Unique perfect phylogeny is intractable

Michel Habib ${ }^{\text {a }}$, Juraj Stacho ${ }^{\text {b,* }}$
${ }^{a}$ LIAFA - CNRS and Université Paris Diderot - Paris VII, Case 7014, 75205 Paris Cedex 13, France
${ }^{b}$ DIMAP and Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

A phylogeny is a tree capturing evolution and ancestral relationships of a set of taxa (e.g., species). Reconstructing phylogenies from molecular data plays an important role in many areas of contemporary biological research. A phylogeny is perfect if (in rough terms) it correctly captures all input data. Determining if a perfect phylogeny exists was shown to be intractable in 1992 by Mike Steel [32] and independently by Bodlaender et al. [4]. In light of this, a related problem was proposed in [32]: given a perfect phylogeny, determine if it is the unique perfect phylogeny for the given dataset, where the dataset is provided as a set of quartet (4-leaf) trees. It was suggested that this problem may be more tractable [32], and determining its complexity became known as the Quartet Challenge [33].

In this paper, we resolve this question by showing that the problem is CoNP-complete. We prove this by relating perfect phylogenies to satisfying assignments of Boolean formulas. To this end, we cast the question as a chordal sandwich problem. As a particular consequence of our method, we show that the unique minimal chordal sandwich problem is CoNP-complete, and counting minimal chordal sandwiches is \#P-complete.

Key words: perfect phylogeny, chordal graph, triangulation, chordal sandwich, intractability, unique solution

1. Introduction

One of the major efforts in molecular biology has been the computation of phylogenetic trees, or phylogenies, which describe the evolution of a set of species from a common ancestor. A phylogenetic tree for a set of species is a tree in which the leaves represent the species from the set and the internal nodes represent the (hypothetical) ancestral species. One standard model for describing the species is in terms of characters, where a character is an equivalence relation on the species set, partitioning it into different character states. In this model, we also assign character states to the (hypothetical) ancestral species. The desired property is that for each state of each character, the set of nodes in the tree having that character state forms a connected subgraph. When a phylogeny has this property, we say it is perfect. The Perfect Phylogeny problem [20] then asks for a given set of characters defining a species set, does there exist a perfect phylogeny? Note that we allow that states of some characters are unknown for some species; we call such characters partial, otherwise we speak of full characters. This approach to constructing phylogenies has been studied since the $1960 \mathrm{~s}[8,25,26,27,35]$ and was given a precise mathematical formulation in the 1970s [12, 13, 14, 15]. In particular, Buneman [7] showed that the Perfect Phylogeny problem reduces to a specific graphtheoretic problem, the problem of finding a chordal completion of a graph that respects a prescribed colouring. In fact, the two problems are polynomially equivalent [23]. Thus, using this formulation, it has been proved that the Perfect Phylogeny problem is NP-hard in [4] and independently in [32]. These two results rely on the fact that the input may contain partial characters. In fact, the characters in these constructions only have two states. If we insist on full characters, the situation is different as for any fixed number r of character states, the problem can be solved in time polynomial [1] in the size of the input (and exponential in r). In particular, for $r=2$ (or $r=3$), the solution exists if and only if it exists for every pair (or triple) of characters [15, 24]. Also, when the number of characters is k (even if there are partial characters), the complexity [28] is polynomial in the number of species (and exponential in k).

[^0]Another common formulation of this problem is the problem of a consensus tree $[10,19,32]$, where a collection of subtrees with labelled leaves is given (for instance, the leaves correspond to species of a partial character). Here, we ask for a (phylogenetic) tree such that each of the input subtrees can be obtained by contracting edges of the tree (we say that the tree displays the subtree). The problem does not change [31] if we only allow particular input subtrees, the so-called quartet trees, which have exactly six vertices and four leaves. This follows from the fact that every ternary phylogenetic tree (all internal nodes have degree 3) can be uniquely described by a collection of quartet trees [31]. However, a collection of quartet trees does not necessarily uniquely describe a ternary phylogenetic tree. (Note that some authors use the term binary tree $[5,31]$ or subcubic tree for what we call here a ternary tree as defined in [30].)

This leads to a natural question (first posed in [32]): What is the complexity of deciding whether or not a collection of quartet trees uniquely describes a (ternary) phylogenetic tree? Initially, it was suggested [32] that this problem may be more tractable. Indeed, a priori it is possible that unique solutions only exist for special collections of quartet trees and thus have special structure which could be easy to test. However, as the problem was open for a number of years, and perhaps from experience with real datasets, it became more clear that this probably is not the case. This was reflected in the problem being conjectured to be intractable by Mike Steel who named it Quartet Challenge and listed it on his personal webpage [33] alongside with other challenging research problems from the area of phylogenetics. In particular, to emphasize the importance of the problem, a price of $\$ 100$ was offered for the first proof of intractability.

In this paper, we resolve the problem by showing that it is indeed intractable. Namely, we show the following.
Theorem 1. It is CoNP-complete to determine, given a ternary phylogenetic X-tree \mathcal{T} and a collection \mathcal{Q} of quartet subtrees on X, whether or not \mathcal{T} is the only phylogenetic tree that displays \mathcal{Q}.

To prove this theorem, we investigate the graph-theoretical formulation of the problem [7] and view it through the notion of chordal sandwich [17]. In contrast, an alternative proof of the theorem, which recently appeared as [5], is based on the betweenness property, extending the hardness result of [32]; our proof extends the hardness from [4].

In light of this, we note that there are special cases of the problem that are known to be solvable in polynomial time. For instance, this is so if the collection \mathcal{Q} contains a subcollection \mathcal{Q}^{\prime} with the same set \mathcal{L} of labels of leaves and with $\left|\mathcal{Q}^{\prime}\right|=|\mathcal{L}|-3$. However, finding such a subcollection is known to be NP-complete. For these and similar results, we refer the reader to [3].

