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Abstract

A phylogenyis a tree capturing evolution and ancestral relationshigsset of taxa (e.g., species). Reconstructing
phylogenies from molecular data plays an important role anynareas of contemporary biological research. A
phylogeny is perfect if (in rough terms) it correctly capsiall input data. Determining if a perfect phylogeny exists
was shown to be intractable in 1992 by Mike Steel [32] and jreshelently by Bodlaender et al. [4]. In light of this, a
related problem was proposed in [32]: given a perfect prathygdetermine if it is the unique perfect phylogeny for
the given dataset, where the dataset is provided as a setgky(#-leaf) trees. It was suggested that this problem
may be more tractable [32], and determining its complexétyame known as the Quartet Challenge [33].

In this paper, we resolve this question by showing that tieblem is CoNP-complete. We prove this by relating
perfect phylogenies to satisfying assignments of Booleam@ilas. To this end, we cast the question as a chordal
sandwich problem. As a particular consequence of our methedshow that the unique minimal chordal sandwich
problem is CoNP-complete, and counting minimal chordatigaches is #P-complete.
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1. Introduction

One of the major efforts in molecular biology has been the patiation of phylogenetic trees, phylogenies
which describe the evolution of a set of species from a comammestor. A phylogenetic tree for a set of species is a
tree in which the leaves represent the species from the deharinternal nodes represent the (hypothetical) andestra
species. One standard model for describing the speciesasms ofcharacters where a character is an equivalence
relation on the species set, partitioning it into differelméracter statesin this model, we also assign character states
to the (hypothetical) ancestral species. The desired pipjsethat for each state of each character, the set of nodes
in the tree having that character state forms a connectegraph. When a phylogeny has this property, we say it
is perfect The Perfect Phylogeny problem [20] then a$fsa given set of characters defining a species set, does
there exist a perfect phylogenyote that we allow that states of some characters are unkf@mmsome species;
we call such charactersartial, otherwise we speak dtill characters. This approach to constructing phylogenies
has been studied since the 1960s [8, 25, 26, 27, 35] and was giprecise mathematical formulation in the 1970s
[12, 13, 14, 15]. In particular, Buneman [7] showed that theféct Phylogeny problem reduces to a specific graph-
theoretic problem, the problem of finding a chordal compledf a graph that respects a prescribed colouring. In fact,
the two problems are polynomially equivalent [23]. Thudngshis formulation, it has been proved that the Perfect
Phylogeny problem is NP-hard in [4] and independently in].[3Phese two results rely on the fact that the input
may contain partial characters. In fact, the charactersdnd constructions only have two states. If we insist on full
characters, the situation is different as for any fixed numlgd character states, the problem can be solved in time
polynomial [1] in the size of the input (and exponentiat)nin particular, forr = 2 (or r = 3), the solution exists if
and only if it exists for every pair (or triple) of charact¢ts, 24]. Also, when the number of characters i@ven if
there are partial characters), the complexity [28] is potyial in the number of species (and exponentidl)in
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Another common formulation of this problem is the problemaabnsensus treg 0, 19, 32], where a collection
of subtrees with labelled leaves is given (for instanceldhees correspond to species of a partial character). kere,
ask for a (phylogenetic) tree such that each of the inputrsabtcan be obtained by contracting edges of the tree (we
say that the tredisplaysthe subtree). The problem does not change [31] if we onlywablarticular input subtrees, the
so-calledquartet treeswhich have exactly six vertices and four leaves. This fefidrom the fact that everternary
phylogenetic tredall internal nodes have degree 3) can be uniquely deschipedcollection of quartet trees [31].
However, a collection of quartet trees does not necessamnityuely describe a ternary phylogenetic tree. (Note that
some authors use the tebimary tree[5, 31] orsubcubic tredor what we call here gernary treeas defined in [30].)

This leads to a natural question (first posed in [32¥hat is the complexity of deciding whether or not a collettio
of quartet trees uniquely describes a (ternary) phylogiertete? Initially, it was suggested [32] that this problem may
be more tractable. Indeed priori it is possible that unique solutions only exist for specalections of quartet trees
and thus have special structure which could be easy to testeter, as the problem was open for a number of years,
and perhaps from experience with real datasets, it became chear that this probably is not the case. This was
reflected in the problem being conjectured to be intractbplklike Steel who named it Quartet Challenge and listed
it on his personal webpage [33] alongside with other chgllegmresearch problems from the area of phylogenetics. In
particular, to emphasize the importance of the problemice mf $100 was offered for the first proof of intractability.

In this paper, we resolve the problem by showing that it ieedlintractable. Namely, we show the following.

Theorem 1. It is CoNP-complete to determine, given a ternary phylogieré-tree 7 and a collectionQ of quartet
subtrees orX, whether or nof/” is the only phylogenetic tree that displags

To prove this theorem, we investigate the graph-theordtaamulation of the problem [7] and view it through the
notion of chordal sandwich [17]. In contrast, an alterrafivoof of the theorem, which recently appeared as [5], is
based on the betweenness property, extending the hardisestsaf [32]; our proof extends the hardness from [4].

In light of this, we note that there are special cases of tloblpm that are known to be solvable in polynomial
time. For instance, this is so if the collectighcontains a subcollectio@®’ with the same sef of labels of leaves
and with|Q'| = |£| — 3. However, finding such a subcollection is known to be NP-detep For these and similar
results, we refer the reader to [3].

We prove Theorem 1 by describing a polynomial-time redundtiom the uniqueness problem foRE-IN-THREE-
3saT, which is CoNP-complete by [22].

Theorem 2. [22] It is CoNP-complete to decide, given an instahcé ONE-IN-THREE-3SAT, and a truth assignment
o that satisfied, whether or notr is the unique satisfying truth assignment for

We extract this from [22] by encoding the problem as the tgrnelation{(0,0,1), (0,1,0), (1,0,0) }. We check
that this relation is not: 0-valid, 1-valid, Horn, anti-Hhgraffine, 2SAT, or complementive. Thus the uniqueness of the
satisfiability problem corresponding to this relation isNEBbcomplete by [22].

Our construction in the reduction is essentially a modiiacadf the construction of [4] which proves NP-hardness
of the Perfect Phylogeny problem. Recall that the constnaif [4] produces instanceg that have a perfect phy-
logeny if and only if a particular boolean formufais satisfiable. While studying this construction, we imnageliy
observed that these instan@@shave, in addition, the property thédt has a unique satisfying assignment if and only
if there is a unique minimal restricted chordal completiéthe partial partition intersection graph &f (for defini-
tions see§2). This is precisely one of the two necessary conditionsiféqueness of perfect phylogeny as proved
by Semple and Steel in [30] (see Theorem 5). Thus by modiftfiegconstruction of [4] to also satisfy the other
condition of uniqueness of [30], we obtained the constauctihat we present in this paper. Note that, however, unlike
[4] which uses 3AT, we had to use a different problem in order for the constonctid work correctly. Also, to prove
that the construction is correct, we employ a variant of theracterization of [30] that uses the more general chordal
sandwich problem [17] instead of the restricted chordalpietion problem (see Theorem 8). In fact, by way of The-
orems 6 and 7, we establish a direct connection between tieon of perfect phylogeny and the chordal sandwich
problem, which apparently has not been yet observed. (Matdtie connection to the (restricted) chordal completion
problem of coloured graphs as mentioned above [7, 23] is @@pmse of this.)

Finally, as a corollary, we obtain the following result whis very interesting by itself.
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Corollary 3. The unique minimal chordal sandwich problem is CoNP-coteplehe problem of counting the number
of minimal chordal sandwiches#-complete.

The first part follows directly from Theorems 2 and 9, while 8econd part follows from Theorem 9 and [9].

The paper is structured as follows. 48, we describe some preliminary definitions and results egdor the
construction in our reduction. In particular, we describased on [30], necessary and sufficient conditions for the
existence of a unique perfect phylogeny in terms of the maichordal sandwich problem (cf. [16, 17]). The proof
of this characterization is postponed uisl

In §3 and§4, we present our hardness reduction, first informally aed formally. We state the two uniqueness
conditions (Theorems 9 and 10) relating satisfying assgmmof an instancéof ONE-IN-THREE-3SAT to minimal
chordal sandwiches and phylogenetic trees uniquely datedhby these assignments. The proofs are presented later
in §6 and§7. In §8, we put these results together to prove Theorem 1.

We conclude ir§9 with some other consequences and open questions reldtad voork.

2. Preliminaries

We mostly follow the terminology of [30, 31] and the graplednetical notions of [34].

In this paper, a graph is always simple, undirected, withoop$ or parallel edges. For a gragh= (V,E), we
write V(G) to denote its vertex set arft{ G) to denote its edge set. We write for the edge(u, v) € E(G), and
say thatu, v areneighboursor adjacentin G. For a vertex € V(G), we denote byNs(v) the neighbourhoodf v
in G, i.e, the set of neighbours ofin G. We write Ng[v] for Ng(v) U {v}. When appropriate, we drop the index
G and simply writeN (v) andN[v]. For a setX C V(G), we denote byG[X] the subgraph o& inducedby X,
i.e., the graph with vertex séf and edges:v such that,,v € X anduv € E(G). We write G — X for the graph
G[V(G) \ X]. Similarly, for a set of edgeE C E(G), we writeG — F for the graph with vertex séf(G) and edge
setE(G) \ F. We writeG — x as a shorthand fag — {x}. We say thaK is acliqueof G if G[X] is acomplete graph
(i.e., has all possible edges). A vertex V(G) is asimplicial vertexof G if all its neighbours are pairwise adjacent.

A graph is achordal graphif it does not contains an induced cycle of length four or maéeerfect elimination
orderingof a graphG is an orderingy, vy, . . ., v, Of the vertices ofG such that for every € {1...n}, the vertex
v; is a simplicial vertex oG [{v1,...,v;}], i.e., all its neighbours among ..., v;_;} are pairwise adjacent. It is
well-known [11] that a graph is chordal if and only if it adsé perfect elimination ordering.

Let X be a non-empty set. AK-treeis a pair(T, ¢) whereT is tree andp : X — V(T) is a mapping such that
¢~ (v) # @ for all verticesv € V(T) of degree at most two. AX-tree (T, ¢) is ternaryif all internal vertices ofl
have degree three. Tw-trees(Ty, ¢1), (To, ¢ ) areisomorphidf there exists an isomorphisgh: V(T1) — V(1)
betweerl; andT, that satisfieg, = ¢ o ¢;.

An X-tree (T, ¢) is aphylogeneticX-tree (or afree X-treein [30]) if ¢ is a bijection betweeX and the set of
leaves ofl'. A partial partition of X is a partition of a non-empty subset Kfinto at least two sets. 1A, Ay, ...,
Ay are these sets, we call theralls of this partition, and denote the partitiohy | Ay ‘ ... ‘At. If t =2, we call the
partition apartial split. A partial splitA; ‘A2 is trivial if |A1| = 1 or |Az| = 1.

A quartet treeis a ternary phylogenetic tree with a label set of size fdat ts, a ternary tre@ with 6 vertices,
4 leaves labelled, b, ¢, d, and with only one non-trivial partial splita, b} | {c,d} that it displays. Note that such a
tree is unambiguously defined by this partial split. Thushimsubsequent text, we identify the quartet tfewith
the partial split{a, b} | {c,d}, thatis, we say thafa, b} | {c,d} is both a quartet tree and a partial split.

