), and hence,Sj′

W ′ , K
j′

W ′, andL
j′

W ′ (if exists) are adjacent toFj′ by Lemma 17. In other words, the vertexFj′ is

adjacent to all true knees and true shoulders of the clauseCj′ . So, we may assume thatj < j′. Now, letK
j
W be

any true knee of the clauseCj. ThenK
j
W is adjacent toB, and hence, toFj by (i) and Lemma 17, respectively.

Also, K
j
W is adjacent to all true shoulders and true knees ofCj′ by (ii). Further,Fj is adjacent toFj′ , since

µ ∈ Fj ∩ Fj′ , and the vertexK j
W is not adjacent toFj′ , sinceK

j
W Fj′ is in QI . Thus, by Lemma 14, the vertex

Fj is adjacent to all true knees and true shoulders of the clauseCj′. This proves (v).

• for (vi), let i ∈ {1 . . . n} and considerj, j′ ∈ ∆i with j ≤ j′. Let W ∈ {vi, vi} be such thatW = 1.

Observe thatK j
W is adjacent toSj

W
, sinceβ

j

W
∈ S

j

W
∩ K

j
W . If L

j
W exists, alsoLj

W is adjacent toSj

W
, since then

β
j

W
∈ S

j

W
∩ L

j
W . Thus, we may assume thatj < j′. Now,S

j′

W
is adjacent toSj

W
andK

j′

W , sinceαW ∈ S
j

W
∩ S

j′

W
,

andβ
j′

W
∈ S

j′

W
∩ K

j′

W . Also, K
j
W andL

j
W (if exists) are adjacent toK j′

W by (ii). Further,Sj

W
K

j′

W is not an edge

of G′, sinceS
j

W
K

j′

W is in QI . Thus, by Lemma 14, the verticesK
j
W , L

j
W (if exists) are adjacent toSj′

W
. This

proves (vi).

The proof is now complete. 2

Lemma 19. If σ is a satisfying assignment forI, thenG∗
σ is a subgraph of every chordal sandwich of(Gσ, forb(QI)).

PROOF. Let G′ be a chordal sandwich of(Gσ, forb(QI)), and assume thatσ is a satisfying assignment forI. That
is, for each clauseCj = X ∨ Y ∨ Z, eitherX = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0.

By Lemma 18, the graphG′ contain all edges defined in (ii)-(vi). Thus it remains to prove that it also contains the
edges defined in (vii).

Considerj ∈ {1 . . . m} whereCj = X ∨Y ∨ Z. By the rotational symmetry betweenX, Y, andZ, we may assume

thatX = 1, Y = 0, andZ = 0. Observe thatK j
Z is adjacent toK j

X andL
j
Z, sinceλj ∈ K

j
Z ∩ K

j
X andβ

j

Z
∈ K

j
Z ∩ L

j
Z.

Further,K j

X
is adjacent toLj

Z andS
j
X, sinceγ

j
1
∈ L

j
Z ∩ K

j
X andβ

j
X ∈ K

j

X
∩ S

j
X. By (ii), alsoK

j
X is adjacent toSj

X.

Moreover,Sj
XK

j
Z andK

j
XK

j

X
are not edges ofG′, sinceS

j
X K

j
Z, K

j
X K

j

X
are inQI . Thus, by Lemma 15 applied to

the cycle{L
j
Z, K

j
Z, K

j
X, S

j
X, K

j

X
}, we conclude thatLj

Z is adjacent toSj
X andK

j
X. Now, observe thatLj

Y is adjacent

to K
j
Y andK

j

Z
, sinceβ

j

Y
∈ L

j
Y ∩ K

j
Y andγ

j
3
∈ L

j
Y ∩ K

j

Z
. Recall thatK j

Z is adjacent toLj
Z and also toK

j
Y, since

λj ∈ K
j
Z ∩ K

j
Y. Moreover,Sj

X is adjacent toK j

Z
andL

j
Z by (ii) and the above. Further,K

j

Z
L

j
Z, S

j
X L

j
Y, S

j
XK

j
Z are not

edges ofG′, sinceK
j

Z
L

j
Z, S

j
X L

j
Y, S

j
X K

j
Z are inQI . Thus, by Lemma 16 applied to the cycle{K

j
Y, L

j
Y, K

j

Z
, S

j
X,

L
j
Z, K

j
Z}, we conclude thatK j

Y is adjacent toK j

Z
, S

j
X, andL

j
Z. Next, observe thatSj

Z
is adjacent toK j

Z
andK

j
Z by (ii)

and sinceβj

Z
∈ S

j

Z
∩ K

j
Z. Recall thatK j

Y is adjacent toK j

Z
andK

j
Z. Further,K j

ZK
j

Z
is not an edge ofG′, sinceK

j
Z K

j

Z

is in QI . Thus, by Lemma 14, the vertexSj

Z
is adjacent toK j

Y. Now, recall thatLj
Z is adjacent toSj

X andK
j
Z, and

S
j
XK

j
Z is not an edge ofG′. Also, Fj is adjacent toSj

X andK
j
Z by (v) and sinceλj ∈ Fj ∩ K

j
Z. Thus, by Lemma 14,

17



the vertexLj
Z is adjacent toFj. Now, observe thatD j

1
is adjacent toK j

X, K
j

X
, sinceλj ∈ D

j
1
∩ K

j
X andγ

j
1
∈ D

j
1
∩ K

j

X
.

Recall that alsoSX is adjacent to bothK j
X andK

j

X
, and thatK j

XK
j

X
is not an edge ofG′. Thus, by Lemma 14, we

have thatD j
1

is adjacent toSj
X. Next, observe thatD j

2
is adjacent toK j

Y, K
j

Y
, sinceλj ∈ D

j
2
∩ K

j
Y andγ

j
2
∈ D

j
2
∩ K

j

Y
.