We prove Theorem 1 by describing a polynomial-time reduction from the uniqueness problem for ONE-IN-THREE3 Sat, which is CoNP-complete by [22].

Theorem 2. [22] It is CoNP-complete to decide, given an instance I of ONE-IN-THREE-3SAT, and a truth assignment σ that satisfies I, whether or not σ is the unique satisfying truth assignment for I.

We extract this from [22] by encoding the problem as the ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\}$. We check that this relation is not: 0 -valid, 1 -valid, Horn, anti-Horn, affine, 2SAT, or complementive. Thus the uniqueness of the satisfiability problem corresponding to this relation is CoNP-complete by [22].

Our construction in the reduction is essentially a modification of the construction of [4] which proves NP-hardness of the Perfect Phylogeny problem. Recall that the construction of [4] produces instances \mathcal{Q} that have a perfect phylogeny if and only if a particular boolean formula Φ is satisfiable. While studying this construction, we immediately observed that these instances \mathcal{Q} have, in addition, the property that Φ has a unique satisfying assignment if and only if there is a unique minimal restricted chordal completion of the partial partition intersection graph of \mathcal{Q} (for definitions see $\S 2$). This is precisely one of the two necessary conditions for uniqueness of perfect phylogeny as proved by Semple and Steel in [30] (see Theorem 5). Thus by modifying the construction of [4] to also satisfy the other condition of uniqueness of [30], we obtained the construction that we present in this paper. Note that, however, unlike [4] which uses 3SAT, we had to use a different problem in order for the construction to work correctly. Also, to prove that the construction is correct, we employ a variant of the characterization of [30] that uses the more general chordal sandwich problem [17] instead of the restricted chordal completion problem (see Theorem 8). In fact, by way of Theorems 6 and 7, we establish a direct connection between the problem of perfect phylogeny and the chordal sandwich problem, which apparently has not been yet observed. (Note that the connection to the (restricted) chordal completion problem of coloured graphs as mentioned above [7,23] is a special case of this.)

Finally, as a corollary, we obtain the following result which is very interesting by itself.

Corollary 3. The unique minimal chordal sandwich problem is CoNP-complete. The problem of counting the number of minimal chordal sandwiches is \#P-complete.

The first part follows directly from Theorems 2 and 9, while the second part follows from Theorem 9 and [9].
The paper is structured as follows. In $\S 2$, we describe some preliminary definitions and results needed for the construction in our reduction. In particular, we describe, based on [30], necessary and sufficient conditions for the existence of a unique perfect phylogeny in terms of the minimal chordal sandwich problem (cf. [16, 17]). The proof of this characterization is postponed until $\S 5$.

In $\S 3$ and $\S 4$, we present our hardness reduction, first informally and then formally. We state the two uniqueness conditions (Theorems 9 and 10) relating satisfying assignments of an instance I of ONE-IN-THREE-3SAT to minimal chordal sandwiches and phylogenetic trees uniquely determined by these assignments. The proofs are presented later in $\S 6$ and $\S 7$. In $\S 8$, we put these results together to prove Theorem 1.

We conclude in $\S 9$ with some other consequences and open questions related to this work.

2. Preliminaries

We mostly follow the terminology of [30,31] and the graph-theoretical notions of [34].
In this paper, a graph is always simple, undirected, with no loops or parallel edges. For a graph $G=(V, E)$, we write $V(G)$ to denote its vertex set and $E(G)$ to denote its edge set. We write $u v$ for the edge $(u, v) \in E(G)$, and say that u, v are neighbours or adjacent in G. For a vertex $v \in V(G)$, we denote by $N_{G}(v)$ the neighbourhood of v in G, i.e, the set of neighbours of v in G. We write $N_{G}[v]$ for $N_{G}(v) \cup\{v\}$. When appropriate, we drop the index G and simply write $N(v)$ and $N[v]$. For a set $X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced by X, i.e., the graph with vertex set X and edges $u v$ such that $u, v \in X$ and $u v \in E(G)$. We write $G-X$ for the graph $G[V(G) \backslash X]$. Similarly, for a set of edges $F \subseteq E(G)$, we write $G-F$ for the graph with vertex set $V(G)$ and edge set $E(G) \backslash F$. We write $G-x$ as a shorthand for $G-\{x\}$. We say that X is a clique of G if $G[X]$ is a complete graph (i.e., has all possible edges). A vertex $v \in V(G)$ is a simplicial vertex of G if all its neighbours are pairwise adjacent.

A graph is a chordal graph if it does not contains an induced cycle of length four or more. A perfect elimination ordering of a graph G is an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of G such that for every $i \in\{1 \ldots n\}$, the vertex v_{i} is a simplicial vertex of $G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]$, i.e., all its neighbours among $\left\{v_{1} \ldots, v_{i-1}\right\}$ are pairwise adjacent. It is well-known [11] that a graph is chordal if and only if it admits a perfect elimination ordering.

Let X be a non-empty set. An X-tree is a pair (T, ϕ) where T is tree and $\phi: X \rightarrow V(T)$ is a mapping such that $\phi^{-1}(v) \neq \varnothing$ for all vertices $v \in V(T)$ of degree at most two. An X-tree (T, ϕ) is ternary if all internal vertices of T have degree three. Two X-trees $\left(T_{1}, \phi_{1}\right),\left(T_{2}, \phi_{2}\right)$ are isomorphic if there exists an isomorphism $\psi: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ between T_{1} and T_{2} that satisfies $\phi_{2}=\psi \circ \phi_{1}$.

An X-tree (T, ϕ) is a phylogenetic X-tree (or a free X-tree in [30]) if ϕ is a bijection between X and the set of leaves of T. A partial partition of X is a partition of a non-empty subset of X into at least two sets. If A_{1}, A_{2}, \ldots, A_{t} are these sets, we call them cells of this partition, and denote the partition $A_{1}\left|A_{2}\right| \ldots \mid A_{t}$. If $t=2$, we call the partition a partial split. A partial split $A_{1} \mid A_{2}$ is trivial if $\left|A_{1}\right|=1$ or $\left|A_{2}\right|=1$.