Let7 = (T, ¢) be anX-tree, and lett = A; ‘ A2| ‘At be a partial partition oK. Let F C E(T) be a set of
edges ofl. We say thaf displaysr in 7 if for all distincti, j € {1...t}, the setsp(A;) andp(A;) are subsets of
the vertex sets of different connected componentE ef F. We say thaf/” displaysrr if there is a set of edges that
displaysrt in 7. Further, an edgeof T is distinguishedy 7 if every set of edges that displaysin 7 containse.

Let O be a collection of partial partitions of. An X-tree7 displaysQ if it displays every partial partition iig.
An X-treeT = (T, ¢) is distinguishedy Q if every internal edge of is distinguished by some partial partition in
Q; we also say tha@ distinguishes/. The setQ definesT if 7 displaysQ, and all otherX-trees that display)
are isomorphic t¢. Note that ifQ definesT, thenT is necessarily a ternary phylogeneXetree, since otherwise
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“resolving” any vertex either of degree four or more, or witlultiple labels results in a non-isomorphietree that
also display<Q (also, see [30, Proposition 2.6]). See Fig. 1 for an illugireof these concepts.

Thepartial partition intersection graplof Q, denoted byint(Q), is a graph whose vertex set{i§A, 77) | where
Aisacellofr € Q} and two vertice$ A, ), (A’, ') are adjacent just if the intersection4fand A’ is non-empty.

A chordal completiorof a graphG = (V, E) is a chordal graplé’ = (V, E’) with E C E’. A restricted chordal
completionof int(Q) is a chordal completio:’ of int(Q) with the property that ifA;,A, are cells ofrt € Q,
then(A;, ) is not adjacent t¢ Ay, 77) in G’. A restricted chordal completio@’ of int( Q) is minimalif no proper
subgraph of3’ is a restricted chordal completion oft( Q).

The problem of perfect phylogeny is equivalent to the probté determining the existence of afitree that dis-
plays the given collectio® of partial partitions. In [7], it was given the following gob-theoretical characterization.

Theorem 4. [7, 31, 32]Let Q be a set of partial partitions of a sé&€. Then there exists aK-tree that display<Q if
and only if there exists a restricted chordal completiomnf Q).

Of course, theX-tree in the above theorem might not be unique. For the pnobfauniqueness, Semple and Steel
[30, 31] describe necessary and sufficient conditions fagméncollection of partial partitions defines Hrtree.

Theorem 5. [30] Let Q be a collection of partial partitions of a sé&f. Let7 be a ternary phylogeneti¥-tree. Then
Q definesy if and only if:

(i) 7T displaysQ and is distinguished b@, and
(i) there is a uniqgue minimal restricted chordal completiorira{ Q).

In order to simplify our proof of Theorem 1, we now describeagiant of the above theorem that, instead, deals
with the notion of chordal sandwich [17].

LetG = (V,E) andH = (V, F) be two graphs on the same set of vertices \Eith F = @. A chordal sandwich
of (G,H) is a chordal graplc’ = (V,E’) with E C E’ andE’ N F = @. We say that are theforcededges and
are theforbiddenedges. (For other possible formulations of this notion,[$&) A chordal sandwiclt’ of (G,H)
is minimalif no proper subgraph af’ is a chordal sandwich diG,H).

Thecell intersection graplof Q, denoted byint*(Q), is the graph whose vertex set{igl | whereA is a cell of
€ Q} and two verticesA, A’ are adjacent just if the intersection Afand A’ is non-empty. Leforb(Q) denote
the graph whose vertex set is thatiof*( Q) in which there is an edge betweenand A’ just if A,A’ are cells of
somerr € Q. See Fig. 1d for an example.

The relationship between the notion of partial partitioteisection graph and the cell intersection graph is cap-
tured by the following theorem.

Theorem 6. Let Q be a collection of partial partitions of a s&f. Then there exists a bijective mapping between the
minimal restricted chordal completions oft( Q) and the minimal chordal sandwiches(@fit* (Q), forb(Q)).

(The proof of this theorem is rather technical and it is pnéseé as;5.)

This combined with Theorem 4 yields that there exists a pigheticX-tree that display® if and only if there
exists a chordal sandwich ¢int*( Q), forb(Q)). Conversely, we can express every instance of the chonddhseh
problem as a corresponding instance of the problem of pgsfedogeny as follows.
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Theorem 7. Let (G, H) be an instance of the chordal sandwich problem. Then thestsex collectionQ of partial
splits such that there is a bijective mapping between thémaihchordal sandwiches dfG, H) and the minimal
restricted chordal completions afit( Q). In particular, there exists a chordal sandwich fag, H) if and only if there
exists a phylogenetic tree that displa@s

PrROOF. Consider the instandgs, H) whereG = (V,E) andH = (V, F) are two graphs witlE N F = @.

Without loss of generality, we may assume that each condecteponent ofz has at least three vertices. (We
can safely remove any component with two or fewer verticébaut changing the number of minimal chordal com-
pletions, since every such componentis already chordal.)

We define the collectio® of partial splits (of the seE) as follows: for every edgey € F, we construct the
partial splitD, ‘ Dy, whereD, are the edges df incident tox, andD, are the edges df incident toy. By definition,
the vertex set of the grapit*(Q) is precisely{D, | v € V}. Further, it can be easily seen that the mappjng
that, for eachv € V, mapsv to D, is an isomorphism betweeh andint*(Q). (Here, one only needs to verify that
D, = D, impliesu = v; for this we use that each component®has at least three vertices.) Moreoverb(Q)
is precisely{y(x)¥(y) | xy € F} by definition. Therefore, by Theorem 6, there is a one-to-woreespondence
between the minimal chordal sandwicheg 6f H) and the minimal restricted chordal completionsmf{ Q). This
proves the first part of the claim; the second part followsdtiy from Theorem 4. ]

As an immediate corollary, we obtain the following desirédmacterization.

Theorem 8. Let Q be a collection of partial partitions of a sé€. Let7 be a ternary phylogeneti¥-tree. ThenQ
definesy if and only if:

(i) 7T displaysQ and is distinguished b@, and
(i) there is a unigue minimal chordal sandwich(ciht*(g), forb(Q)) :

We remark that the main technical advantage of this theoremTheorem 5 is that it is less restrictive; it allows
us to construct instances with arbitrary sets of forbiddiges rather than just with forbidden edges between vertices
of the same colour. This makes our proof of Theorem 1 muchlsingmd more manageable.

3. Overview of the proof

Consider an instanceof ONE-IN-THREE-3SAT. The instancd consists of: variablesv, . .., v, andm clauses
Cy,...,Cy each of which is a disjunction of exactly thri#erals (i.e., variable®; or their negations;).

To simplify the presentation, we shall denote literals bpitzd lettersX, Y, etc., and indicate their negations by
X, Y, etc. (For instance, K = v; thenX = 7;, and if X = 7; thenX = v;.)

A truth assignmenfor the instancd is a mappingr : {vq,...,v,} — {0,1} where 0 and 1 represefatiseand
true, respectively. To simplify the notation, we write = 0 andv; = 1 in place ofo(v;) = 0 ando(v;) = 1,
respectively, and extend this notation to liter&lg, etc., i.e., writeX = 0 andX = 1 in place ofc(X) = 0 and
o(X) = 1, respectively. A truth assignmentis asatisfying assignment fdrif in each clause’; exactly one of the
three literals evalues to true. That s, for each clajse X VYV Z, eitherX =1,Y =0,Z=0,0rX=0,Y =1,
Z=0,0rX=0,Y=0,Z=1.

By standard arguments, we may assume that no variable atpgee in the same clause, since otherwise we can
replace the instancEby an equivalent instance with this property. In particuee can replace each clause of the
formo; Vo; vV v; by clausew; VV x V v; ando; VX V v; wherex is a new variable, and replace each clause of the form
v; Vv; Vuj by clauses; V v; V x, v; VT; VX, andu; V 7; V x wherex is again a new variable. Note that these two
transformations preserve the number of satisfying asségmsnsince in the former the new variablaas always the
truth value ofo; while in the lattery is always false in any satisfying assignment of this modifistance.

In what follows, we discuss the following objects arisingrfr the instancé:

— the set of labelst],



— the collection@; of quartet trees whose leaves are labelled by elemeni$,of

— theternary tred7, and

— the labellingp, : X7 — V(1) of the leaves of;, wherer is a satisfying assigment fdr
which together yield

— the phylogeneti¢t;-tree 7, = (Tj, ¢o)-

The formal definitions of these objects is givergds

We then prove that the satisfying assignmentd tare in bijection with the minimal chordal sandwiches of
int*(Qy), the cell intersection graph a®;, andforb(Q;). Further, we show that every satisfying assignment
for I defines a perfect phylogeny f@;, namely the tre§, = (T}, ¢), that is distinguished b@;. These together
will imply Theorem 1, the main result of this paper. We sumizethis as the following two theorems.

Theorem 9. There is a bijective mapping between the satisfying as®gisnof the instancé and the minimal
chordal sandwiches dint*(Qj), forb(Qy)).

Theorem 10. If ¢ is a satisfying assignment fér then7, = (T}, ¢ ) is a ternary phylogeneti&’;-tree that displays
Qg and is distinguished bg);.

We present the proofs of these theorem$Gaands 7, respectively. In the rest of this section, we informaligotiss
the constructions involved to prepare the reader for thenieal nature of the proofs that will follow.

Before describing the collectio@;, let us briefly review the construction from [4] that proveB{Nardness of the
Perfect Phylogeny problem. For convenience, we descrilbetérms of the chordal sandwich problem whose input
is a graph with (forced) edges and forbidden edges. In [44,sdmilarly considers a collectiafy, . . ., C,, of 3-literal
clauses, and treats it as an instafiad 3-SATISFIABILITY. From this instance, one constructs a graph where each
variablev; corresponds to twshouldersS,, andSz;, and where each literdV in a clauseC; corresponds to a pair of

kneesK{N andKjW. In addition, there are two special vertidthe headH andthe footF. All shoulders are adjacentto
the head while all knees are adjacent to the foot. Furthey,atcurs in the claus€; (positively or negatively), then

the verticedd, S,,, Kz, F, K{, , Sg; form an induced 6-cycle (see Fig. 2a). AlsoCjf= X VY V Z, then the vertices

K, K., K, induce a trlangle W|th pendant edg!é§1<]?, K]YK]Z andK’ZK]Y (theclause gadgesee Fig. 2b).
Finally, the edge betweeH andF is forbidden in the desired chordal sandwich, and so is tige detweers,,

andSg;, and betweerK] andK] _ (the dotted edges in Fig. 2) for all indiceandj for which these vertices exist.
The main idea of this constructlon is that each of the 6-cyalkows only two possible chordal sandwiches:

either the pattH, KU ., Sy, F is added, or the patHl, K_ Sz;, F is added (the authors of [4] call this path the “Mark
of Zorro”). These two choices correspond to as&gmptjwe valuetrue or false respectively, and the construction
ensures that this choice is consistent over all clauses.oftly produces satisfying assignments to8HSFIABILITY,

since we notice that no chordal sandwich adds a triang rK] K.

One can try to use this construction to prove Theorem 1 (Wliaafxztater why this fails). Indeed, it can be observed
that the truth assignments satisfying the cladses. ., C,, are in one-to-one correspondence with the minimal chordal
sandwiches of the above gragh To see this, one describes all edges that we are forced &itéve sandwich after
the marks of Zorro are added according to a satisfying assgh It turns out that these edges yield a chordal
sandwich, and thus a minimal chordal sandwich.