Recall thatK j
Y is adjacent toK j

Z
andS

j
X. Also, K

j

Y
is adjacent toSj

X, S
j

Y
, K

j

Z
by (ii), andK

j
Y is adjacent toSj

Y
, since

β
j

Y
∈ K

j
Y ∩ S

j

Y
. Further,K j

YK
j

Y
is not an edge ofG′, sinceK

j
Y K

j

Y
is inQI . Thus, by Lemma 14, the verticesS

j
X, S

j

Y
,

K
j

Z
are adjacent toD j

2. Now, observe thatD j
1
, D

j
2 are adjacent toK j

Z, sinceλj ∈ D
j
1
∩ D

j
2 ∩ K

j
Z. Also, recall thatSj

X

is adjacent toD j
1
, D

j
2
, L

j
Z, the vertexK j

Z is adjacent toSj

Z
, L

j
Z, andS

j
XK

j
Z is not an edge ofG′. Further,Sj

X is adjacent

to S
j

Z
by (ii). Thus, by Lemma 14, bothD j

1
andD

j
2

are adjacent toSj

Z
andL

j
Z. Next, observe thatD j

3
is adjacent to

K
j
Z, K

j

Z
, sinceλj ∈ D

j
3
∩ K

j
Z andγ

j
3
∈ D

j
3
∩ K

j

Z
. Recall that alsoSj

Z
is adjacent toK j

Z, K
j

Z
, and thatK j

ZK
j

Z
is not

an edge ofG′. Thus, by Lemma 14, the vertexD j
3

is adjacent toSj

Z
. Further, recall thatLj

Z is adjacent toK j
Z, S

j
X,

the vertexK j

Z
is adjacent toSj

X, andS
j
XK

j
Z andK

j

Z
L

j
Z are not edges ofG′. Thus, Lemma 15 applied to{D

j
3
, K

j
Z, L

j
Z,

S
j
X, K

j

Z
} yields thatD j

3
is adjacent to bothLj

Z andS
j
X. Moveover,Sj

Y
is also adjacent toSj

X by (ii), andL
j
Y is also

adjacent toD j
3, S

j

Y
, sinceγ

j
3 ∈ D

j
3 ∩ L

j
Y andβ

j

Y
∈ S

j

Y
∩ L

j
Y. Further, recall thatSj

X L
j
Y is not an edge ofG′. Thus, by

Lemma 14 applied to{D
j
3
, L

j
Y, S

j

Y
, S

j
X}, the vertexD j

3
is adjacent toSj

Y
.

To prove (vii), we observe that the above analysis yields that G′ contains edgesFjL
j
Z, K

j
X L

j
Z, K

j
YK

j

Z
, D

j
2
K

j

Z
,

D
j
2S

j

Y
, and D

j
3S

j

Y
. It remains to show that{D

j
1
, D

j
2, D

j
3, S

j
X, S

j

Z
, L

j
Z, K

j
Y} are pairwise adjacent. By the above

paragraph, we have thatS
j
X, S

j

Z
, L

j
Z are adjacent toD j

1
, D

j
2
, D

j
3
. Also, D

j
1
, D

j
2
, D

j
3

andK
j
Y are pairwise adjacent,

sinceλj ∈ D
j
1
∩ D

j
2
∩ D

j
3
∩ K

j
Y. Further,Lj

Z is adjacent toSj
X, andK

j
Y is adjacent toSj

X, S
j

Z
, L

j
Z, by the above

paragraph. Finally,Sj

Z
is adjacent toSj

X andL
j
Z by (ii) and sinceβ

j

Z
∈ S

j

Z
∩ L

j
Z. This proves (vii).

The proof is now complete. 2

Lemma 20. If σ is a satisfying assignment forI, thenG∗
σ is a chordal graph.

PROOF. Assume thatσ is a satisfying assignment forI, namely for each clauseCj = X ∨ Y ∨ Z, we have either
X = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0.

Consider the partitionV1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 of V(G∗
σ) defined as follows:

V1 = {false knees,D-vertices},

V2 = {false shoulders},

V3 = {A-vertices},

V4 = {H-vertices,F-vertices}, and

V5 = {true knees, true shoulders, the vertexB}.

Let π be an enumeration ofV(G∗
σ) constructed by listing the elements ofV1, V2, V3, V4, V5 in that order such that:

1. the elements ofV1 are listed by considering each clauseCj = X ∨ Y ∨ Z and listing vertices (based on the truth
assignment) as follows:

a) if X = 1, then listK j

X
, K

j
Z, L

j
Y, L

j
Z, D

j
1
, K

j
Y, D

j
3
, D

j
2

in that order,

b) if Y = 1, then listK j

Y
, K

j
X, L

j
Z, L

j
X, D

j
2
, K

j
Z, D

j
1
, D

j
3

in that order,

c) if Z = 1, then listK j

Z
, K

j
Y, L

j
X, L

j
Y, D

j
3
, K

j
X, D

j
2
, D

j
1

in that order,

2. the elements ofV2 are listed by listing the false shoulders of the clausesC1, C2, . . . ,Cm in that order,
3. the elements ofV3 are listed in any order,
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4. the elements ofV4 are listed as follows: first the verticesHv1
,Hv1

, Hv2
,Hv2

, . . .Hvn ,Hvn in that order, and then
the verticesFm, Fm−1, . . . , F1 in that order,

5. the elements ofV5 are listed in any order.

We show thatπ is a perfect elimination ordering ofG∗
σ which will imply the claim.

• considerV1. Let j ∈ {1 . . . m} and letCj = X ∨ Y ∨ Z. By the rotational symmetry ofX, Y, Z, assume that

X = 1 andY = Z = 0. So,π lists the false knees andD-vertices ofCj asK
j

X
, K

j
Z, L

j
Y, L

j
Z, D

j
1
, K

j
Y, D

j
3
, D

j
2
.