A quartet tree is a ternary phylogenetic tree with a label set of size four, that is, a ternary tree \mathcal{T} with 6 vertices, 4 leaves labelled a, b, c, d, and with only one non-trivial partial split $\{a, b\} \mid\{c, d\}$ that it displays. Note that such a tree is unambiguously defined by this partial split. Thus, in the subsequent text, we identify the quartet tree \mathcal{T} with the partial split $\{a, b\} \mid\{c, d\}$, that is, we say that $\{a, b\} \mid\{c, d\}$ is both a quartet tree and a partial split.

Let $\mathcal{T}=(T, \phi)$ be an X-tree, and let $\pi=A_{1}\left|A_{2}\right| \ldots \mid A_{t}$ be a partial partition of X. Let $F \subseteq E(T)$ be a set of edges of T. We say that F displays π in \mathcal{T} if for all distinct $i, j \in\{1 \ldots t\}$, the sets $\phi\left(A_{i}\right)$ and $\phi\left(A_{j}\right)$ are subsets of the vertex sets of different connected components of $T-F$. We say that \mathcal{T} displays π if there is a set of edges that displays π in \mathcal{T}. Further, an edge e of T is distinguished by π if every set of edges that displays π in \mathcal{T} contains e.

Let \mathcal{Q} be a collection of partial partitions of X. An X-tree \mathcal{T} displays \mathcal{Q} if it displays every partial partition in \mathcal{Q}. An X-tree $\mathcal{T}=(T, \phi)$ is distinguished by \mathcal{Q} if every internal edge of T is distinguished by some partial partition in \mathcal{Q}; we also say that \mathcal{Q} distinguishes \mathcal{T}. The set \mathcal{Q} defines \mathcal{T} if \mathcal{T} displays \mathcal{Q}, and all other X -trees that display \mathcal{Q} are isomorphic to \mathcal{T}. Note that if \mathcal{Q} defines \mathcal{T}, then \mathcal{T} is necessarily a ternary phylogenetic X-tree, since otherwise

a)

b)

c)

d)

Figure 1: a) quartet trees $\mathcal{Q}, b), c$) two X-trees displaying \mathcal{Q} and distinguished by $\mathcal{Q}, d)$ int $^{*}(\mathcal{Q})$; dotted lines represent the edges in forb (\mathcal{Q}).
"resolving" any vertex either of degree four or more, or with multiple labels results in a non-isomorphic X-tree that also displays \mathcal{Q} (also, see [30, Proposition 2.6]). See Fig. 1 for an illustration of these concepts.

The partial partition intersection graph of \mathcal{Q}, denoted by $\operatorname{int}(\mathcal{Q})$, is a graph whose vertex set is $\{(A, \pi) \mid$ where A is a cell of $\pi \in \mathcal{Q}\}$ and two vertices $(A, \pi),\left(A^{\prime}, \pi^{\prime}\right)$ are adjacent just if the intersection of A and A^{\prime} is non-empty.

A chordal completion of a graph $G=(V, E)$ is a chordal graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E \subseteq E^{\prime}$. A restricted chordal completion of $\operatorname{int}(\mathcal{Q})$ is a chordal completion G^{\prime} of $\operatorname{int}(\mathcal{Q})$ with the property that if A_{1}, A_{2} are cells of $\pi \in \mathcal{Q}$, then $\left(A_{1}, \pi\right)$ is not adjacent to $\left(A_{2}, \pi\right)$ in G^{\prime}. A restricted chordal completion $G^{\prime} \operatorname{of} \operatorname{int}(\mathcal{Q})$ is minimal if no proper subgraph of G^{\prime} is a restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

The problem of perfect phylogeny is equivalent to the problem of determining the existence of an X-tree that displays the given collection \mathcal{Q} of partial partitions. In [7], it was given the following graph-theoretical characterization.

Theorem 4. [7, 31, 32] Let \mathcal{Q} be a set of partial partitions of a set X. Then there exists an X-tree that displays \mathcal{Q} if and only if there exists a restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

Of course, the X-tree in the above theorem might not be unique. For the problem of uniqueness, Semple and Steel $[30,31]$ describe necessary and sufficient conditions for when a collection of partial partitions defines an X-tree.

Theorem 5. [30] Let \mathcal{Q} be a collection of partial partitions of a set X. Let \mathcal{T} be a ternary phylogenetic X-tree. Then \mathcal{Q} defines \mathcal{T} if and only if:
(i) \mathcal{T} displays \mathcal{Q} and is distinguished by \mathcal{Q}, and
(ii) there is a unique minimal restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

In order to simplify our proof of Theorem 1, we now describe a variant of the above theorem that, instead, deals with the notion of chordal sandwich [17].

Let $G=(V, E)$ and $H=(V, F)$ be two graphs on the same set of vertices with $E \cap F=\varnothing$. A chordal sandwich of (G, H) is a chordal graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E \subseteq E^{\prime}$ and $E^{\prime} \cap F=\varnothing$. We say that E are the forced edges and F are the forbidden edges. (For other possible formulations of this notion, see [17].) A chordal sandwich G^{\prime} of (G, H) is minimal if no proper subgraph of G^{\prime} is a chordal sandwich of (G, H).

The cell intersection graph of \mathcal{Q}, denoted by $\operatorname{int}^{*}(\mathcal{Q})$, is the graph whose vertex set is $\{A \mid$ where A is a cell of $\pi \in \mathcal{Q}\}$ and two vertices A, A^{\prime} are adjacent just if the intersection of A and A^{\prime} is non-empty. Let forb (\mathcal{Q}) denote the graph whose vertex set is that of $\operatorname{int}^{*}(\mathcal{Q})$ in which there is an edge between A and A^{\prime} just if A, A^{\prime} are cells of some $\pi \in \mathcal{Q}$. See Fig. 1d for an example.