From G, using Theorems 6 and 7, one can further construct a cate&iof partial splits (phylogenetic trees)
such that the satisfying assignments of the cladses. ., C,, are in a one-to-one correspondence with the minimal
chordal sandwiches dint*(Q), forb(Q)). In particular, this collectiorQ satisfies the condition (ii) of Theorem 8
if and only if the clause€, ..., C,, have a unique satisfying assignment. Since this is CoNPpteimto determine
[22], it would seem like we almost have a proof of Theorem 1fddinately, we are missing a crucial piece which is
the phylogenetic treg satisfying the condition (i) of Theorem 8 for the collectiéh A straightforward construction
of such a tree based on [30] yields a phylogenetic tree thdisimguished byQ, but whose internal nodes may have
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]
Ky
Figure 3: Configurations from our construction (note thatftee left, W is a literal, eithew; or v;, and is thep-th literal of the claus€’;)

degree higher than three. If we try to fix this (by “resolvirigé high-degree nodes in order to get a ternary tree), the
resulting tree may no longer be distinguished®yMoreover, the collectio® may not consist of quartet trees only.
For all these reasons, we need to modify the constructi@n of

First, we discuss how to modify so that it corresponds to a collection of quartet trees. Tindowe must ensure
that the neighbourhood of each vertex consists of two cliquéth possibly edges between them).
We construct a new graph; by modifyingG as follows. Instead of one hedd, we introduce, for each variable

v;, two headsH,,, Hy;, and anauxiliary headA;. For a literalW in the clauseC;, we introduce twcshouldersS{N
andS’W, and, as before, tweneesk}, andK’W, but also an additionaduxiliary kneeL},.. Further, for each clause

Cj, we introduce doot F/ and threeauxiliary feetD/, D}, andDJ. Finally, we add one additional vertékknown
asthe backboneThe resulting modifications to the 6-cycles and the clawsiggts can be seen in Fig. 3a and 3b.
(The forbidden edges are again indicated by dotted linestg fthat, unlike in the case @, this is not a complete
description ofG; as we need to add some additional (forced) edges and forbalitges not shown in these diagrams
in order to make the reduction work. This is rather techrécel we omit this for brevity.

From the construction, we conclude that, just likednthe “6-cycles” ofG; (Fig. 3a) admit only two possible
kinds of sandwiches, and this is consistent over differéanises. However, unlike i, the chordal sandwiches
of G; no longer correspond to satisfying assignments &ia3+SFIABILITY but rather to satisfying assignments of
ONE-IN-THREE-3-SAT. Fortunately, the uniqueness variant of this problem is Baldmplete (see Theorem 2).

Now, from G, we construct a collectio@; of quartet trees. To do this, we cannot simply use Theorem 7 as
before, since this may create partial partitions that docootespond to quartet trees. Moreover, even if we use [31]
to replace these partitions by an equivalent collectionusrtgt trees, this process may not preserve the number of
solutions. We need a more careful construction.

We recall that each vertex of G; belongs to two cliques that completely cover its neighboaoth we assign
greek letters to these two cliques (to distinguish them fremtices), and associate them with

In particular, we use the following symbolsjy, B}, 71, 73 13 M, 6, 4 whereW is a literal andj € {1...m}.
They define specific cliques @¥; as follows. The letteny; defines the clique of; consisting of all heads and
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shoulders oV. The Ietter/%]W corresponds to the clique formed by the shouE:{ﬁrand the kneeKjW, LjW (if exists).
Further,A/ is the clique oan, D]1 D{Z Dé, K]X K]Y K]z whereC; = X VYV Z, while the clique for'y{, where
p € {1,2,3} is formed byD), KI_, L}, whereW andU are thep-th and(p — 1)-th (modulo 3) literals o;. Finally,

6 corresponds to the clique containiBand all head$iyy, while u corresponds to the clique withand all feetr/.
From this, we construct the collectidd; by considering every forbidden edge of G; and by constructing a

partial partition with two cells in which one cell is the sdtaliques assigned ta and the other is the set of cliques

assigned t@. Since we assign to each vertex®jf exactly two cliques, this yields partitions correspondimguartet

trees. For instance, in Fig. 3b, we have a forbidden ddgﬁ% whereKY, is assigned cquueE’Y, M, andK]Y is

assigneqBly, 7. This yields a quartet tregL, A/} | {B, 7|} Finally, since by construction every vertex@f is
incident to at least one forbidden edge, we conclude®at int*( Q).

This completes the overview of the construction. From tthis, proof of Theorem 9 follows, essentially along
the same lines as the uniqueness property we discusséd fohat is, we describe the edges that are forced in the
sandwich by a satisfying assignment fotreated as an instance ONE-IN-THREE-3SAT, and prove that this yields
a chordal sandwich, i.e., a minimal chordal sandwich.

To complete the result, we need to explain how to construdiydogenetic tree corresponding to a satisfying
assignment for I, namely the tred, = (T}, ¢ ), and show that it displays and is distinguished by the tne&;i
as stated in Theorem 10. As this is rather technical, weadstisscuss a small example here.

The example instancE"™ consists of four variables;, v,,vs3, v4 and three clause8; = v; Vv, V u3, C =
U1V vy V vy, andCs = v3 V 05 V Tg. The unique satisfying assignment assigns trug fo, and false tw,, v3. The
corresponding phylogenetic tr§e= (T, ¢) is shown in Fig. 4.

1 2 2 3 3

o, Mo By % B M Pxm

o By Moy Mgy Al A2 A3
o 2, L o 7 7 7
o, dor—0 Oor—0 Aoy 7 5 M nom o4
5 p

Figure 4: The phylogenetic tree for the example instalce

For instance, one of the quartet treesQp. is 7 = {ay,, B3, } ‘ {azy, }Tl} representing the forbidden edge of
G+ betweers;, andS]... Itis easy to verify] displaysr. Another example fron@;+ is 7' = {1, A'} (L, 71}
representing the forbidden edgélK}Tl. Again, it is displayed by, but this time one internal edge @fis contained
in every set of edges & that displayst’ in 7; hence, this edge is distinguished h{. This way we can verify all
other quartet trees i@;+ and conclude that they are displayedbyand they distinguisi.

Now, with the help of Theorem 8, this allows us to prove thaegian instancé of ONE-IN-THREE-3SAT and a
satisfying assignment for I, one can in polynomial time construct a phylogenetic ffeand a collection of quartet
trees@ such thaf/ is the unique tree defined I§) if and only if o is the unique satisfying assignment foiCombined
with Theorem 2, this proves Theorem 1.

That concludes this section.

4. Formal Construction

Let I be an instance adNE-IN-THREE-3SAT consisting of: variablesvy, . . ., v, andm clause<y, ..., C,, each
of which is a disjunction of exactly thrditerals. Assume that no variable appears twice in the same clause.
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Foreach € {1...n}, we letA; denote all indiceg such that; or 7; appears in the claugg. In the following,
we define the set’, introduce notation for some of its 2-element subsets, aifjuhese define the collecti@p;.

4.1. Definition ofY} 4.2. Selected subsets&f
The setX; consists of the following elements: B — {% 5}
— o, g, foreachi € {1...n}, Foreach € {1,...,n}:
- ,B{,l., :3% for eachi € {1...n} andj € Hy, = {"‘vwfs}’ Hy; = {"‘v_w(s}* A= {”‘vw”‘v_i}’
A, sh, = {ao, Bl, b, S5 = {ags Bl |} forall j € A,
- '7]1" '7]2" 7@* M foreachj € {1...m}, Foreachj € {1...m} whereC; =X VYV Z:
— Jandp. = {/\j ;1} 4 ‘ ‘
KL = {/3’ ,71}, KL = {IBJ}/I'Y]z}’ KL = {ﬁjzﬂé}'
- ). K () = (5]
th={Brad) 1 = {Bhb}. 1o = {Bp i},
Dy = {M A}, Dy= {2}, Di={n N}

4.3. Definition ofQ;
The collectionQ; of quartet trees is defined as the union of the following sets:

- U {als} - U sk sk

ie{l..n} /ie{l...n} )
jj'€A;and j<j
- D/|B,D.|B,D|B
je{y.m}{ 18028 D3] } - U {K%|F’ ’K{J,-|F]}
_ i |ci” jeAilicli'}'Z}}'gm
. U {Svi|svi}
e - {U }{Hv,.|Ff ,Hy[‘FJ}
ie{l.n
- U {HUI,/|SZ,[,H@|S Hy,|SL, Hsy sg}_} jeltm)
1<i'<i<n
JEA;

U

je{Tm}
where Cj:X\/Y\/Z

ShIx  SLIK 51 ) st st 2]

Note that in each clausg, = X VY V Z there is a particular type of symmetry between the litetal&’, and
Z. In particular, if we replace, in the above, the indi¢ésY, Z and 1, 2, 3 as followsX — Y — Z — X and
1 — 2 — 3 — 1, we obtain precisely the same definition@f as the above. We shall refer to this as thitional
symmetnpbetweenX, Y, Z.

Now, we formally define the tre€; corresponding to the instanéeFor satisfying assignments we also define
the labellingp, of the leaves ofl; by the elements aft]. This (as we prove later in Theorem 10) will constitute a
perfect phylogeny, a&’j-tree7, = (Ty, ¢ ), for the collectionQ);.



Yo Y1 Y2 Yn Um Ug

Figure 5: The tred.

4.4. Definition of the tred
V(TI):{yo,yl,y’l,...,yn,y;} {al ay,....an,a }U{c 21 ’ ie{l.. n}andjeA'}
U {uo,ul,...,um}u{le,sz,xB,x4,x5,x6,b]1,bjz,b3,g/1 gfz,gé,éf } jef{l.. }

E(Ty) = {ynh oty JU {arh oy cany } O{el2] | e a)

i=1
U {yoyl Y1y2,Y2Y3 - ayn—lyn} U {ynul yUD  URUS s ooy Uy —1 Ui ,umuo}
O Y [ Y e R [ [ [ R 0 N 0 e [ S B N
U {u]x1 by bl o L xxl Bl Bhad Bhal gl @b gl el ‘ jed{l m}}

10 12 ]rl]t ]t/
U{alzl VZp 22 z; Y;

ie{l...n}andj; <j, <...<j;are elements Q&i}

4.5. Definition of the labelling,
Let o be a satisfying assignment for the instafic&he mappingp, : X1 — V(T7) is defined as follows:
= ¢(6) = yo andepy(p) = uo,
— foreachi € {1...n}:
if 0; = 1, thengy (a,) = a1, ¢ () = a}, andgy (BL) = ¢/ forall j € A;,
if v; =0, theng, (ag;) = a;, po(ao,) = al, andgbg(ﬁ{,i) = cg forallj € A;,
— foreachj € {1...m} whereC; = XVYVZ:

if X=1, thengbg(ﬁjx) b] 4)0(’3] ) = b, %wf ) _

9o(1]) = 81 $o(7h) = 8h. ol 7) gg. P (M) = 0],
it Y =1, thengw (B),) = b}, ¢o(Bl, ) = b, %(ﬁ ) bl,

Po(7)) = gh, Po(7h) = ghs Po(2)) = gh, pe(V) =4,
if Z =1, theng,(Bl,) = b, <pg(/3] )= b, ¢ (/3 ) b,

9o(7h) = g1, ¢o(v) = 8b 9o(7d) = &b, o (W) =

For illustration of the construction df; and¢,, see Fig. 5 and 6.
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A X6
v
X5 Xy T3
M
. _
Y
vh— By
Uj

Figure 6:a) subtreeA; for the variablev;, b) subtreeB; for the clause;, c) labelling of leaves of3; wheno(X) =1, 0(Y) = o(Z) = 0.