– consider the vertexK j

X
. Recall thatK j

X
= {β

j
X , γ

j
1
}. Observe thatSj

X is the only other vertex containing

β
j
X, andL

j
Z, D

j
1

are the only other vertices containingγ
j
1
. Moreover, none of the rules (i)-(vii) adds edges

incident toK
j

X
. Thus,Sj

X, L
j
Z, D

j
1

are the only neighbours ofK
j

X
, and they are pairwise adjacent by (vii).

This proves thatK j

X
is indeed a simplicial vertex ofG∗

σ.

– considerK j
Z. SinceK

j
Z = {β

j

Z
, λj}, we conclude thatK j

Z is adjacent toSj

Z
, L

j
Z, K

j
X, K

j
Y, D1

j , D2
j , D3

j , and

Fj. Moreover,K j
Z has no other neighbours by observing the rules (i)-(vii). Now, by (vii), we conclude that

S
j

Z
, L

j
Z, K

j
Y, D

j
1
, D

j
2
, D

j
3

are pairwise adjacent. Also, the verticesFj, K
j
X, K

j
Y, D

j
1
, D

j
2
, D

j
3

are pairwise

adjacent, since they all containλj. Further,Fj is adjacent toSj

Z
andL

j
Z by (v) and (vii), respectively, and

K
j
X is adjacent toSj

Z
andL

j
Z by (ii) and (vii), respectively. This proves thatK

j
Z is a simplicial vertex ofG∗

σ.

– considerLj
Y. The neighbours ofLj

Y areS
j

Y
, K

j
Y, K

j

Z
, andD

j
3. So,Sj

Y
is adjacent toK j

Z
, D

j
3, andK

j
Y by (ii),

(vii), and sinceβ
j

Y
∈ S

j

Y
∩ K

j
Y. Similarly, K

j
Y is adjacent toK j

Z
andD

j
3

by (vii) and sinceλj ∈ K
j
Y ∩ D

j
3
.

Finally, K
j

Z
is adjacent toD j

3
, sinceγ

j
3
∈ K

j

Z
∩ D

j
3
. This proves thatLj

Y is a simplicial vertex ofG∗
σ.

– considerLj
Z. The neighbours ofLj

Z are Fj, K
j
X, K

j
Y, K

j
Z, D

j
1
, D

j
2
, D

j
3
, S

j
X, S

j

Z
, andK

j

X
. By (vii), the

verticesD
j
1
, D

j
2
, D

j
3
, S

j
X, S

j

Z
, K

j
Y are pairwise adjacent. Also,Fj, K

j
X, K

j
Y, D

j
1
, D

j
2
, D

j
3

are pairwise

adjacent, since they all containλj. Further,K j
X andFj are adjacent toSj

X, S
j

Z
by (ii) and (v), respectively.

This proves thatLj
Z is a simplicial vertex ofG∗

σ − {K
j

X
, K

j
Z}.

– considerD j
1
. The neighbours ofD j

1
are Fj, K

j
X, K

j
Y, K

j
Z, D

j
2
, D

j
3
, S

j
X, S

j

Z
, L

j
Z, andK

j

X
. By (vii), the

verticesD
j
2
, D

j
3
, S

j
X, S

j

Z
, K

j
Y are pairwise adjacent. Also,Fj, K

j
X, K

j
Y, D

j
2
, D

j
3

are pairwise adjacent, since

they all containλj. Further,K j
X andFj are adjacent toSj

X, S
j

Z
by (ii) and (v), respectively. This proves

thatD
j
1

is a simplicial vertex ofG∗
σ − {K

j

X
, K

j
Z, L

j
Z}.

– considerK j
Y. The neighbours ofK j

Y areFj, K
j
X, K

j
Z, D

j
1
, D

j
2
, D

j
3
, S

j
X, S

j

Y
, S

j

Z
, K

j

Z
, L

j
Y, andL

j
Z. By (vii),

the verticesD j
2
, D

j
3
, S

j
X, S

j

Z
are pairwise adjacent. Also,F, K

j
X, D

j
2
, D

j
3

are pairwise adjacent, since they

all containλj. Further, by (ii), the verticesSj
X, S

j

Y
, S

j

Z
, K

j
X, andK

j

Z
are pairwise adjacent, and are adjacent

to Fj by (v). Moreover, by (vii),Sj

Y
andK

j

Z
are adjacent toD j

2
, and they are also adjacent toD

j
3

by (vii) and

sinceγ
j
3
∈ K

j

Z
∩ D

j
3
, respectively. This proves thatK

j
Y is a simplicial vertex ofG∗

σ − {K
j
Z, L

j
Y, L

j
Z, D

j
1
}.

– considerD3
j . The neighbours ofD3

j areFj, K
j
X, K

j
Y, K

j
Z, D

j
1
, D

j
2
, S

j
X, S

j

Y
, S

j

Z
, K

j

Z
, L

j
Z, andL

j
Y. By (ii), the

verticesS
j
X, S

j

Y
, S

j

Z
, K

j
X, K

j

Z
are pairwise adjacent. Also,Fj, K

j
X, D

j
2

are pairwise adjacent, since they all

containλj. Further,Fj andD
j
2

are adjacent toSj
X, S

j

Y
, S

j

Z
, K

j

Z
by (v) and (vii), respectively. This proves

thatD3
j is a simplicial vertex ofG∗

σ − {K
j
Z, L

j
Y, L

j
Z, D

j
1
, K

j
Y}.
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– considerD2
j . The neighbours ofD2

j areFj, K
j
X, K

j
Y, K

j
Z, D1

j , D3
j , S

j
X, S

j

Y
, S

j

Z
, K

j

Z
, K

j

Y
, L

j
X andL

j
Z. By

(ii), the verticesSj
X, S

j

Y
, S

j

Z
, K

j
X, L

j
X, K

j

Y
, K

j

Z
are pairwise adjacent, and are adjacent toF by (v). This

proves thatD2
j is a simplicial vertex ofG∗

σ − {K
j
Z, L

j
Z, D

j
1
, K

j
Y, D

j
3
}.