The relationship between the notion of partial partition intersection graph and the cell intersection graph is captured by the following theorem.

Theorem 6. Let \mathcal{Q} be a collection of partial partitions of a set X. Then there exists a bijective mapping between the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$ and the minimal chordal sandwiches of $\left(\operatorname{int}^{*}(\mathcal{Q}), f o r b(\mathcal{Q})\right)$.
(The proof of this theorem is rather technical and it is presented as $\S 5$.)
This combined with Theorem 4 yields that there exists a phylogenetic X-tree that displays \mathcal{Q} if and only if there exists a chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, forb $\left.(\mathcal{Q})\right)$. Conversely, we can express every instance of the chordal sandwich problem as a corresponding instance of the problem of perfect phylogeny as follows.

Theorem 7. Let (G, H) be an instance of the chordal sandwich problem. Then there exists a collection \mathcal{Q} of partial splits such that there is a bijective mapping between the minimal chordal sandwiches of (G, H) and the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$. In particular, there exists a chordal sandwich for (G, H) if and only if there exists a phylogenetic tree that displays \mathcal{Q}.

Proof. Consider the instance (G, H) where $G=(V, E)$ and $H=(V, F)$ are two graphs with $E \cap F=\varnothing$.
Without loss of generality, we may assume that each connected component of G has at least three vertices. (We can safely remove any component with two or fewer vertices without changing the number of minimal chordal completions, since every such component is already chordal.)

We define the collection \mathcal{Q} of partial splits (of the set E) as follows: for every edge $x y \in F$, we construct the partial split $D_{x} \mid D_{y}$, where D_{x} are the edges of E incident to x, and D_{y} are the edges of E incident to y. By definition, the vertex set of the graph $\operatorname{int}^{*}(\mathcal{Q})$ is precisely $\left\{D_{v} \mid v \in V\right\}$. Further, it can be easily seen that the mapping ψ that, for each $v \in V$, maps v to D_{v} is an isomorphism between G and $\operatorname{int}^{*}(\mathcal{Q})$. (Here, one only needs to verify that $D_{u}=D_{v}$ implies $u=v$; for this we use that each component of G has at least three vertices.) Moreover, forb (\mathcal{Q}) is precisely $\{\psi(x) \psi(y) \mid x y \in F\}$ by definition. Therefore, by Theorem 6, there is a one-to-one correspondence between the minimal chordal sandwiches of (G, H) and the minimal restricted chordal completions of int (\mathcal{Q}). This proves the first part of the claim; the second part follows directly from Theorem 4.

As an immediate corollary, we obtain the following desired characterization.
Theorem 8. Let \mathcal{Q} be a collection of partial partitions of a set X. Let \mathcal{T} be a ternary phylogenetic X-tree. Then \mathcal{Q} defines \mathcal{T} if and only if:
(i) \mathcal{T} displays \mathcal{Q} and is distinguished by \mathcal{Q}, and
(ii) there is a unique minimal chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q}), \operatorname{forb}(\mathcal{Q})\right)$.

We remark that the main technical advantage of this theorem over Theorem 5 is that it is less restrictive; it allows us to construct instances with arbitrary sets of forbidden edges rather than just with forbidden edges between vertices of the same colour. This makes our proof of Theorem 1 much simpler and more manageable.

3. Overview of the proof

Consider an instance I of ONE-IN-THREE-3SAT. The instance I consists of n variables v_{1}, \ldots, v_{n} and m clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ each of which is a disjunction of exactly three literals (i.e., variables v_{i} or their negations $\overline{v_{i}}$).

To simplify the presentation, we shall denote literals by capital letters X, Y, etc., and indicate their negations by \bar{X}, \bar{Y}, etc. (For instance, if $X=v_{i}$ then $\bar{X}=\overline{v_{i}}$, and if $X=\overline{v_{i}}$ then $\bar{X}=v_{i}$.)

A truth assignment for the instance I is a mapping $\sigma:\left\{v_{1}, \ldots, v_{n}\right\} \rightarrow\{0,1\}$ where 0 and 1 represent false and true, respectively. To simplify the notation, we write $v_{i}=0$ and $v_{i}=1$ in place of $\sigma\left(v_{i}\right)=0$ and $\sigma\left(v_{i}\right)=1$, respectively, and extend this notation to literals X, Y, etc., i.e., write $X=0$ and $X=1$ in place of $\sigma(X)=0$ and $\sigma(X)=1$, respectively. A truth assignment σ is a satisfying assignment for I if in each clause \mathcal{C}_{j} exactly one of the three literals evalues to true. That is, for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=0, Z=0$, or $X=0, Y=1$, $Z=0$, or $X=0, Y=0, Z=1$.

By standard arguments, we may assume that no variable appears twice in the same clause, since otherwise we can replace the instance I by an equivalent instance with this property. In particular, we can replace each clause of the form $v_{i} \vee \overline{v_{i}} \vee v_{j}$ by clauses $v_{i} \vee x \vee v_{j}$ and $\overline{v_{i}} \vee \bar{x} \vee v_{j}$ where x is a new variable, and replace each clause of the form $v_{i} \vee v_{i} \vee v_{j}$ by clauses $v_{i} \vee v_{j} \vee x, v_{i} \vee \overline{v_{j}} \vee \bar{x}$, and $\overline{v_{i}} \vee \overline{v_{j}} \vee x$ where x is again a new variable. Note that these two transformations preserve the number of satisfying assignments, since in the former the new variable x has always the truth value of $\overline{v_{i}}$ while in the latter x is always false in any satisfying assignment of this modified instance.