5. Perfect Phylogenies and Minimal Chordal Sandwiches

In this section, we prove Theorem 6. As a particular consecgief this theorem, we obtain Theorem 8, which
allows us to cast the problem of uniqueness of perfect pleyl@s as a minimal chordal sandwich problem.
We need to introduce some additional tools. The followirg ssandard property of minimal chordal completions.

Lemma 11. Let G’ be a chordal completion &. ThenG’ is a minimal chordal completion @ if and only if for all
uv € E(G') \ E(G), the vertices:, v have at least two non-adjacent common neighboufs'in

PROOF Suppose thaf’ is a minimal chordal completion. Letw € E(G’) \ E(G), and letG” = G’ — uv. Since
G’ is a minimal chordal completion antb ¢ E(G), we conclude thaG” is not chordal. Thus, there exists a set
C C V(G') that induces a cycle i6”. SinceG’ is chordal,C does not induce a cycle i@’. This impliesu,v € C,
and henceyv is the unique chord of’[C]. So, we concludéC| = 4, because otherwigg’[C] contains an induced
cycle. Letx, y be the two vertices of \ {u, v}. Clearly,xy ¢ E(G’) and bothx andy are common neighbours of
andv in G, as required.

Conversely, suppose that’ is not a minimal chordal completion. Then by [29], there t&xian edgeiv €
E(G’) \ E(G) such thatG’ — uv is a chordal graph. If the vertices v have non-adjacent common neighbouyg
in G, then{u, x, v, y} induces a 4-cycle i’ — uv. This is impossible as we assume tlAt— uv is chordal.

That concludes the proof. ]

Using this tool, we prove the following two important lemmas

Lemma 12. Let G be a graph andG’ be a minimal chordal completion af. If G contains vertices:, v with
Ng(u) € Ng(v), thenalsoNg/(u) € Ng/(v).

PROOF. Letu,v be vertices ofG with Ng(u) C Ng(v). LetB = Ngi(u) \ Ng/(v) andA = Ng/(u) N Ng/(v).
Assume for contradiction thd # @, and letA; denote the vertices of with at least one neighbour iB. Look at
the graphG; = G’[A; UB U {v}].

By the definition ofA; andB, the vertex is adjacent to each vertex i, and non-adjacent to each vertexan
Hence, no vertex ii; is a simplicial vertex of51, since it is adjacent to and at least one vertex .

Now, considerv € B. By the definition ofB, we have thatv is adjacent inG’ to u but notv. Thus,uw is not
an edge of5, sinceNg(u) C Ng(v) andNg(v) C Ng/(v). So, by Lemma 11, the verticesw have non-adjacent
common neighbours, y in G’. Sincex, y are adjacent ta, we haver,y € AU B. In fact, sincew has no neighbours
in A\ Ay, we concluder,y € A; U B. Thus,w is not a simplicial vertex 0G;.

This proves that no vertex @¥;, except possibly fov, is simplicial inG;. Also, G; is not a complete graph, since
B # @, andv has no neighbour i. Recall thatG, is chordal becausé’ is. Thus, by the result of Dirac [11], it
follows thatG; must contain at least two non-adjacent simplicial vertibes this is clearly impossible.

Hence, we must conclud@= @. In other wordsN¢/ (1) C Ng/(v) as promised. O
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Lemma 13. LetG be a graph, and lei{ be a graph obtained fror& by substituting complete graphs for the vertices
of G. Then there is a one-to-one correspondence between minhoadal completions of: and H.

PROOF Letvq,v7,... 0, be the vertices of. SinceH is obtained fromG by substituting complete graphs, there is
a partitionC; U ... U C, of V(H) where eaclC; induces a complete graph I, and for all distinct, j € {1...n}:

(x) eachx € C;, y € C; satisfyv;v; € E(G) if and only if xy € E(H).

We define the following mappin: if G’ is a graph with vertex séf (G), thenH = ¥(G’) denotes be the
graph constructed fror&’ by considering eache {1...n}, substituting the sef; for the vertexv;, and making all
vertices inC; pairwise adjacent. Thus, for all disting§j € {1...n}:

(xx) eachx € C;, y € C; satisfyv;v; € E(G') if and only if xy € E(H').

We prove thal? is a bijection between the minimal chordal completion&andH which will yield the lemma.

Let G’ be a minimal chordal completion @, and letH’ = ¥(G’). Clearly, H' is chordal, since’ is chordal,
and chordal graphs are closed under the operation of sutirggita complete graph for a vertex. Also, observe that
V(H) = V(H'). If xy € E(H) wherex,y € C; for somei € {1...n}, then alsaxy € E(H'), sinceC; induces
a complete graph ii’. If xy € E(H) andx € C;, y € C; for distincti,j € {1...n}, thenv;v; € E(G) by (x),
implying v;0; € E(G’), sinceE(G) C E(G'). Hence,xy € E(H') by (xx). This proves thaE(H) C E(H'), and
thus,H’ is a chordal completion ofi.

To prove that’ is a minimal chordal completion df, it suffices, by Lemma 11, to show that forall € E(H’) \
E(H), the verticest, y have at least two non-adjacent common neighbouk§inConsidercy € E(H') \ E(H), and
leti,j € {1...n} be such that € C; andy € C;. Sincexy ¢ E(H) andC; induces a complete graph i, we
conclude # j. Thus, by ¢x), we havev;v; € E(G'), and sop;v; € E(G’) \ E(G) by (x). Now, recall thaiG’ is a
minimal chordal completion of:. Thus, by Lemma 11, the vertices v; have non-adjacent common neighbouys
vy in G'. So, we letw € Cy andz € Cy. By (xx), we concludevz ¢ E(H'), sinceviv, ¢ E(G'). Moreover, f)
also implies that, w are common neighbours ofy, sincevy, v, are common neighbours of, v;. This proves that
x, y have non-adjacent common neighbours, and thus showsfthata minimal chordal completion df’.

Conversely, letH” be a minimal chordal completion ¢f. Let G’ be the graph with/(G’) = V(G) such that
v;v; € E(G') if and only if there exists € C;, y € C; with xy € E(H'). Leti € {1...n} and consider vertices
x,y € C;in the graphH. Recall thatC; induces a complete graph . This implies thatcy € E(H) and bothx
andy are adjacent itH to everyz € C; \ {x,y}. Further, by €), if z € C; wherej # i, thenx, y are both adjacent
toz if vjv; € E(G), andx,y are both non-adjacent toif v;v; ¢ E(G). This shows thalNy(x) = Ny(y), and
hence Ny (x) = Ny (y) by Lemma 12 and the fact that’ is a minimal chordal completion dfi. This proves that
H' =¥(G'), and hencei’ is chordal. In factE(G) C E(G’) by (x) and gx). ThusG' is a chordal completion df.

It remains to show tha’ is a minimal chordal completion @f. Again, it suffices to show that for eaetw; €
E(G') \ E(G), the verticess;, v; have non-adjacent common neighbour&in Consider;v; € E(G') \ E(G), and
letx € C;andy € C;. So,i # jandxy € E(H') by (xx). Furtherxy € E(H') \ E(H) by (x) and the fact that
vv; & E(G). So, the vertices, y have non-adjacent common neighbowrs in H' by Lemma 12 and the fact that
H' is a minimal chordal completion dfl. Letk, ¢ € {1...n} be such thatv € C; andz € C,. Sincexz € E(H’)
butwx ¢ E(H'), we conclude by«x) thati # k. By symmetry, alsa # ¢, j # k, andj # (. Furtherk # ¢,
sincewx ¢ E(H') andCy induces a complete graph H'. Thus, §x) implies thatv,, v, are non-adjacent common
neighbours ob;, v;in G', sincew, z are non-adjacent common neighboursaf in H'. This proves tha6’ is indeed
a minimal chordal completion af.

That concludes the proof. ]

Now, we are finally ready to prove Theorem 6.

PROOF OFTHEOREM 6. We observe that the grajht(Q) can be obtained by substituting complete graphs for the

vertices ofint*(Q). Namely, for each verted of int*(Q), we substituteA by the complete graph on vertices

Ca={(A, )| me QandA is a cell ofr}. Thus, by Lemma 13, there is a bijecti#hbetween the minimal

chordal completions ofnt( Q) andint*(Q). By translating the conditionx¢) from the proof of Lemma 13, we
12



conclude that ifG’ is a minimal chordal completion dft*(Q), thenH’ = ¥(G’) is the graph whose vertex set is
that ofint(Q) and in which for allA, A’ € V(G'):

(xx) all meaningfulr, 7’ € Q satisfyAA’ € V(G') < (A, n)(A', ') € V(H').

We show that? is a bijection between the minimal restricted chordal catiphs ofint(Q) and the minimal
chordal sandwiches @int*(Q), forb(Q)).

First, letH' be a minimal restricted chordal completioniat(Q). ThenG’ = ¥~1(H’) is a minimal chordal
completion ofint*( Q). Consider two cells\1, A, of 7 € Q. SinceH’ is a restricted chordal completion oft( Q),
we have thaf A;, i) is not adjacent td A, 7) in H'. Thus,A1A; ¢ E(G’) by (x*). This shows tha6G’ contains
no edge fromforb(Q). ThusG’ is a minimal chordal sandwich ¢int*(Q), forb(Q)), since it is also a minimal
chordal completion ofnt*( Q).

Conversely, letG’ be a minimal chordal sandwich ¢fnt*(Q), forb(Q)). ThenH’' = ¥(G') is a minimal
chordal completion ofnt(Q). Consider two cellsA;, A; of 7 € Q. SinceA; A, is an edge oforb(Q), andG' is
a minimal chordal sandwich dfiint*(Q),forb(Q)), we haveA; A, ¢ E(G'). Thus,(Aq, 7)(A,, ) ¢ E(H') by
(xx). This shows that{’ is a minimal restricted chordal completioniaft( Q).

That concludes the proof. ]

6. Minimal Chordal Sandwiches and Boolean Satisfiability

In this section, we prove Theorem 9. We consider an instéarafeONE-IN-THREE-3SAT, and carefully analyze
chordal sandwiches dfint*(Qj), forb(Q;)). For a truth assignmeint for the instancd, we construct graph&,,
G/, andG}, starting fromint*(Q;). We show that ifr is a satisfying assignment fér thenG is a minimal chordal
sandwich of(int*(Q;), forb(Q;)). Conversely, for every minimal chordal sandwich of (int*(Qj), forb(Qy)),
we describe a satisfying assignmerfor I such thatG’ = G}:. From this the theorem will follow.

For later, we need the following simple properties. The fg@oe straightforward and left to the reader.

Lemma 14. LetG be a chordal graph, and let, b be non-adjacentvertices &f. Then every two common neighbours
of a andb are adjacent.

Lemma 15. Let G be a chordal graph, an€@ = {4, b, c,d, e} be a 5-cycle inG with edgesib, be, cd, de, ae.

(@) If bd, ce & E(G), thenac,ad € E(G), and
(b) if bd, be ¢ E(G), thenac € E(G).

Lemma 16. Let G be a chordal graph, an€ = {a,b,c,d, e, f} be a 6-cycle inG with edgesib, bc, cd, de, ef , af .

(@) If bd,ce,df ¢ E(G), thenac,ad,ae € E(G),
(b) if bd,ce,cf ¢ E(G), thenac,ad € E(G), and
(c) if be,bf,ce,cf ¢ E(G), thenad € E(G).