That concludes the vertices inV1.

• consider the setV2. Let j ∈ {1 . . . m} and consider a false shoulderS
j
W for someW = 0. Let i be such that

W = vi or W = vi. The neighbours ofSj
W are the verticesHW, Ai, and the elements of the following sets:

S− =
{

S
j′

W

∣

∣

∣
j′ ∈ ∆i and j′ < j

}

S+ =
{

S
j′′

W

∣

∣

∣
j′′ ∈ ∆i and j′′ > j

}

K− =
{

K
j′

W
, L

j′

W
(if exists)

∣

∣

∣
j′ ∈ ∆i and j′ ≤ j

}

By (ii), the elements ofK− are pairwise adjacent. Similarly, the elements of{HW , Ai} ∪ S+ are pairwise
adjacent, since they all containαW . Further, each element ofS+ is adjacent to every element ofK− by (vi),

and each element ofK− is adjacent toAi and HW by (iii) and (iv), respectively. This proves thatS
j
W is a

simplicial vertex ofG∗
σ −S−, and note that the elements ofS− are false shoulders of the clausesC1, . . . ,Cj−1.

• consider the setV3. Let i ∈ {1 . . . n} and consider the vertexAi. The neighbours ofAi are the verticesHvi
,

Hvi
, all shoulders of the literalsvi, vi, and all true knees ofvi, vi. By (ii), the true knees and true shoulders of

vi, vi are pairwise adjacent, and are adjacent to bothHvi
andHvi

by (iv). Also, Hvi
is adjacent toHvi

, since
δ ∈ Hvi

∩ Hvi
. ThereforeAi is a simplicial vertex ofG∗

σ − V2, since the false shoulders ofvi, vi belong toV2.

• consider the setV4.

– let i ∈ {1 . . . n} and considerHvi
, Hvi

. The verticesHvi
, Hvi

are adjacent to the verticesB, Ai, the
elements of the following sets

H− =
{

Hvi′
, Hvi′

∣

∣

∣
i′ < i

}

H+ =
{

Hvi′′
, Hvi′′

∣

∣

∣
i′′ > i

}

and all true knees, true shoulders ofvi′, vi′ for all i′ ∈ {1 . . . i}. Further,Hvi
is adjacent toHvi

, to all
shoulders ofvi and to no other vertices, whereasHvi

is adjacentHvi
, to all shoulders ofvi and to no

other vertices. Now, by (ii), the true knees and true shoulders of vi′ , vi′ for all i′ ∈ {1 . . . i}, are pairwise
adjacent, and are adjacent toB and each element ofH+ by (i) and (iv), respectively. Also, the elements
of {B} ∪ H+ are pairwise adjacent, since they all containδ. Finally, observe thatAi belongs toV3, and
the false shoulders ofvi, vi belong toV2. This proves that bothHvi

and Hvi
are simplicial vertices of

G∗
σ − (V2 ∪ V3 ∪H−) as required.

– let j ∈ {1 . . . m} and considerFj. Let Cj = X ∨ Y ∨ Z, and by the rotational symmetry, assume that

X = 1 andY = Z = 0. Then the neighbours ofFj areB, K
j
Y, K

j
Z, D

j
1
, D

j
2, D

j
3, L

j
Z, the elements of the

following sets

F+ =
{

Fj′
∣

∣

∣
j′ > j

}

F− =
{

Fj′′
∣

∣

∣
j′′ < j

}

and all true knees and true shoulders of the clauseCj′ for all j′ ∈ {j . . . m}. By (ii), the true knees and
true shoulders of the clauseCj′ for all j′ ∈ {j . . . m}, are pairwise adjacent, and are adjacent toB and each
elements ofF− by (i) and (v), respectively. Also, the vertices of{B} ∪ F− are pairwise adjacent, since

they all containµ. ThusFj is a simplicial vertex ofG∗
σ − (V1 ∪ F+), since the verticesK j

Y, K
j
Z, D

j
1
, D

j
2
,

D
j
3, L

j
Z belong toV1.

That concludes all vertices inV4.
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• consider the setV5. Observe that all vertices ofV5 are pairwise adjacent by (i) and (ii).

That concludes the proof. 2

Lemma 21. For every chordal sandwichG′ of (int∗(QI), forb(QI)), there existsσ such thatGσ is a subgraph of
G′, and such thatσ is a satisfying assignment forI.

PROOF. Let G′ be a chordal sandwich of(int∗(QI), forb(QI)). By Lemma 17, for eachi ∈ {1 . . . n}, there exists

W ∈ {vi, vi} such that for allj ∈ ∆i, the verticesSj
W , K

j
W , andL

j
W (if exists) are adjacent toB in G′. Setσ(vi) = 1

if W = vi, and otherwise setσ(vi) = 0. It follows that for such a mappingσ, the graphG′ contains all edges ofGσ.
Thus, by Lemma 19, the graphG′

σ is a subgraph ofG′, that is,G′ contains the edges defined in (ii)-(vi).
It remains to prove thatσ is a satisfying assignment forI. Let j ∈ {1 . . . m} and the clauseCj = X ∨ Y ∨ Z. If

X = Y = 1, then the vertexSj
Y is a true shoulder, andK j

X is a true knee. Thus, by (ii), we conclude thatS
j
Y is adjacent

K
j
X. However, this is impossible, sinceSj

Y K
j
X is in QY. Similarly, if X = Z = 1, we have thatSj

X is adjacent toK j
Z

by (ii) while S
j
X K

j
Z is in QI , and ifY = Z = 1, thenS

j
Z is adjacent toK j

Y by (ii) while S
j
Z K

j
Y is in QI .