In what follows, we discuss the following objects arising from the instance I :

- the set of labels \mathcal{X}_{I},
- the collection \mathcal{Q}_{I} of quartet trees whose leaves are labelled by elements of \mathcal{X}_{I},
- the ternary tree T_{I}, and
- the labelling $\phi_{\sigma}: \mathcal{X}_{I} \rightarrow V\left(T_{I}\right)$ of the leaves of T_{I}, where σ is a satisfying assigment for I,
which together yield
- the phylogenetic \mathcal{X}_{I}-tree $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$.

The formal definitions of these objects is given as $\S 4$.
We then prove that the satisfying assignments to I are in bijection with the minimal chordal sandwiches of $\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$, the cell intersection graph of \mathcal{Q}_{I}, and forb $\left(\mathcal{Q}_{I}\right)$. Further, we show that every satisfying assignment σ for I defines a perfect phylogeny for \mathcal{Q}_{I}, namely the tree $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$, that is distinguished by \mathcal{Q}_{I}. These together will imply Theorem 1, the main result of this paper. We summarize this as the following two theorems.

Theorem 9. There is a bijective mapping between the satisfying assignments of the instance I and the minimal chordal sandwiches of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$.

Theorem 10. If σ is a satisfying assignment for I, then $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$ is a ternary phylogenetic \mathcal{X}_{I}-tree that displays \mathcal{Q}_{I} and is distinguished by \mathcal{Q}_{I}.

We present the proofs of these theorems as $\S 6$ and $\S 7$, respectively. In the rest of this section, we informally discuss the constructions involved to prepare the reader for the technical nature of the proofs that will follow.

Before describing the collection \mathcal{Q}_{I}, let us briefly review the construction from [4] that proves NP-hardness of the Perfect Phylogeny problem. For convenience, we describe it in terms of the chordal sandwich problem whose input is a graph with (forced) edges and forbidden edges. In [4], one similarly considers a collection $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ of 3-literal clauses, and treats it as an instance I of 3-SATISFIAbility. From this instance, one constructs a graph where each variable v_{i} corresponds to two shoulders $S_{v_{i}}$ and $S_{\overline{v_{i}}}$, and where each literal W in a clause \mathcal{C}_{j} corresponds to a pair of knees K_{W}^{j} and $K_{\bar{W}}^{j}$. In addition, there are two special vertices the head H and the foot F. All shoulders are adjacent to the head while all knees are adjacent to the foot. Further, if v_{i} occurs in the clause \mathcal{C}_{j} (positively or negatively), then the vertices $H, S_{v_{i}}, K_{\overline{v_{i}}}^{j}, F, K_{v_{i}}^{j}, S_{\overline{\bar{v}_{i}}}$ form an induced 6-cycle (see Fig. 2a). Also, if $\mathcal{C}_{j}=X \vee Y \vee Z$, then the vertices $K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}$ induce a triangle with pendant edges $K_{X}^{j} K_{\bar{Y}}^{j}, K_{Y}^{j} K_{\bar{Z}}^{j}$, and $K_{Z}^{j} K_{\bar{X}}^{j}$ (the clause gadget, see Fig. 2b).

Finally, the edge between H and F is forbidden in the desired chordal sandwich, and so is the edge between $S_{v_{i}}$ and $S_{\overline{v_{i}}}$, and between $K_{v_{i}}^{j}$ and $K_{\overline{v_{i}}}^{j}$ (the dotted edges in Fig. 2) for all indices i and j for which these vertices exist.

The main idea of this construction is that each of the 6-cycles allows only two possible chordal sandwiches: either the path $H, K_{v_{i}}^{j}, S_{v_{i}}, F$ is added, or the path $H, K_{\overline{v_{i}}}^{j}, S_{\overline{v_{i}}}, F$ is added (the authors of [4] call this path the "Mark of Zorro"). These two choices correspond to assigning v_{i} the value true or false, respectively, and the construction ensures that this choice is consistent over all clauses. This only produces satisfying assignments to 3-SATISFIABILITY, since we notice that no chordal sandwich adds a triangle on $K_{\bar{X}}^{j}, K_{\bar{Y}}^{j}, K_{\bar{Z}}^{j}$.

One can try to use this construction to prove Theorem 1 (we explain later why this fails). Indeed, it can be observed that the truth assignments satisfying the clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ are in one-to-one correspondence with the minimal chordal sandwiches of the above graph G. To see this, one describes all edges that we are forced to have in the sandwich after the marks of Zorro are added according to a satisfying assignment. It turns out that these edges yield a chordal sandwich, and thus a minimal chordal sandwich.

From G, using Theorems 6 and 7, one can further construct a collection \mathcal{Q} of partial splits (phylogenetic trees) such that the satisfying assignments of the clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ are in a one-to-one correspondence with the minimal chordal sandwiches of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, $\left.\operatorname{forb}(\mathcal{Q})\right)$. In particular, this collection \mathcal{Q} satisfies the condition (ii) of Theorem 8 if and only if the clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ have a unique satisfying assignment. Since this is CoNP-complete to determine [22], it would seem like we almost have a proof of Theorem 1. Unfortunately, we are missing a crucial piece which is the phylogenetic tree \mathcal{T} satisfying the condition (i) of Theorem 8 for the collection \mathcal{Q}. A straightforward construction of such a tree based on [30] yields a phylogenetic tree that is distinguished by \mathcal{Q}, but whose internal nodes may have
a)

Figure 2: Configurations from [4].
a)

Figure 3: Configurations from our construction (note that, on the left, W is a literal, either v_{i} or $\overline{v_{i}}$, and is the p-th literal of the clause \mathcal{C}_{j})
degree higher than three. If we try to fix this (by "resolving" the high-degree nodes in order to get a ternary tree), the resulting tree may no longer be distinguished by \mathcal{Q}. Moreover, the collection \mathcal{Q} may not consist of quartet trees only. For all these reasons, we need to modify the construction of G.