To assist the reader in following the subsequent argumentapw list here the cliques fit*(Q;) according to
the elements from which they arise:

6: B,Hy,, ..., Hy,, Ho, ..., Ho-
u:B,FY, ... F™
Foreach € {1...n} wherejy, jy, ..., ji are the elements &;:
wo, Hop Ai, S SEL . SE g H, A, s;i SZ, s;i
Foreachj € {1...m} whereC; = X VYV Z:
N: K, KL, K, D], D}, D, Fi
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ik 1l pi ikl 1 pi ik 1 pi
v}: KL, L, D] vh: KL, Ly, D} v KL, L, D}

gl K il K il Kkl
Bl: Sk, KL Bl: S} KL Bl S, KL
i ki .o ko1 .o koo
Bl sh K, Ly BL: SL K|, I LS K, 1

We start with a useful lemma describing an important propefrint* (Qy).
Lemma 17. Let G’ be a chordal sandwich dfint*(Q;), forb(Qj)), and leti € {1...n}. Then

(a) there existdV € {v;,7;} such that for allj € A;, the vertexK{N is adjacent taB, and

(b) for eachj € A;, and eachW € {v;, 77}, if K}, is adjacent toB, then the vertices),, K}, L}, (if exists) are
adjacenttoB, A;, Hw, Hyy, F/. (See Fig. 7a)

PROOF. Leti € {1...n}. First, we observe the following.

(x) foreachj € A;, eachW € {v;,7;}, at least one OSjW’ K{N is adjacent toB.

We may assume thz&fw is not adjacent tdB, otherwise we are done. Observe tﬁég} is adjacent taK] , since
Bl € Kiy N Sk Moreover, there exists € {1,2,3} such thatKj, N Dj, containsA/ or 7}, implying thatKj,, is
adjacent toD},. Also, F/ is adjacent taD}, and B, sinceA/ € D}, N F/ andu € BN F/, respectively. Furthetiy;
is adjacent tcS]W andB, sincea; € Hyy N S]W andé € Hyy N B. Finally, Hy is not adjacent td/, andB is not
adjacent toDj, sinceHHyy ‘ F/ and D;', ‘ B are inQ;. So, by Lemma 16 applied to the cycﬂé(j , SjW, Hy, B, Fi,
D},}, we conclude thak’, is adjacent tcB. This proves).

Now, to prove (a), suppose for contradiction that therejgfec A; such that botﬂ(% andK{,/‘. are not adjacent to
B. Then by &), bothS{,[ ands% are adjacent t®. Note also tha#4; is adjacent to botlS‘{,‘., S% sincex,, € A; N Séi
andag: € A; N S% Further, note tha#;B andS{'JiS% are not edges of’, sinceA; | B andS{,‘. ‘ S% are inQ;. But
thenG’ contains an induced 4-cycle ({S{,‘., Aj, S% B}, which is impossible, sincé’ is chordal. This proves (a).

For (b), suppose thaK{N is adjacent ta® for j € A; andW € {v;,7;}. First observe thaK{N is adjacent tde_,
and the ver‘te)K]W is adjacent tcS{ : sinceﬁ’W € Kiy NSk-andpy, € KN SﬁN‘. Moreover, there exists € {1,2,3}
such thai}, N D), andK]W N Dy, contain+y}, and\/, respectively, oA/ andy},, respectively. This implies that,

andKjW are adjacent th{,. Also, A; is adjacent tcS{N andeW, sinceayy € A; N S{,v andag; € A; N SjW. Further,

a)

Figure 7: Chordal completion edges YW =1,b) X =1,Y=0,Z = 0.
14



note thatD{,B, AiBj K{NK]W andS{,\,SjW are not edges dof’, SinceD{, ‘ B, A; | B, K{N | I<]W andS{,Y ‘ SjW are in QI'
This implies thatK]W is not adjacent td, since otherwises’ contains an induced 4-cycle dK/, , B, KL D},}.
So, by &), we have thaS{N is adjacent taB. Thus, Lemma 15 applied t{ﬂ(j , L Aj, S] , B} yields thatKW is

adjacent to4; andS{N. So, by Lemma 14 applied §8),, K D] KL o}, we have thaS is adjacent td){,.

Now, observe thatdy, Hyy are adjacent to boti; andB smcezxw € Hyw N A;, azg € Hy N A;, andd €
B Hy N Hyy. Thus, by Lemma 14 applied tu, A;, 1/, B} whereu € {S],, Kl,} andu’ € {Hy, Hy} , we
conclude thaS] andK] are adjacent to bothlyy and Hy. Similarly, we observe that/ is adjacent tB and D) ,
sincey € FiNBandM € D) N Fl. Thus, Lemma 14 applied tu, B, F/, D}} yields thats), andK}, are also
adjacent taF/. ‘ ‘

Lastly, suppose thdt), exists. Then there ig € {1,2,3} such thaty] € D] N L}, implying thatL},, is adjacent
to D] Moreover,F/ is adjacent td)] andB, sincel e D] N F/ andu € F/ N B. Also, Hyy is adjacent tcB, S]
and the verte>S]W is adjacent td),,, sinces € B N Hyg, gy € Hig 0 S]W’ and,B]W € S]W N L},. Further,HyFi
andD}B are not edges of’, sinceHyy | F/ and D}, | B are inQ;. Also, S]WB is not an edge of’, since otherwise
G’ contains an induced 4-cycle di$/,, B, S]W, A;}. Thus, by Lemma 15 applied toL/ . S]W, He. B, FJ D}},
we conclude that}, is adjacent tdy;, B, andF/. Moreover, by Lemma 15 applied &}, B, S}y, A;, S. o} we
conclude thaL]W is adjacent tcA Finally, recall thatHyy is adjacent to bot#; andB. Thus, Lemma 14 applied to

L . A;, Hw, B} yields thatL is also adjacent téfyy.
w
That concludes the proof ]

Now, leto be a truth assignment for the instanceRecall that, for simplicity, we writ&{ = 0 andX = 1in
place ofo(X) = 0 ando(X) = 1, respectively. To facilitate the arguments in the subsegmofs, we introduce a
naming convention for the verticesint* (Q;) similar to that of [4], as we already indicated§8.

The vertice§{N for all meaningful choices gfandW are calledshoulders For a fixed;, we call themshoulders
of the clause’;, and for a fixedV, we call themshoulders of the literalv. A shoulder is a true shouldeif W = 1.

Otherwise, it is dalse shoulderThe vertlcesK{N, L{N for all meaningful choices ofandW are callecknees For a
fixed j, we call themknees of the clausg;, and for a fixedV, we call thenknees of the literaW. A knee is arue

kneeif W = 1. Otherwise, it is dalse knee The verticesA;, D{,, Hy, F/ for all meaningful choices of indices are
called A-vertices D-vertices H-vertices andF-vertices respectively.

Based orv, we define the following three graphs;,, G/, andG.

6.1. Definition ofG,
The graphG, is constructed fronint*( Q) by performing the following steps:

(i) makeB adjacent to all true knees and true shoulders
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6.2. Definition ofG/,
The graphG/, is constructed fronG, by performing the following steps:
(i) make {true knees, true shouldérpairwise adjacent,

(iii) forall i € {1...n}, makeA; adjacentto all true knees of the literalsandz;,
(iv) forall 1 <i’ <i < n, makeH,,;, Hs- adjacent to all true knees and true shoulders of the litefanday,

(v) foralll <j<j <m, makeF/ adjacent to all true knees and true shoulders of the clé]use
(vi) foralli € {1...n} and allj,j’ € A; suchthat < j:
a) ifv; =1, makeS% adjacent td<{;i, L{;i (if exists),

b) ifv; =0, makeS{;/i adjacent td<{}_i, L{}_i (if exists).

6.3. Definition ofG;}
The graphG} is constructed fron@/, by adding the following edges:
(vii) forall j € {1...m} whereC; = X VYV Z:
a) if X =1, then add edgeEij , K]XL]Z K]YK]Z DJZK]Z DéS%, Désé and also add all possible edges
between the vertice®}, D}, D}, S, 8]7, L, K,
b) if Y = 1, then add edgeB/ L), K| L, I<]ZI<]Y D]3I<]Y DQSJZ, Dfls% and also add all possible edges
between the vertice®}, D}, D}, S}, SL, I, K},
¢) if Z = 1, then add edgeE/L},, KL}, K]XK]7 D’lKJ7 Djls%, DéS]Y and also add all possible edges
between the vertice®}, D}, D}, S, S]?, Ly, K.

Lemma 18. G/ is a subgraph of every chordal sandwich(6f,, forb(Qy)).

PROOF. LetG’ be a chordal sandwich ¢f,, forb(Q;)). We prove the claim by showing thé&t contains all edges
defined in steps (ii)-(vi). We consider these steps one by one

o for (ii), consider true shoulder%v, S{//V, and true kneeg’ , K{/,V, andL’ , Ljv/\,, (if they exist). We allow that
W is possibly equal tdV' and possiblyj = j'. First, we observe that, by (i), the true knddg, and K{//V,
are adjacent t®. Therefore, by Lemma 17, the vertic6§,, K}, L}, are adjacent tdd,y andF/, whereas
S{,/v,, K{;\,,, Ljv,v, are adjacent tddy,, andE/’. Also, Hyy is adjacent taHyy,, andF/ is adjacent taf/’, since
6 € Hy N Hyy andu € FI N F/', respectively. Furthetdy F/, HyF/', Hy F/, Hy/F/' are not edges of,
sinceHpy ‘ F, HW|Ff/, Hyy» |Ff, Hyy |Ff' are inQy. Thus, ifj = j/ andW is equal toW’, then, by Lemma 14
applied to cyclequ, Hy, u’, F/} whereu, u’ € {Sj ,Sjvl\,,, K{,v K, Lév, L];v,}, we conclude tha{Sj Sl

conclusion by Lemma 16 applied to the cycles Hy, Hyy, 1/, Fr' Fi}. Otherwise, we obtain the conclusion

by applying Lemma 15 either to cyclés, Hy, u’, F/', F/} or cycles{u, F/,u’, Hy, Hy }. This proves (ii).

L]W, Ljv/\,,} are pairwise adjacent i6’. If j # j' andW is not equal toW’, we reach the same

o for (iii), consider the vertex; fori € {1...n}. LetW € {v;,0;} be such thatv = 1. Then, for eachi € A;,
the vertexK, is adjacent taB by (i). Thus, by Lemma 17, botk], andL}, (if exists) are adjacent te,.
This proves (iii).

o for (iv), we considerl < i' < i < n. Let W' € {vy, 0y} be such thaW’ = 1. Then, forallj € Ay,
the vertexKj,, is adjacent taB by (i), and hence, the vertice,,, Kj,, andLj,, (if exists) are adjacent by
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Lemma 17 taH,,,, Hz;. In other words, the verticed, ,, H; are adjacent to all true knees and true shoulders
of the literalsv;, 77. Thus, we may assume that< i. Now, the vertext,,, is adjacent tat,,;,Hz;, since

6 € Hy; N Hg; N Hy,. LetW € {v;,7;} be such tha? = 1. ThenK{N is adjacent ta®B by (i), and henceS{N
is adjacent tdHy,, Hg; by Lemma 17. AIsoS{N is adjacent to all true knees and true shoulders of the litera
vy, Uy, Dy (i), and the same is true fdd,, as proved earlier in this paragraph. Furtkﬁ%@, is not adjacent to
Hy,, sinceH,, | S{N is in Q;. Thus, by Lemma 14, botH,; and H; are adjacent to all true knees and true
shoulders of the literals;,, v;;. This proves (iv).

e for (v), considerl < j < j' < m. Again, we observe that K{//V, is a true knee, theK{//W is adjacent t&B by
(i), and henceSW,, Wi andL]V/V, (if exists) are adjacent t5/' by Lemma 17. In other words, the vertsk is
adjacent to all true knees and true shoulders of the clé]usSo, we may assume thak j'. Now, IetK{‘,v be
any true knee of the claug. ThenK{N is adjacent tdB, and hence, t&/ by (i) and Lemma 17, respectively.
Also, K{,v is adjacent to all true shoulders and true knee§joby (ii). Further,F/ is adjacent taf/, since

ueFNF andthe verteK{,\, is not adjacent td”/', sinceK{N ‘ F/'isin Q;. Thus, by Lemma 14, the vertex
Fi is adjacent to all true knees and true shoulders of the c@asﬁhis proves (v).

o for (vi), leti € {1...n} and considey,j’ € A; with j < j’. LetW € {v;,7;} be such thaW =
Observe thak], is adjacent tcs/ ,smce,B] eS] NKl. If L, exists, alsd ], is adjacenttcS] smcethen

i i A7l i j i i ~df
B G‘ISW N %W. Trjus, we mqy assume that j’. Now, Sy is adjac?nt t&y; andKy,, Slhceéfw € S5 NSy
and,B] € S] NK},. Also, K}, andL],, (if exists) are adjacent t&, by (ii). Further S]_K{N is not an edge
of G/, smceSiN‘K{N is in Q. Thus, by Lemma 14, the vertlcéféN L] (if exists) are adjacentt6’_ This
proves (vi).