Now, suppose thatX = Y = Z = 0. First, observe thatK j
X is adjacent toLj

X, K
j
Z, and the vertexLj

Z is adjacent

to K
j
Z, K

j

X
, sinceβ

j

X
∈ K

j
X ∩ L

j
X, λj ∈ K

j
X ∩ K

j
Z, β

j

Z
∈ L

j
Z ∩ K

j
Z, andγ

j
1
∈ L

j
Z ∩ K

j

X
. Also, K

j

X
is adjacent toK j

Z

by (ii). Further,K j

Z
K

j
Z, K

j

Z
L

j
Z andK

j

X
L

j
X are not edges ofG′, sinceK

j

Z
K

j
Z, K

j

Z
L

j
Z, andK

j

X
L

j
X are inQI . Thus,

if L
j
X is adjacent toK j

Z
, then by Lemma 16 applied to{K

j
X, L

j
X , K

j

Z
, K

j

X
, L

j
Z, K

j
Z}, we conclude thatK j

X is adjacent

to K
j

X
, which is impossible sinceK j

X
K

j
X is in QI . Similarly, if K

j
X is adjacent toK j

Z
, then by Lemma 15 applied to

{K
j
X, K

j

Z
, K

j

X
, L

j
Z, K

j
Z}, we again conclude thatK

j
X is adjacent toK j

X
, a contradiction. So, we may assume that both

K
j
X andL

j
X are not adjacent toK j

Z
. Now, observe thatLj

Y is adjacent toK j

Z
, K

j
Y, and the vertexK j

X is adjacent toLj
X,

K
j
Y, sinceγ

j
3
∈ K

j

Z
∩ L

j
Y, β

j

Y
∈ L

j
Y ∩ K

j
Y, β

j

X
∈ K

j
X ∩ L

j
X, andλj ∈ K

j
Y ∩ K

j
X. Also, K

j

Y
is adjacent toK j

Z
andL

j
X

by (ii) and sinceγj
2
∈ K

j

Y
∩ L

j
X. Further,K j

Y
K

j
Y andK

j

Y
L

j
Y are not edges ofG′, sinceK

j

Y
K

j
Y andK

j

Y
L

j
Y are inQI .

Recall thatK j
X, L

j
X are not adjacent toK j

Z
. This contradicts Lemma 16 when applied to{K

j
X , L

j
X, K

j

Y
, K

j

Z
, L

j
Y, K

j
Y}.

Thus, it is not the case thatX = Y = Z = 0, and by the above also notX = Y = 1, nor X = Z = 1, nor
Y = Z = 1. Therefore, eitherX = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0.

This proves thatσ is indeed a satisfying assignment forI, which concludes the proof. 2

We are finally ready to prove Theorem 9.

PROOF OFTHEOREM 9. Let G′ be a minimal chordal sandwich of(int∗(QI), forb(QI)). By Lemma 21, there
existsσ, a satisfying assignment forI, such thatGσ is a subgraph ofG′. Thus,G′ is also a chordal sandwich of
(Gσ, forb(QI)), and hence,G∗

σ is a subgraph ofG′ by Lemma 19. But by Lemma 20,G∗
σ is chordal, and soG′ is

equal toG∗
σ by the minimality ofG′. Conversely, ifσ is a satisfying assignment forI, then the graphG∗

σ is chordal by
Lemma 20. Moreover,int∗(QI) is a subgraph ofG∗

σ, by definition, andG∗
σ contains no edges offorb(QI), also by

definition. Thus,G∗
σ is a chordal sandwich of(int∗(QI), forb(QI)), and it is minimal by Lemma 19.

This proves that by mapping each satisfying assigmentσ to the graphG∗
σ, we obtain the required bijection. 2

7. Perfect Phylogenies and Boolean Satisfiability

In this section, we prove Theorem 10. Letσ be a satisfying assignment forI; for each clauseCj = X ∨ Y ∨ Z,
eitherX = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0. ConsiderTσ = (TI, φσ) as defined in§4.

(We refer the reader to Fig. 5 and 6 for an illustration. We recommend the reader to observe this depiction when
following the subsequent arguments.)

For eachi ∈ {1 . . . n}, let Ai = {ai, a′i, y′i, z
j1
i , . . . , z

jt
i ,cj1

i , . . . , c
jt
i } where∆i = {j1, . . . , jt}, and for each

j ∈ {1 . . . m}, letBj = {x
j
1
, x

j
2
, x

j
3
, x

j
4
, x

j
5
, x

j
6
, g

j
1
, g

j
2
, g

j
3
, b

j
1
, b

j
2
, b

j
3
, ℓj}. (See Fig 6.)
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It is not difficult to see thatφσ defines a bijection between the elements ofXI and the leaves ofTI . For instance,

for eachi ∈ {1 . . . n}, we note that{φσ(αvi
), φσ(αvi

)} = {ai, a′i}, and for eachj ∈ ∆i, eitherφσ(β
j
vi
) = c

j
i and

φσ(β
j
vi
) ∈ {b

j
1
, b

j
2
, b

j
3
}, or φσ(β

j
vi
) = c

j
i andφσ(β

j
vi
) ∈ {b

j
1
, b

j
2
, b

j
3
}. Also, for eachj ∈ {1 . . . m}, we haveφσ(λj) =

ℓj, and{φσ(γ
j
1
), φσ(γ

j
2
), φσ(γ

j
3
)} = {g

j
1
, g

j
2
, g

j
3
}. Further, it can be readily verified thatTI is a ternary tree. Thus,

Tσ = (TI , φσ) is indeed a ternary phylogeneticXI-tree. We show that it displays and is distinguished byQI .
First, we show thatTσ displaysQI . We consider the quartet trees inQI one by one.