First, we discuss how to modify G so that it corresponds to a collection of quartet trees. To do this, we must ensure that the neighbourhood of each vertex consists of two cliques (with possibly edges between them).

We construct a new graph G_{I} by modifying G as follows. Instead of one head H, we introduce, for each variable v_{i}, two heads $H_{v_{i}}, H_{\overline{v_{i}}}$, and an auxiliary head A_{i}. For a literal W in the clause \mathcal{C}_{j}, we introduce two shoulders S_{W}^{j} and $S_{\bar{W}}^{j}$, and, as before, two knees K_{W}^{j} and $K_{\bar{W}}^{j}$, but also an additional auxiliary knee L_{W}^{j}. Further, for each clause \mathcal{C}_{j}, we introduce a foot F^{j} and three auxiliary feet D_{1}^{j}, D_{2}^{j}, and D_{3}^{j}. Finally, we add one additional vertex B known as the backbone. The resulting modifications to the 6-cycles and the clause gadgets can be seen in Fig. 3a and 3b. (The forbidden edges are again indicated by dotted lines.) Note that, unlike in the case of G, this is not a complete description of G_{I} as we need to add some additional (forced) edges and forbidden edges not shown in these diagrams in order to make the reduction work. This is rather technical and we omit this for brevity.

From the construction, we conclude that, just like in G, the " 6 -cycles" of G_{I} (Fig. 3a) admit only two possible kinds of sandwiches, and this is consistent over different clauses. However, unlike in G, the chordal sandwiches of G_{I} no longer correspond to satisfying assignments of 3-SATISFIABILITY but rather to satisfying assignments of ONE-IN-THREE-3-SAT. Fortunately, the uniqueness variant of this problem is CoNP-complete (see Theorem 2).

Now, from G_{I}, we construct a collection \mathcal{Q}_{I} of quartet trees. To do this, we cannot simply use Theorem 7 as before, since this may create partial partitions that do not correspond to quartet trees. Moreover, even if we use [31] to replace these partitions by an equivalent collection of quartet trees, this process may not preserve the number of solutions. We need a more careful construction.

We recall that each vertex v of G_{I} belongs to two cliques that completely cover its neighbourhood; we assign greek letters to these two cliques (to distinguish them from vertices), and associate them with v.

In particular, we use the following symbols: $\alpha_{W}, \beta_{W}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}, \delta, \mu$ where W is a literal and $j \in\{1 \ldots m\}$. They define specific cliques of G_{I} as follows. The letter α_{W} defines the clique of G_{I} consisting of all heads and
shoulders of W. The letter β_{W}^{j} corresponds to the clique formed by the shoulder S_{W}^{j} and the knees $K_{\bar{W}}^{j}, L_{\bar{W}}^{j}$ (if exists). Further, λ^{j} is the clique on $F^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$, while the clique for γ_{p}^{j} where $p \in\{1,2,3\}$ is formed by $D_{p}^{j}, K_{\bar{W}}^{j}, L_{U}^{j}$ where W and U are the p-th and $(p-1)$-th (modulo 3) literals of \mathcal{C}_{j}. Finally, δ corresponds to the clique containing B and all heads H_{W}, while μ corresponds to the clique with B and all feet F^{j}.

From this, we construct the collection \mathcal{Q}_{I} by considering every forbidden edge $u v$ of G_{I} and by constructing a partial partition with two cells in which one cell is the set of cliques assigned to u and the other is the set of cliques assigned to v. Since we assign to each vertex of G_{I} exactly two cliques, this yields partitions corresponding to quartet trees. For instance, in Fig. 3b, we have a forbidden edge $K_{X}^{j} K_{\bar{X}}^{j}$ where K_{X}^{j} is assigned cliques $\beta_{\bar{X}^{\prime}}^{j} \lambda^{j}$, and $K_{\bar{X}}^{j}$ is assigned $\beta_{X}^{j}, \gamma_{1}^{j}$. This yields a quartet tree $\left\{\beta_{\bar{X}}^{j} \lambda^{j}\right\} \mid\left\{\beta_{X}^{j} \gamma_{1}^{j}\right\}$. Finally, since by construction every vertex of G_{I} is incident to at least one forbidden edge, we conclude that $G_{I}=\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$.

This completes the overview of the construction. From this, the proof of Theorem 9 follows, essentially along the same lines as the uniqueness property we discussed for G. That is, we describe the edges that are forced in the sandwich by a satisfying assignment for I, treated as an instance of ONE-IN-THREE-3SAT, and prove that this yields a chordal sandwich, i.e., a minimal chordal sandwich.

To complete the result, we need to explain how to construct a phylogenetic tree corresponding to a satisfying assignment σ for I, namely the tree $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$, and show that it displays and is distinguished by the trees in \mathcal{Q}_{I}, as stated in Theorem 10. As this is rather technical, we instead discuss a small example here.

The example instance I^{+}consists of four variables $v_{1}, v_{2}, v_{3}, v_{4}$ and three clauses $\mathcal{C}_{1}=v_{1} \vee v_{2} \vee v_{3}, \mathcal{C}_{2}=$ $\overline{v_{1}} \vee v_{2} \vee v_{4}$, and $\mathcal{C}_{3}=v_{3} \vee \overline{v_{2}} \vee \overline{v_{4}}$. The unique satisfying assignment assigns true to v_{1}, v_{4} and false to v_{2}, v_{3}. The corresponding phylogenetic tree $\mathcal{T}=(T, \phi)$ is shown in Fig. 4.