The proof is now complete. |

Lemma 19. If ¢ is a satisfying assignment féy thenG: is a subgraph of every chordal sandwich( 6, forb(Q;)).

PROOF. Let G’ be a chordal sandwich ¢iG,, forb(Q;)), and assume that is a satisfying assignment fdr That
is, foreach claus€; = X VYV Z, eitherX =1, Y =2Z=0,0rY =1,X=2Z=0,0rZ=1,X =Y =0.

By Lemma 18, the grap&’ contain all edges defined in (ii)-(vi). Thus it remains toygehat it also contains the
edges defined in (vii).

Considej € {1...m} whereC; = X VYV Z. By the rotational symmetry betweéq) Y, andZ, we may assume

thatX = 1,Y = 0, andZ = 0. Observe thaI(’Z is adjacent td, andL,, sincelJ e Kl, N K, andﬁ% e K, L.
FurtherK] is adjacent tcL] andS] sincey] € L] ﬁK’ andﬁ] € K] ﬁS] By (ii), also K} is adjacent tc,.
MoreoverS] K] andK] K] are not edges of’, S|nceS]X|I<] , K]X|K] are inQ;. Thus, by Lemma 15 applied to
the cycle{L),, K S’X, KL L}, we conclude that/, is adjacent t(S] andK] Now, observe thaL]Y is adjacent
to K] andK] smce/%] € L] ﬂK’ andy3 € L] ﬂK] Recall thatK] is adjacent toL] and also toK]Y, since
N oe K] N K] MoreoverS]X is adjacent td<] andL] by (i) and the above. FurtheK] S&L{,, S]XK]Z are not
edges ofG/, S|nceK]_|L] , S]X|L] , S]X‘K] are in QI Thus, by Lemma 16 applied to the cy({IKj, ! j Sj

L, K.}, we conclude thak/, is adjacentth] ., andL],. Next, observe the&] is adjacent td(’ andK’ by (ii)
and smceﬁ] S S] ﬁK] Recall thalK] is adjacentth] andK] Further,K] K] is not an edge oG/ smceK]Z|K]7
is in Q. Thus, by Lemma 14, the vertéﬁz is adjacent td<] Now, recall thatL]Z is adjacent tdS] andK’,, and

s/ K]Z is not an edge o€’. Also, F/ is adjacent tcS] andK] by (v) and sincel/ € F/ N K] Thus, by Lemma 14,
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the verteijZ is adjacent td/. Now, observe thalD{ is adjacent v , K]Y sincel/ € D{ N K]X andy’i € D]i N K]Y
Recall that als® x is adjacent to botlﬁ(é( andK%, and thatK]);K% is not an edge ofs’. Thus, by Lemma 14, we
have thaID]i i‘s adjacent tcSé(. ‘Next, qbserve thgﬂ)é is adjacent tg(j I<]7 ‘since)\f € Dé_ ﬁ K]y andyé € D;_ N KJY
Recall thatk}, is adjacent td<77 ands. Also, KJY is adjacent tes/, , S]Y' K]Z by (ii), andK}, is adjacent tcS]? since
i cxinsg T incekl | K is i csb o

ﬁ? € Kynsg. Further,KYK? is notan edge o@’, sinceky, | K5 is in 9. Thus, py Ler‘nma‘14, the vertlcé§, Sf‘,
KL are adjacent td). Now, observe thab}, D} are adjacent t&;, sincel/ € D} N D) N K. Also, recall thaS
is adjacent td}, D}, L, the vertexk’, is adjacent tcS]Z, L, andS]XK]Z is not an edge of’. Further.,S]X is adjacent
to S]Z by (ii). Thus, by Lemma 14, bot®] and D), are adjacent tcS]Z andL’,. Next, observe thab} is adjacent to
K’Z K]Z sincel/ € Dé N K’Z and'yé € Dé N K]Z Recall that aIsFS% is adjacent tK , K]Z and thatKjZK%is n‘ot
an edge ofG’. Thus, by Lemma 14, the vertd®, is adjacent t(ﬁ]Z' Further, recall thal’, is adjacent ta<,, S,
the ve.rtexK% is adjacgnt ts/ , andS]);KjZ anldK%LjZ‘are not edges qﬁ’. Thus, Lemma 15 applied t{)Dj , K]z sz'
Sk, K]Z} yields t.hatD]3 is gdjacgnt to botﬂLJZ‘ andsf)g. Moveover,SJY is also adjagent t6 by (i), and L}, is also
adjacent taD}, SL, sincejé € Dé N L]Y andpl. € SJY‘H L. Further, recall thas’, L, is not an edge of’. Thus, by
Lemma 14 applied t§ D}, L}, 8]7, S%}, the vertexD], is adjacent tcS’Y. S

To prove (vii), we observe that the above analysis yields Gfacontains edge$/L’,, KxL/,, K{ KL, D)KZ,
D:];_S%, and DéS%. It rem‘ains‘ to ;how tha{Dj, Dé, D]3 S]X S]Z Lj2, K{/} are p‘airwise‘ adjacent. By the above
paragraph, we have thé&, SL., L), are adjacent td}, D, Dé. Also, D]l D), D} andK’Y are pairwise adjacent,
sinceM € D} N Dé_‘ﬁ D, NKj,. Further,L’Z is adjacent tas/ ,‘andK‘{/ is gdjacent ts’,, SJZ, L,, by the above
paragraph. Fi_naII)G]Z is adjacent t&, andL’, by (i) and sincqﬁ% € S]Z N L. This proves (vii).

The proof is now complete. |

Lemma 20. If ¢ is a satisfying assignment fér thenG;; is a chordal graph.

PROOF Assume that is a satisfying assignment fdr namely for each claus€; = X vV Y V Z, we have either
X=1,Y=Z=0,orY=1,X=Z=0,0rZ=1,X=Y=0.
Consider the partitio'; U V, U V3 U V3 U Vs of V(G) defined as follows:

V; = {false kneesD-verticeg,
V, = {false shoulders
V3 = { A-verticeg,
V, = {H-vertices F-vertices, and
Vs = {true knees, true shoulders, the verix
Let 7t be an enumeration df (G};) constructed by listing the elements¥éf, V5, V3, V4, Vs in that order such that:

1. the elements of; are listed by considering each claue= X VY V Z and listing vertices (based on the truth
assignment) as follows:

a) if X =1, then IistK%, K]Z L]y L]Z D]1 K]Y D]3 Dé in that order,

b) if Y =1, then Iistij, K]X LJZ, L]X’ ng, K]Z D’l, Dg in that order,

c) if Z =1, then IistK]Z, K, L, LY, D}, K, D), D} in that order,
2. the elements of, are listed by listing the false shoulders of the clause¥s, ...,C,, in that order,
3. the elements df; are listed in any order,
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4. the elements o are listed as follows: first the verticés,, ,Hz;, Hy,,Hz, . . .Hy,,Hg,; in that order, and then
the vertices™, F"~1, ... Flin that order,
5. the elements df5 are listed in any order.

We show thatr is a perfect elimination ordering @ which will imply the claim.

e considerV;. Letj € {1...m} andletC; = X VYV Z. By the rotational symmetry aX, Y, Z, assume that
X =1landY = Z = 0. So, lists the false knees arfd-vertices ofC; ask., K}, I, L},, D}, K, D}, Dj.

- cqnsider 'Fhe \{erteK%. Recall thatl(% = {ﬁj ,ﬂ}. Opserve tha.ﬁ& is the only other vertex containing
B, andL},, D} are the only other vertices containifyg. Moreover, none of the rules (i)-(vii) adds edges
incident toK]Y. Thus,S]X, L}, D} are the only neighbours (ﬁ%, and they are pairwise adjacent by (vii).
This proves thaK]Y is indeed a simplicial vertex d& ;.

- considerKjZ. Sir.1ceI<jZ = {B., A}, we concludetha[l(jZ is adjacent t6., sz, K]X K{/ D}, D}Z, D]?’, and
Fi. Moreover,l(’Z has no other neighbours by observing the rules (i)-(vii)wiNay (vii), we conclude that
SJZ, L}, K}, D}, D}, D} are pairwise adjacent. Also, the yertidéig Kk, K, D}, D}, D} are pairwise
adjacent, since they all contal. Further,F/ is adjacent tcS’Z andL]Z by (v) and (vii), respectively, and

K]x is adjacent tcS% andLjZ by (ii) and (vii), respectively. This proves thﬁé is a simplicial vertex ofz.

- considerL{,. Thg neighbour; on‘,{/ areS%, K{/ K]Z andDé. Sp,S% is gdjacent td<L, Dé, andK{,‘ by (ii),
(vii), and ;inch]? € 5]7 N K]Y Similgrly, K]Y is adjacent th]Z andDg by (vii) and sinceV/ € K}, N Dj.
Finally, K]Z is adjacent tD}, sincey} € K]Z N D}. This proves thal!, is a simplicial vertex of;.

- considerL]:Z. The heighbogrs 0;./2 are F/, K]x K{/ K]Z D]i, Dé, D]3 S’X, S%,‘and‘K%.‘ By (vii), the
verticesD}, D}, D}, Sk, 8]7, K} are pairwise adjacent. Alsd/, K]X K]Y D}, D}, D} are pairwise
adjacent, since they all contaiy. Further,K]X andF/ are adjacent t&/,,, 517 by (i) and (v), respectively.
This proves that/, is a simplicial vertex o5} — {KL, K/, }.

- considerl?{. "I'he. neighbpurs OD{ areF/, K]x K]y K]Z Dé_ D]3 5@9 SJZ sz' andK%. By (vii), the
verticesD}, D}, S, SJZ, K are pairwise adjacent. AISEZ , K]X K}, D}, D} are pairwise adjacent, since
they all contain\/. Further,K’X andF/ are adjacent t&/,,, S]Z by (ii) and (v), respectively. This proves
thatD{ is a simplicial vertex oz, — {KL, Kj2, Lé}.

- considerK{,. The ﬁeighbgurs OK{, areF/, K]X K]Z D{, Dé, D]3 S]X S]Y S%, K]Z L{,, andLjZ. By (vii),
the verticesD), D}, Sk, SJZ are pairwise gdjagent; Alsﬁ, K, Dé_ D), are pairwise adjacent, since they
all contain\/. Further, by (i), the verticeS, , S]?, 8]2, Kk, andK’Z are pairwise adjacent, and are adjacent
to F/ by (v). Moreover, by (vii),S% andK% are adjacent o, , andthey are also adjacem[ﬂé by (vii) and
since'yé € K]Z N Dé, respectively. This proves thE(l"Y is a simplicial vertex ofz}; — {Kj , L{/, L]é, D{}.