• considerAi B for i ∈ {1 . . . n}. Recall thatAi = {αvi
, αvi

}, B = {δ, µ}, and that{φσ(αvi
), φσ(αvi

)} =
{ai, a′i}. Also, φσ(δ) = y0 andφσ(µ) = u0. Observe thatai, a′i ∈ Ai. Hence, bothai, a′i are in one connected

component ofTI − yiy
′
i whereasy0, u0 are in another component. Thus,Tσ indeed displaysAi B.

• considerD j
p B for j ∈ {1 . . . m} andp ∈ {1, 2, 3}. Recall thatD j

p = {γ
j
p, λj}, andφσ(γ

j
p) ∈ Bj, φσ(λj) ∈

Bj. Also, B = {δ, µ} andφσ(δ) = y0, φσ(µ) = u0. Thus bothφσ(γ
j
p), φσ(λj) are in one component of

TI − ujx
j
1

whereasy0, u0 are in another component. This shows thatTσ displaysD
j
p B.

• considerSj
vi

S
j′

vi
wherei ∈ {1 . . . n} and j, j′ ∈ ∆i. Recall thatSj

vi
= {αvi

, β
j
vi
} andS

j′

vi
= {αvi

, β
j′

vi
}. By

symmetry, we may assume thatvi = 1. Thenφσ(αvi
) = ai, φσ(αvi

) = a′i, φσ(β
j
vi
) ∈ Bj, andφσ(β

j′

vi
) = c

j′

i .

Let jt denote the largest element in∆i. Then, botha′i,c
j′

i are in one component ofTI − y′iz
jt
i whereasai and

φσ(β
j
vi
) are in a different component. This proves thatTσ displaysS

j
vi

S
j′

vi
.

• considerSj
vi

K
j′

vi
and S

j
vi

K
j′

vi
for i ∈ {1 . . . n} and j, j′ ∈ ∆i where j < j′. Recall thatK j′

vi
⊆ {β

j′

vi
,

γ
j′

1
, γ

j′

2
, γ

j′

3
, λj′}, K

j′

vi
⊆ {β

j′

vi
, γ

j′

1
, γ

j′

2
, γ

j′

3
, λj′}, S

j
vi

= {αvi
, β

j
vi
} andS

j
vi

= {αvi
, β

j
vi
}. Again, by symmetry,

we may assumevi = 1. So,φσ(αvi
) = ai, φσ(αvi

) = a′i, φσ(β
j
vi
) = c

j
i, φσ(β

j′

vi
) = c

j′

i , φσ(β
j
vi
) ∈ Bj, and

{φσ(β
j′

vi
), φσ(γ

j′

1
), φσ(γ

j′

2
), φσ(γ

j′

3
), φσ(λj′)} ⊆ Bj′ . Let j1 < j2 < . . . < jt be the elements of∆i. Since

j ∈ ∆i, let k be such thatj = jk. We concludek < t, sincej < j′ andj′ ∈ ∆i. Thus, the elements ofφσ(S
j
vi
)

andφσ(K
j′

vi
), respectively are in different components ofTI − z

jk
i z

jk+1

i . Further, observe thatφσ(K
j′

vi
) ⊆ Bj′ ,

and sincej 6= j′, the elements ofφσ(S
j
vi
) andφσ(K

j′

vi
) are in different components ofTI − uj′x

j′

1
. This proves

thatTσ displays bothSj
vi

K
j′

vi
andS

j
vi

K
j′

vi
.

• considerK j
vi

Fj′ and K
j
vi

Fj′ for i ∈ {1 . . . n} and j < j′ where j ∈ ∆i. Again, recall thatK j
vi

⊆

{β
j
vi

, γ
j
1
, γ

j
2, γ

j
3, λj}, K

j
vi
⊆ {β

j
vi

, γ
j
1
, γ

j
2, γ

j
3, λj}, and thatFj′ = {λj′ , µ}. So,φσ(K

j
vi
) ∪ φσ(K

j
vi
) ⊆ Ai ∪ Bj

whereasφσ(Fj′) ⊆ Bj′ ∪ {u0}. Sincej < j′ ≤ m, we conclude thatφσ(K
j
vi
) ∪ φσ(K

j
vi
) andφσ(Fj′) are in

different components ofTI − ujuj+1. This proves thatTσ displays bothK j
vi

Fj′ andK
j
vi

Fj′ .

• considerHvi′
S

j
vi

, Hvi′
S

j
vi

, Hvi′
S

j
vi

, andHvi′
S

j
vi

for 1 ≤ i′ < i ≤ n and j ∈ ∆i. Recall thatHvi′
=

{αvi′
, δ}, Hvi′

= {αvi′
, δ}, S

j
vi

= {αvi
, β

j
vi
}, and S

j
vi

= {αvi
, β

j
vi
}. So, φσ(S

j
vi
) ∪ φσ(S

j
vi
) ⊆ Ai ∪ Bj

whereasφσ(Hvi′
) ∪ φσ(Hvi′

) ⊆ Ai′ ∪ {y0}. Thus, sincei′ < i ≤ n, we conclude thatφσ(S
j
vi
) ∪ φσ(S

j
vi
)

andφσ(Hvi′
) ∪ φσ(Hvi′

) are in different components ofTI − yi′yi′+1. This proves thatTσ displays all the four

quartet treesHvi′
S

j
vi

, Hvi′
S

j
vi

, Hvi′
S

j
vi

andHvi′
S

j
vi

.

• considerHvi
Fj andHvi

Fj for i ∈ {1 . . . n} andj ∈ {1 . . . m}. Recall thatHvi
= {αvi

, δ}, Hvi
= {αvi

, δ},

andFj = {λj, µ}. Hence, it follows that{φσ(Hvi
) ∪ φσ(Hvi

)} ⊆ Ai ∪ {y0} andφσ(Fj) ⊆ Bj ∪ {u0}. Thus,
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we conclude thatφσ(Hvi
) ∪ φσ(Hvi

) andφσ(Fj) are in different components ofTI − ynu1. This proves that

Tσ displays bothHvi
Fj andHvi

Fj.