Figure 4: The phylogenetic tree for the example instance I^{+}.
For instance, one of the quartet trees in $\mathcal{Q}_{I^{+}}$is $\pi=\left\{\alpha_{v_{1}}, \beta_{\bar{v}_{1}}^{1}\right\} \left\lvert\,\left\{\alpha_{\overline{v_{1}}}, \beta \frac{1}{\bar{v}_{1}}\right\}\right.$ representing the forbidden edge of $G_{I^{+}}$between $S_{v_{1}}^{1}$ and $S_{\overline{v_{1}}}^{1}$. It is easy to verify \mathcal{T} displays π. Another example from $\mathcal{Q}_{I^{+}}$is $\pi^{\prime}=\left\{\beta_{\overline{v_{1}}}^{1}, \lambda^{1}\right\} \mid\left\{\beta_{v_{1}}^{1}, \gamma_{1}^{1}\right\}$ representing the forbidden edge $K_{v_{1}}^{1} K_{\bar{v}_{1}}^{1}$. Again, it is displayed by \mathcal{T}, but this time one internal edge of T is contained in every set of edges of T that displays π^{\prime} in \mathcal{T}; hence, this edge is distinguished by π^{\prime}. This way we can verify all other quartet trees in $\mathcal{Q}_{I^{+}}$and conclude that they are displayed by \mathcal{T} and they distinguish \mathcal{T}.

Now, with the help of Theorem 8, this allows us to prove that given an instance I of ONE-IN-THREE-3SAT and a satisfying assignment σ for I, one can in polynomial time construct a phylogenetic tree \mathcal{T} and a collection of quartet trees \mathcal{Q} such that \mathcal{T} is the unique tree defined by \mathcal{Q} if and only if σ is the unique satisfying assignment for I. Combined with Theorem 2, this proves Theorem 1.

That concludes this section.

4. Formal Construction

Let I be an instance of ONE-IN-THREE-3SAT consisting of n variables v_{1}, \ldots, v_{n} and m clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ each of which is a disjunction of exactly three literals. Assume that no variable appears twice in the same clause.

For each $i \in\{1 \ldots n\}$, we let Δ_{i} denote all indices j such that v_{i} or $\overline{v_{i}}$ appears in the clause \mathcal{C}_{j}. In the following, we define the set \mathcal{X}_{I}, introduce notation for some of its 2-element subsets, and using these define the collection \mathcal{Q}_{I}.

4.1. Definition of \mathcal{X}_{I}

The set \mathcal{X}_{I} consists of the following elements:

- $\alpha_{\bar{v}_{i}}, \alpha_{\overline{v_{i}}}$ for each $i \in\{1 \ldots n\}$,
- $\beta_{v_{i}}^{j}, \beta_{\overline{v_{i}}}^{j}$ for each $i \in\{1 \ldots n\}$ and $j \in$ Δ_{i},
$-\gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}$ for each $j \in\{1 \ldots m\}$,
$-\delta$ and μ.

4.2. Selected subsets of \mathcal{X}_{I}

$$
B=\{\mu, \delta\}
$$

For each $i \in\{1, \ldots, n\}$:

$$
\begin{aligned}
& H_{v_{i}}=\left\{\alpha_{v_{i}}, \delta\right\}, H_{\overline{v_{i}}}=\left\{\alpha_{\overline{\bar{v}_{i}}}, \delta\right\}, A_{i}=\left\{\alpha_{v_{i}}, \alpha_{\overline{v_{i}}}\right\}, \\
& S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}, S_{\overline{v_{i}}}^{j}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j}\right\} \text { for all } j \in \Delta_{i}
\end{aligned}
$$

For each $j \in\{1 \ldots m\}$ where $C_{j}=X \vee Y \vee Z$:

$$
\begin{aligned}
& F^{j}=\left\{\lambda^{j}, \mu\right\}, \\
& K_{\bar{X}}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}, K_{\bar{Y}}^{j}=\left\{\beta_{Y}^{j}, \gamma_{2}^{j}\right\}, K_{\bar{Z}}^{j}=\left\{\beta_{Z}^{j}, \gamma_{3}^{j}\right\}, \\
& K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda^{j}\right\}, K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}, K_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \lambda^{j}\right\}, \\
& L_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \gamma_{2}^{j}\right\}, L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}, L_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \gamma_{1}^{j}\right\}, \\
& D_{1}^{j}=\left\{\gamma_{1}^{j}, \lambda^{j}\right\}, \quad D_{2}^{j}=\left\{\gamma_{2}^{j}, \lambda^{j}\right\}, \quad D_{3}^{j}=\left\{\gamma_{3}^{j}, \lambda^{j}\right\}
\end{aligned}
$$

4.3. Definition of \mathcal{Q}_{I}

The collection \mathcal{Q}_{I} of quartet trees is defined as the union of the following sets:

$$
\begin{aligned}
& -\bigcup_{i \in\{1 \ldots n\}}\left\{A_{i} \mid B\right\} \\
& -\bigcup_{j \in\{1 \ldots m\}}\left\{D_{1}^{j}\left|B, D_{2}^{j}\right| B, D_{3}^{j} \mid B\right\} \\
& -\bigcup_{\substack{i \in\{1 \ldots n\} \\
j, j^{\prime} \in \Delta_{i}}}\left\{S_{v_{i}}^{j} \mid S_{\overline{v_{i}}}^{j^{\prime}}\right\} \\
& -\bigcup_{\substack{1 \leq i^{\prime}<i \leq n \\
j \in \Delta_{i}}}\left\{H_{v_{i^{\prime}}}\left|S_{v_{i}}^{j}, H_{\overline{v_{i^{\prime}}}}\right| S_{v_{i}}^{j}, H_{v_{i^{\prime}}}\left|S_{\overline{v_{i}}}^{j}, H_{\overline{v_{i^{\prime}}}}\right| S_{\overline{v_{i}}}^{j}\right\}
\end{aligned}
$$

Note that in each clause $\mathcal{C}_{j}=X \vee Y \vee Z$ there is a particular type of symmetry between the literals X, Y, and Z. In particular, if we replace, in the above, the indices X, Y, Z and $1,2,3$ as follows: $X \rightarrow Y \rightarrow Z \rightarrow X$ and $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, we obtain precisely the same definition of \mathcal{Q}_{I} as the above. We shall refer to this as the rotational symmetry between X, Y, Z.