- consider[?;’. The .neig‘hbogrs dD;’ areF/, K]x K{/ K’Z D]i, D]2 S]X S%, S%, K]Z Lj2, andL{/. By (ii), the
verticesS),, S]?, SJZ’ K, K]Z are pairwise adjagent.. AIsﬁZ , K]X D), are pairwise adjacent, since they all
containA/. Further,F/ andD), are adjacent t&%, S]?, SJZ, K]Z by (v) and (vii), respectively. This proves

3 implici J o1l 1l pl okl
thatD]. is a simplicial vertex oGy — {K;, Ly, L’;, Dy, K} }.
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idarn?2 ; 2 areri K Kl KL pl p3 o o o x ki 1l andr/
- conS|derDj. The‘nelghb(.)urs.oDj‘arel‘ff, Kx Ky, K7, Dj, D]., Sk SY’ 87, KT K? Ly andL. By
(ii), the verticesS/,, S]?, SJZ, K}, L, K]? K]Z are pairwise adjacent, and are adjacert foy (v). This
proves thaD]Z is a simplicial vertex of5}; — {Kj , LjZ, D{, ij, Dé}.

That concludes the vertices 4.

e consider the se¥,. Letj € {1...m} and consider a false shouldﬁi;;, for someW = 0. Leti be such that
W = v; or W = ;. The neighbours o%v are the verticesly, A;, and the elements of the following sets:

S = {SJW

jedandf<j} St = {SJW

j" € Ajand j" > ]}

K- = {K’W L. (if exists)

jeajand] < jf

By (ii), the elements ofC~ are pairwise adjacent. Similarly, the elements{éfyy, A;} U ST are pairwise
adjacent, since they all containgy. Further, each element & is adjacent to every element &F by (vi),

and each element d€~ is adjacent taA; and Hy by (iii) and (iv), respectively. This proves thﬁ(,V is a
simplicial vertex ofG; — S, and note that the elements&f are false shoulders of the clauggs...,C; ;.

e consider the sel3. Leti € {1...n} and consider the verteA;. The neighbours of\; are the vertice$],,,
Hy;, all shoulders of the literats;, ;, and all true knees af;, 7;. By (ii), the true knees and true shoulders of
v;, U; are pairwise adjacent, and are adjacent to iéthand Hg; by (iv). Also, Hy, is adjacent tdHz;, since
0 € Hy; N Hg;. ThereforeA; is a simplicial vertex of5; — V>, since the false shouldersof v; belong tol,.

e consider the sety.

—leti € {1...n} and consideH,,, Hy;. The verticesH,,, Hy- are adjacent to the verticés A;, the
elements of the following sets
"> i}

and all true knees, true shoulderswf, 7 for all i’ € {1...i}. Further,H,, is adjacent taHy, to all
shoulders ofv; and to no other vertices, wherebf; is adjacenttl,, to all shoulders ob; and to no
other vertices. Now, by (i), the true knees and true shasldév;/, 7, for all i’ € {1...i}, are pairwise
adjacent, and are adjacentBaand each element ¢ by (i) and (iv), respectively. Also, the elements
of {B} UH™ are pairwise adjacent, since they all cont&irFinally, observe tha#; belongs toV3, and
the false shoulders af;, v; belong toV,. This proves that botit,; and Hg; are simplicial vertices of
Gy — (VL UV3UH™) as required.

—letj e {1...m} and considef/. Let Cj = XVYVZ, and by the rotational symmetry, assume that
X = 1andY = Z = 0. Then the neighbours d¥ areB, K}, K}, D}, D}, D}, L}, the elements of the
following sets

p>ip Fo={F"|1 <}

and all true knees and true shoulders of the cldyséor all j* € {j...m}. By (ii), the true knees and
true shoulders of the clauss for all j € {j...m}, are pairwise adjacent, and are adjacerft emd each
elements ofF ~ by (i) and (v), respectively. Also, the vertices{B} U F~ are pairwise adjacent, since
they all containu. ThusF/ is a simplicial vertex ofG¥ — (V4 U F ), since the verticeK{/, K]Z D{, Dé,
Dé, sz belong toV;.

H = {H,  Hy;

i" < i} W = {H  Hoy

Ft= {Ff’

That concludes all vertices .
20



e consider the sélfs. Observe that all vertices &f are pairwise adjacent by (i) and (ii).
That concludes the proof. ]

Lemma 21. For every chordal sandwicty’ of (int*(Qj), forb(Qj)), there existsr such thatG, is a subgraph of
G’, and such that is a satisfying assignment fdr

PROOF Let G’ be a chordal sandwich ¢fnt*(Qj), forb(Q;)). By Lemma 17, for eache {1...n}, there exists
W € {v;,7;} such that for alj € A;, the vertice§{N, K{N andL]{N(if exists) are adjacent t8 in G'. Seto(v;) =1
if W = v;, and otherwise set(v;) = 0. It follows that for such a mapping, the graphG’ contains all edges df,.
Thus, by Lemma 19, the gral|; is a subgraph of’, that is,G’ contains the edges defined in (ii)-(vi).

It remains to prove that is a satisfying assignment fér Letj € {1...m} and the claus€; = X VYV Z. If
X =Y =1,thenthe vertesjY is atrue shoulder anld’ is a true knee. Thus, by (ii), we concludetlﬁétls adjacent
K]x However, this is impossible, sméé/ | K isin Qy. Similarly, if X = Z = 1, we have thaIS]X is adjacent t(‘K]
by (ii) while Sj |K isin Qr, andifY = Z =1, thenS]Z is adjacent td<] by (ii) while S] ‘K] isin Q.

Now, suppose thaX = Y = Z = 0. First, observe thal{]X is adjacent td/ ,K] and the verte>L] is adjacent
to K}, K] smce/%] e K nil, N e K,nK,, ,B] e 1, nK}, andy] € I, n K] Also, K] is adjacent td<]
by (ii). Further,K]ZK]Z, K%L]Z andK]YL]X are not edges of’, sinceKL ‘K] KL ‘L’ , andK’ |L] arein Q. Thus,
if L is adjacent ICK%, then by Lemma 16 applied K%, L, K]Z K] L] K] !}, we conclude thal( is adjacent
to Kj which is impossible sinci’ |I<j is in Q;. Similarly, if K]x is adjacent td<] then by Lemma 15 applied to
(K ,K] K] L] K ’.}, we again conclude thaﬁ]X is adjacent t(‘K] acontrad|ct|on So, we may assume that both
K] andL] are not adjacent t(s(] Now, observe thalL]Y is adjacent tkL K]y and the verte)K]X is adjacent td’),
K, sincev), € K] nrl, ﬁ] € L] Nk, ﬁ] e K, N1, andVi € K, N K. Also, Kj is adjacent td(j andL
by (ii) and smcey2 € K] ﬂL’ FurtherK] K] andK] L] are not edges of’, sincek’. ‘K] andK] L] are inQ.

Recall thatK]X, L]X are not adjacent tls(]f. Th|s contradlcts Lemma 16 when apphed{ﬂé’x, L] K] K] L] K L1
Thus, it is not the case tha¢ = Y = Z = 0, and by the above alsonét = Y = 1, norX = Z =1, nor
Y =Z = 1. Therefore,eitheK =1, Y =Z=0,orY =1, X=Z=0,0rZ=1,X=Y =0.
This proves that is indeed a satisfying assignment fomwhich concludes the proof. o

We are finally ready to prove Theorem 9.

PROOF OFTHEOREM9. Let G’ be a minimal chordal sandwich ¢fnt*(Qj), forb(Q;)). By Lemma 21, there
existso, a satisfying assignment fdr such thatG,, is a subgraph o6’. Thus,G’ is also a chordal sandwich of
(Gg,forb(Qy)), and henceG;: is a subgraph o6’ by Lemma 19. But by Lemma 2@ is chordal, and s&’ is
equal toG}: by the minimality ofG’. Conversely, it is a satisfying assignment féy then the grapls? is chordal by
Lemma 20. Moreoveint*(Q;) is a subgraph of, by definition, andz} contains no edges ¢brb(Q;), also by
definition. ThusG;; is a chordal sandwich dfint*(Q;), forb(Q;)), and it is minimal by Lemma 19.

This proves that by mapping each satisfying assigradntthe graphG;;, we obtain the required bijection. O

7. Perfect Phylogenies and Boolean Satisfiability

In this section, we prove Theorem 10. lebe a satisfying assignment foy for each claus€; = X VY V Z,
eitherX=1,Y=Z=0,0orY=1,X=Z=0,0rZ=1,X=Y =0. Conside], = (T, ¢-) as defined ir§4.
(We refer the reader to Fig. 5 and 6 for an illustration. Weonamend the reader to observe this depiction when

following the subsequent arguments.) ‘
For eachi € {1...n}, let A; = {a;aly} 2], ... 2! c“ ... cI'} whereA; = {ji,...,ji}, and for each

1 i ’

je{l...m}, letB; = {xl,xz,xg,xg,xs,x6,gfl,gfz,gg,bfl,b{z,bg,w}. (See Fig 6.)
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It is not difficult to see tha#,, defines a bijection between the elementstpfand the leaves df;. For mstance

for eachi € {1...n}, we note thaf¢s(av,), Po(az;)} = {al, a'}, and for each € A;, e|ther¢g(/3] ) = ¢/ and

gbg(ﬁ];h) e {bl, b, 1L}, or o (B )= Iandg, (Bl ) € {b],b),b,}. Also, foreaclj € {1...m}, we havep, (M) =

0, and{¢o (7)), b (), do(vh)} = {gfl,gfz,gé}. Further, it can be readily verified th@j is a ternary tree. Thus,
T- = (T, ¢») is indeed a ternary phylogenetig-tree. We show that it displays and is distinguisheddhy

First, we show thaf; displaysQ;. We consider the quartet trees@y one by one.

e considerA; ‘ Bfori € {1...n}. Recall thatA; = {ay, a5}, B = {4, u}, and that{ ¢y (ay,), po(az;)} =
{a;,a}}. Also, ps(8) = yo and¢,(u) = uy. Observe that;, a; € A;. Hence, botta;, a’ are in one connected
component off; — y;; whereag, 1 are in another component. Thig; indeed display$}; ‘ B.

o considerD{, ‘ Bforje {1...m}andp € {1,2,3}. Recall thatD;, = {y;,Af}, and%(ﬂ,) € Bj, ¢ps (V) €
B;. Also, B = {6, u} and¢,(6) = yo. po(pt) = ug. Thus bothgs (7)), <pg()tf) are in one component of
Tr — u; xl whereasy, ug are in another component. This shows l’l@'dlsplaysD | B.

o considerS{,[ | SZT[ wherei € {1...n} andj,j’ € A;. Recall thatS{,[ = {zxz,[,ﬁ];i} andSé = {az;, /3’2%}. By
symmetry, we may assume that= 1. Theng, (xy,) = a;, po(a5) = al, gbg(ﬁ];,[) € B, andgbg(ﬁ]%) =c

/. Jt

)
Let j; denote the largest element ). Then, botmg,cﬁ are in one component df; — y;z; whereasy; and