• consider the clauseCj = X ∨Y ∨ Z for j ∈ {1 . . . m}. Sinceσ is a satisfying assignment, and by the rotational
symmetry betweenX, Y, andZ, we may assume thatX = 1, Y = 0, andZ = 0. Let iX be the index such that
X = viX

or X = viX
, let iY be such thatY = viY or Y = viY , and letiZ be such thatZ = viZ

or Z = viZ
.

Note thatiX , iY, iZ are all distinct, since we assume that no variable appears more than once in the same clause.

Thus we have thatφσ(β
j
X) = b

j
1
, φσ(β

j

Y
) = b

j
2
, φσ(β

j

Z
) = b

j
3
, φσ(γ

j
1
) = g

j
1
, φσ(γ

j
2
) = g

j
2
, φσ(γ

j
3
) = g

j
3
, and

φσ(λj) = ℓj. (See Fig. 6c.) Also,{φσ(αX), φσ(αX), φσ(β
j

X
)} ⊆ AiX

, {φσ(αY), φσ(αY), φσ(β
j
Y)} ⊆ AiY ,

and{φσ(αZ), φσ(αZ), φσ(β
j
Z)} ⊆ AiZ

.

– considerK j

X
K

j
X andK

j

X
L

j
X. Recall thatK j

X
= {β

j
X, γ

j
1
}, K

j
X = {β

j

X
, λj}, andL

j
X = {β

j

X
, γ

j
2
}.

Also, recall thatφσ(β
j

X
) ∈ AiX

. Thus it follows thatφσ(K
j
X) ∪ φσ(L

j
X) andφσ(K

j

X
) are in different

components ofTI − x
j
4
x

j
6
.

– considerK j

Y
K

j
Y andK

j

Y
L

j
Y. Recall thatK j

Y
= {β

j
Y, γ

j
2
}, K

j
Y = {β

j

Y
, λj}, andL

j
Y = {β

j

Y
, γ

j
3
} where

φσ(β
j
Y) ∈ AiY . Thus,φσ(K

j
Y) ∪ φσ(L

j
Y) andφσ(K

j

Y
) are in different components ofTI − x

j
1
x

j
2
.

– considerK j

Z
K

j
Z andK

j

Z
L

j
Z. Recall thatK j

Z
= {β

j
Z, γ

j
3}, K

j
Z = {β

j

Z
, λj}, andL

j
Z = {β

j

Z
, γ

j
1
} where

φσ(β
j
Z) ∈ AiZ

. Thus,φσ(K
j
Z) ∪ φσ(L

j
Z) andφσ(K

j

Z
) are in different components ofTI − x

j
2
x

j
4
.

– considerSj
Y K

j
X andS

j
Y L

j
Z. Recall thatSj

Y = {αY, β
j
Y}, K

j
X = {β

j

X
, λj} andL

j
Z = {β

j

Z
, γ

j
1
}. Also,

{φσ(αY), φσ(β
j
Y)} ⊆ AiY whereasφσ(β

j

X
) ∈ AiX

. Thus, sinceiX 6= iY, we conclude thatφσ(S
j
Y) and

φσ(K
j
X) ∪ φσ(L

j
Z) are in different components ofTI − yiY y′iY .

– considerSj
Z K

j
Y andS

j
Z L

j
X . Recall thatSj

Z = {αZ, β
j
Z}, K

j
Y = {β

j

Y
, λj}, andL

j
X = {β

j

X
, γ

j
2
}. Also,

{φσ(αZ), φσ(β
j
Z)} ⊆ AiZ

, andφσ(β
j

X
) ∈ AiX

. Thus, sinceiX 6= iZ, we conclude thatφσ(S
j
Z) and

φσ(K
j
Y) ∪ φσ(L

j
X) are in different components ofTI − yiZ

y′iZ
.

– considerSj
X K

j
Z andS

j
X L

j
Y. Recall thatSj

X = {αX , β
j
X}, K

j
Z = {β

j

Z
, λj} andL

j
Y = {β

j

Y
, γ

j
3
} where

φσ(αX) ∈ AiX
. Thus,φσ(S

j
X) andφσ(K

j
Z) are in different components ofTI − x

j
4
x

j
5
, whereasφσ(S

j
X)

andφσ(L
j
Y) are in different components ofTI − x

j
2x

j
3.

This proves thatTσ displaysQI . It remains to prove thatTσ is distinguished byQI . We analyze the edges ofTI .

• consider the edgeyiy
′
i for i ∈ {1 . . . n}. Recall thatAi = {αvi

, αvi
} andB = {δ, µ}. By definition, we have

φσ(Ai) = {ai, a′i} andφσ(B) = {y0, u0}. Note that every connected subgraph ofTI that contains bothy0 and
u0 must also containyi, since it lies on the path betweenu0 andy0 in TI . Likewise, every connected subgraph
of TI that containsai, a′i also containsy′i. This shows that the edgeyiy

′
i is distinguished byAi B which is inQI .

• consider the edgeujx
j
1

for j ∈ {1 . . . m}. By the definition ofφσ, we observe that there existsp ∈ {1, 2, 3}

such thatφσ(γ
j
p) = g

j
2
. We recall thatB = {δ, µ} and D

j
p = {γ

j
p, λj}. Thus,φσ(B) = {y0, u0} and

φσ(D
j
p) = {g

j
2
, ℓj}. Sinceg2

j is adjacent tox j
1
, anduj lies on the path betweeny0 andu0, it follows that the

edgeujx
j
1

is distinguished byD j
p B which is inQI .

• consideri ∈ {1 . . . n} and letj1 < j2 < . . . < jt be the elements of∆i. Let W ∈ {vi, vi} be such thatW = 1.

Then we haveφσ(αW) = ai, φσ(αW) = a′i, andφσ(β
j

W
) = c

j
i for all j ∈ ∆i. Recall thatSj

W
= {αW , β

j

W
}
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andK
j
W ⊆ {β

j

W
, γ

j
1
, γ

j
2
, γ

j
3
, λj} where{φσ(γ

j
1
), φσ(γ

j
2
), φσ(γ

j
3
), φσ(λj)} ⊆ Bj for all j ∈ ∆i. Thus, for

eachk ∈ {1 . . . t − 1}, it follows thatφσ(β
jk
W
) is adjacent tozjk

i whereasφσ(β
jk+1

W
) is adjacent toz

jk+1

i . This

proves that the edgezjk
i z

jk+1

i is distinguished bySjk
W

K
jk+1

W . Similarly, recall thatSj
W = {αW , β

j
W} where

φσ(β
j
W) ∈ Bj andφσ(αW) is adjacent toy′i. Thus, the edgezjt

i y′i is distinguished bySjt
W S

jt
W

. Further, ifi ≥ 2,

then we recall thatHvi−1
= {αvi−1

, δ} whereφσ(αvi−1
) ∈ Ai−1 andφσ(δ) = y0. Thusyi−1yi is distinguished

by Hvi−1
S

jt
W .

• considerj ∈ {1, . . . m} whereCj = X ∨ Y ∨ Z. By the rotational symmetry, we may assume thatX = 1 and

Y = Z = 0. Thusφσ(β
j
X) = b

j
1
, φσ(β

j

Y
) = b

j
2, φσ(β

j

Z
) = b

j
3, φσ(γ

j
1
) = g

j
1
, φσ(γ

j
2) = g

j
2, φσ(γ

j
3) = g

j
3,

andφσ(λj) = ℓj. (Again see Fig. 6c.) Recall thatK
j
Y = {β

j

Y
, λj} andK

j

Y
= {β

j
Y, γ

j
2
} whereφσ(β

j
Y) 6∈ Bj.

This shows that the edgex j
1
x

j
2

is distinguished byK j

Y
K

j
Y. Recall thatSj

X = {αX , β
j
X}, L

j
Y = {β

j

Y
, γ

j
3
}, and

K
j
Z = {β

j

Z
, λj} whereφσ(αX) 6∈ Bj. Thus, the edgex j

2
x

j
3

is distiguished bySj
X L

j
Y whereas the edgex j

4
x

j
5

is distinguished bySj
X K

j
Z. Recall thatK j

Z
= {β

j
Z, γ

j
3
} andL

j
Z = {β

j

Z
, γ

j
1
} whereφσ(β

j
Z) 6∈ Bj. Thus, the

edgex
j
2
x

j
4

is distinguished byK j

Z
L

j
Z. Recall thatK j

X = {β
j

X
, λj} andK

j

X
= {β

j
X , γ

j
1
} whereφσ(β

j

X
) 6∈ Bj.

Thus, the edgex j
4
x

j
6

is distinguished byK j

X
K

j
X. Further, if j < m, recall thatFj+1 = {λj+1, µ} where

φσ(λj+1) ∈ Bj+1 andφσ(µ) = u0. Thusujuj+1 is distinguished byK j
X Fj+1.

• consider the edgeynu1 and recall thatHvn = {αvn , δ} andF1 = {λ1, µ}. So,φσ(Hvn) ⊆ An ∪ {y0} and
φσ(F1) ⊆ B1 ∪ {u0}. Thus, the edgeynu1 is distinguished byHvn F1.

This concludes the proof of Theorem 10. 2

Finally, we have all pieces to prove Theorem 1.

8. Proof of Theorem 1

The problem is clearly in CoNP as it can be defined by the formula “T displaysQ, and for everyX-treeT ′, if T ′

displaysQ, thenT ′ is isomorphic toT ”. For this, note that isomorphism of labelled trees admits apolynomial-time
algorithm [2], and checking if a givenX-tree displays a given quartet tree{a, b} {c, d} can be done easily (by testing
if the path between the leaves labelleda andb is disjoint from the path between the leaves labelledc andd).

To prove CoNP-hardness, consider an instanceI of ONE-IN-THREE-3SAT and a satisfying assignmentσ for I. We
construct the collectionQI of quartet trees, as well as the ternary phylogenetic treeTσ as described in§4. Clearly,
constructingQI andTσ takes polynomial time. By combining Theorem 8 with Theorems9 and 10, we obtain that
σ is the unique satisfying assignment ofI if and only if Tσ is the only phylogenetic tree that displaysQI . Since, by
Theorem 2, it is CoNP-hard to determine if an instance ofONE-IN-THREE-3SAT has a unique satisfying assignment,
it is therefore CoNP-hard to decide, for a given phylogenetic treeT and a collection of quartet treesQ, whether or
notQ definesT . That concludes the proof of Theorem 1. 2

9. Concluding remarks

In this paper, we have shown that determining whether a givenphylogenetic tree represents the unique evolution
of a given collection of species is a CoNP-complete problem.

In addition, we proved that the unique minimal chordal sandwich problem is CoNP-complete. This is interesting
from the perspective of applications that deal with incomplete data, where sandwich problems [17] allow one to ap-
proximate or complete the dataset, assuminga priori that it should posses specific properties (like being from a specific
structured family of graphs). Deciding uniqueness in this context serves as a test of quality of the sandwich, namely
it allows one to see whether there are alternative explanations of the dataset or not. Here, we provide complexity for
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the case of having a unique minimal sandwich that is a chordalgraph. Following this direction, it would be interesting
to consider the complexity of uniqueness of other sandwich problems, especially those with interesting applications.
For instance, for interval sandwich (DNA physical mapping)or cograph sandwich (genome comparison) problems.
Note that the decision problem for the former is NP-complete[18] while it is polynomial for the latter [6, 17].
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