¢g(/3];,[) are in a different component. This proves tﬂfatdisplayssé[ ‘ S%

o considers, |Kj/ ande |Kj/ fori € {1.. n} andj,j/ € A; wherej < j. Recall thatK% - {/3];1.,
71,72,73,20} K] C {/30,71,72,73,/\1} S = {“Ui’ﬁéi} andS% = {av—i,/%%}. Again, by symmetry,
we may assume; = 1. So.go(a) = a do(tg) = 9o (BL) = ol ¢o(BL) = | ¢o(Bly) € Bj, and
{<pg(/3j/) ¢g('yi/) ¢g('y24) ¢g(73/) ¢s (M)} C By Letji < jo < ... < j: be the elements of;. Since
j €A, Ietk be such that = j,. We concludé < ¢, sincej < j’ and] € A;. Thus, the elements qz‘g(S] )
and¢, (K] ) respectively are in different componentsTgf— z]k ]"“ Further, observe tha[I(,(K] ) C By,
and sincg # j', the elements ng(S{J ) and<pg(K] -) arein dlfferent components @f — u; #x) . This proves
that 7 displays bothS{J]. | K% andS% | K{J]..

e considerk’_ |Ff/ and K, | F/' fori € {1...n} andj < j' wherej € A;. Again, recall thatK{T[ C
(Bh Vb 2h Y, Ky € (B2, 72, A7), and that! = (0, ). So,90(KL) U g (K)) € AU,
whereasp, (F/') C By u {uo} Sincej < j/ < m, we conclude thang(Kj U ¢U(Kj ) and¢, (F/') are in
different components df; — u;u;, 1. This proves thaf, displays botrK] ‘FJ andK’ |F1

S{], HZ,, ande|S] for1 < i’ <i < mandj € A;. Recall thatH,, =
(20,8}, Hey = (a8}, S, = {aa, B}, andS), = fags B} S0,90(Sh) Uu(Sh) © AU,
whereasp, (Ho,) U ¢ (Hzz) S Ay U{yo}. Thus, since’ < i < n, we conclude thad, (S}, ) U o (SL)
and¢s(Ho, ) U ¢ (Hz;) are in different components @i — y;y;7,.1. This proves thaf; displays all the four
quartet trees1,, |S{]i, HW‘S . Ho, |S] andHy, ‘S]

° considerHU]_, |S HZ,,

o considerHv—i‘Ff andHUi|Ff fori € {1...n}andj € {1...m}. Recall thatH,, = {ay,, 0}, Hy; = {5, 6},
andF/ = {V, u}. Hence, it follows tha{¢, (Hz;) U s (Ho,) } € A U {yo} andey (F/) C B; U {ug}. Thus,
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we conclude thape (Hz) U ¢o(Ho,) andg,(F/) are in different components @ — y,u;. This proves that
7o displays bothH;; | Fi andHy, | F.

consider the clausg; = X VYV Zforj € {1...m}. Sincer is a satisfying assignment, and by the rotational
symmetry betweelX, Y, andZ, we may assume thad = 1, Y = 0, andZ = 0. Letix be the index such that
X = v;, or X = v;, letiy be such tha¥’ = v; orY = 7;, and letiz be such thaZ = v;, or Z = 7;,.
Note thatix, iy, iz are all distinct, since we assume that no variable appears than once in the same clause.

Thus we have thats (By) = b}, 9o (Bf) = b5, ¢ (BL) = b3, 9o (11) = 81, 90(72) = 8 9o(73) = g}, and
¢o (V) = ). (See Fig. 6c.) Also{ o (), ¢o(ax), ¢ (B5)} C Asy,s {go(ay), olag), o (By)} € A,
and{¢o(az), po(az), ¢o(B7)} C A,

- considerK% ‘ K]X and‘K% ‘ L’%. Recall thatK% = {/Bj ,7{}, K]X = {‘,BL,AJ'}, andﬂ% = {ﬁL, 'y;_}.
Also, recall thatp,, ] e A, . Thus it follows thatp, (K’ ) U ¢ (L) and ¢, (KL) are in different

t(l) X t(P X (P X (P X
components of; — xfl J

— considerkL |I<] andKL |L] Recall thatK]_ — (B, 7L}, K, = {_, A}, andL}, = {BL, 7.} where
b0 (B) € AZY Thus gbg(K] YU do(LL) andgbg(K] ) are in different components @ — x) x).

- consyderK]?‘K]Z andK]j‘ L]Z' Recall Fhatl(% = {ﬁ’ Y KL, = {BL, A1}, andL, = {B.,+}} where
¢o () € Ai,. Thusgo(K,) U ¢o (L) ands (KL) are in different components & — xhx).

— considers!, | K]X ands), | L. Recall thajS{K — {ay, B} }, Ky = {BL, A} andL], = {BL, 'yl}.‘ Also,
{po(ay), ¢o(BY)} € Ai, whereaspr (L) € A;,. Thus, sincex # iy, we conclude thap, (S)) and
¢o(Ky) U ¢ (L) are in different components & — y;, y;, -

- considerSjZ ‘K]y andeZ | L&. Recall t‘ha1SjZ = {az,ﬁjz}, K]Y = {,Bj_, AN}, andL]}; = {ﬁj_, 7]2‘}1 Also,
{poaz), ¢o(B)} € Ai,, andgo (L) € A Thus, sincex # iz, we conclude thap,(S;) and
¢o(K}) U ¢o(LY) are in different components & — y;, ;.

- consider‘Sé(‘Kj ande |Lj Recall tha1S§( = {ayx, ﬁj 1 Kj = {ﬁj A} andLj = {ﬁj ,yé} where
¢o(ax) € Ajy. Thus,gs(S,) andg,(K.) are in different components &% — x)x., whereasp, (S} )
andg, (L) are in different components &% — x}x/.

This proves thaf,; displaysQ;. It remains to prove thaf; is distinguished by);. We analyze the edges ®f.

consider the edgg;y’ fori € {1...n}. Recall thatA; = {ay,, a5} andB = {4, u}. By definition, we have
¢o(A;) = {a;,a’} andg,(B) = {yo, uo}. Note that every connected subgraptTpthat contains botly, and

1y must also contain;, since it lies on the path betweeag andyy in T;. Likewise, every connected subgraph
of T; that containg;, a; also containg/. This shows that the edgey’ is distinguished by; ‘ BwhichisinQ);.

consider the edge for] € {1...m}. By the definition of$,, we observe that there existse {1,2,3}
such thatng(yp gJ2 We recall thatB = {4, u} and D] {7p, NV}. Thus,¢s(B) = {yo,uo} and
¢U(D] = {gzr oy, Slnceg]. is adjacent tor), andu; lies on the path betweeyy anduy, it follows that the

edgeujxi is distinguished by);, ‘ B whichisinQj.

consider € {1...n} andletj; < j, < ... < ji: be the elements af;. LetW € {v;,7;} be such thatv = 1.

Then we have, (aw) = a;, po(agy) = dl, andgbg(ﬁ] ) = clforall j € A;. Recall thatSL = {az, ﬁ] }
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andk], C {ﬁ%,y{,yé, i, A} where{¢o (7)), o (7)), ¢o (7)), (M)} C Bj for all j € A;. Thus, for
eachk € {1...t—1}, it follows thatgbg(ﬁ%) is adjacent ta/* Whereaa;bg(ﬁ%“) is adjacent ta*!. This

proves that the edga{sz{:k+1 is distinguished b;&% ‘ K{}"jﬂ Similarly, recall tha‘rS{,v = {aw, /BJW} where
¢o(Bly) € Bj andgs(aw) is adjacent tgy!. Thus, the edge!'y/ is distinguished by}, | Sl.. Further, ifi > 2,

then we recall thal,, | = {ay, ,, 0} whereg,(ay, ) € Ai_1 and¢y () = yo. Thusy,_qy; is distinguished
by Hy, , ‘ S{jv.

e considerj € {1,...m} whereC; = X VY V Z. By the rotational symmetry, we may assume tat- 1 and
Y=2=0. Thus%(ﬁ&) = b]1 ¢U(/3j7) = bé, ¢0(ﬁj7) :‘bé’ 4’0(7]1‘) = g/1 4’7(7@ = 2/2 4’0(’7{?‘,) = 3{%
and¢s (V) = ¢/, (Again see Fig. 6c.) Recall that, = {sL, A/} andKL = {B}, 1}} whereg, (B)) & B;.
This shows that the edgéxé is distinguished by<]?|K]Y Recall thalsjg = {uay, ﬁjx}, Ljy = {,B];, yé}, and
K, = {B, M} whereg, (ax) ¢ B;. Thus, the edge}x], is distiguished bys} | L}, whereas the edge,x}
is distinguished b38]X|K]Z Recall thatK% = {/Bj ,'yé} andLjZ = {,B];, 7’1} Wheregbg(ﬁjz) ¢ B;. Thus, the
edgex) ) is distinguished b)K]Z‘ LY,. Recall thai, = {p., A/} andKL = {B), v} wherep,(BL) & B;.
Thus, the edgaixé is distinguished b)l(% ‘ K]x Further, ifj < m, recall thatF/*! = {A/*1, u} where
¢o(MVT1) € Bjiq andgy (i) = uo. Thusu;u; 4 is distinguished by, | Fi+.

e consider the edgg,u; and recall thatd,, = {a,,, 6} andF! = {A!,u}. So,¢s(Hy,) € A, U {yo} and
¢ (F') C By U {ug}. Thus, the edge,u is distinguished by, | F'.

This concludes the proof of Theorem 10. ]

Finally, we have all pieces to prove Theorem 1.

8. Proof of Theorem 1

The problem is clearly in CoNP as it can be defined by the foartiiil displaysQ, and for everyX-tree7”, if 7'
displaysQ, then7” is isomorphic ta7 . For this, note that isomorphism of labelled trees admit@nomial-time
algorithm [2], and checking if a giveK-tree displays a given quartet trée, b} | {¢,d} can be done easily (by testing
if the path between the leaves labelledndb is disjoint from the path between the leaves labeti@hdd).

To prove CoNP-hardness, consider an instdnmeONE-IN-THREE-3SAT and a satisfying assignmanfor I. We
construct the collectior®; of quartet trees, as well as the ternary phylogeneticTgeas described i§4. Clearly,
constructing®; and7, takes polynomial time. By combining Theorem 8 with Theoré&rend 10, we obtain that
o is the unique satisfying assignmentioif and only if 7 is the only phylogenetic tree that displagls. Since, by
Theorem 2, it is CoNP-hard to determine if an instancemE-IN-THREE-3SAT has a unique satisfying assignment,
it is therefore CoNP-hard to decide, for a given phylogeneé&e7 and a collection of quartet tre€3, whether or
not Q defines7 . That concludes the proof of Theorem 1. |

9. Concluding remarks

In this paper, we have shown that determining whether a gitgtogenetic tree represents the unique evolution
of a given collection of species is a CoNP-complete problem.

In addition, we proved that the unique minimal chordal saicyproblem is CoNP-complete. This is interesting
from the perspective of applications that deal with incostgpldata, where sandwich problems [17] allow one to ap-
proximate or complete the dataset, assunaipgori that it should posses specific properties (like being fropeztic
structured family of graphs). Deciding uniqueness in tloistext serves as a test of quality of the sandwich, namely
it allows one to see whether there are alternative explanatf the dataset or not. Here, we provide complexity for

24



the case of having a unique minimal sandwich that is a chgmgh. Following this direction, it would be interesting
to consider the complexity of uniqueness of other sandwioblpms, especially those with interesting applications.
For instance, for interval sandwich (DNA physical mappingkograph sandwich (genome comparison) problems.
Note that the decision problem for the former is NP-comp&8} while it is polynomial for the latter [6, 17].
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