Now, we formally define the tree T_{I} corresponding to the instance I. For satisfying assignments σ, we also define the labelling ϕ_{σ} of the leaves of T_{I} by the elements of \mathcal{X}_{I}. This (as we prove later in Theorem 10) will constitute a perfect phylogeny, an \mathcal{X}_{I}-tree $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$, for the collection \mathcal{Q}_{I}.

Figure 5: The tree T_{I}.

> 4.4. Definition of the tree T_{I} $\begin{aligned} V\left(T_{I}\right)= & \left\{y_{0}, y_{1}, y_{1}^{\prime}, \ldots, y_{n}, y_{n}^{\prime}\right\} \cup\left\{a_{1}, a_{1}^{\prime}, \ldots, a_{n}, a_{n}^{\prime}\right\} \cup\left\{c_{i}^{j}, z_{i}^{j} \mid i \in\{1 \ldots n\} \text { and } j \in \Delta_{i}\right\} \\ & \cup\left\{u_{0}, u_{1}, \ldots, u_{m}\right\} \cup\left\{x_{1}^{j}, x_{2}^{j}, x_{3}^{j}, x_{4}^{j}, x_{5}^{j}, x_{6}^{j}, b_{1}^{j}, b_{2}^{j}, b_{3}^{j}, g_{1}^{j}, g_{2}^{j}, g_{3}^{j}, \ell^{j} \mid j \in\{1 \ldots m\}\right\} \\ E\left(T_{I}\right)= & \left\{y_{1} y_{1}^{\prime}, y_{2} y_{2}^{\prime}, \ldots, y_{n} y_{n}^{\prime}\right\} \cup\left\{a_{1} y_{1}^{\prime}, a_{2} y_{2}^{\prime}, \ldots a_{n} y_{n}^{\prime}\right\} \cup\left\{c_{i}^{j} z_{i}^{j} \mid j \in \Delta_{i}\right\}_{i=1}^{n} \\ & \cup\left\{y_{0} y_{1}, y_{1} y_{2}, y_{2} y_{3}, \ldots, y_{n-1} y_{n}\right\} \cup\left\{y_{n} u_{1}, u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{m-1} u_{m}, u_{m} u_{0}\right\} \\ & \cup\left\{u_{j} x_{1}^{j}, x_{1}^{j} x_{2}^{j}, x_{2}^{j} x_{3}^{j}, x_{2}^{j} x_{4}^{j}, x_{4}^{j} x_{5}^{j}, x_{4}^{j} x_{6}^{j}, b_{1}^{j} x_{6}^{j}, b_{2}^{j} x_{3}^{j}, b_{3}^{j} x_{5}^{j}, g_{1}^{j} x_{6}^{j}, g_{2}^{j} x_{1}^{j}, g_{3}^{j} x_{3}^{j}, \ell^{j} x_{5}^{j} \mid j \in\{1 \ldots m\}\right\} \\ & \cup\left\{a_{i}^{\prime} z_{i}^{j_{1}}, z_{i}^{j_{1}} z_{i}^{j_{2}}, \ldots, z_{i}^{j_{t-1}} z_{i}^{j_{t}}, z_{i}^{j_{t}} y_{i}^{\prime} \mid i \in\{1 \ldots n\} \text { and } j_{1}<j_{2}<\ldots<j_{t} \text { are elements of } \Delta_{i}\right\}\end{aligned}$

4.5. Definition of the labelling ϕ_{σ}

Let σ be a satisfying assignment for the instance I. The mapping $\phi_{\sigma}: \mathcal{X} I \rightarrow V\left(T_{I}\right)$ is defined as follows:
$-\phi_{\sigma}(\delta)=y_{0}$ and $\phi_{\sigma}(\mu)=u_{0}$,

- for each $i \in\{1 \ldots n\}$:
if $v_{i}=1$, then $\phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}^{\prime}$, and $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right)=c_{i}^{j}$ for all $j \in \Delta_{i}$,
if $v_{i}=0$, then $\phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}^{\prime}$, and $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right)=c_{i}^{j}$ for all $j \in \Delta_{i}$,
- for each $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$:
if $X=1$, then $\phi_{\sigma}\left(\beta_{X}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{3}^{j}$,

$$
\phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{1}^{j}, \quad \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{2}^{j}, \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{3}^{j}, \quad \phi_{\sigma}\left(\lambda^{j}\right)=\ell^{j},
$$

if $Y=1$, then $\phi_{\sigma}\left(\beta_{Y}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right)=b_{3}^{j}$,

$$
\phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{1}^{j}, \quad \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{2}^{j}, \quad \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{3}^{j}, \quad \phi_{\sigma}\left(\lambda^{j}\right)=\ell^{j},
$$

if $Z=1$, then $\phi_{\sigma}\left(\beta_{Z}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{3}^{j}$,

$$
\phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{1}^{j}, \quad \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{2}^{j}, \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{3}^{j}, \quad \phi_{\sigma}\left(\lambda^{j}\right)=\ell^{j},
$$

For illustration of the construction of T_{I} and ϕ_{σ}, see Fig. 5 and 6.

Figure 6: a) subtree \mathcal{A}_{i} for the variable v_{i}, b) subtree \mathcal{B}_{j} for the clause \mathcal{C}_{j}, c) labelling of leaves of \mathcal{B}_{j} when $\sigma(X)=1, \sigma(Y)=\sigma(Z)=0$.

5. Perfect Phylogenies and Minimal Chordal Sandwiches

In this section, we prove Theorem 6. As a particular consequence of this theorem, we obtain Theorem 8, which allows us to cast the problem of uniqueness of perfect phylogenies as a minimal chordal sandwich problem.

We need to introduce some additional tools. The following is a standard property of minimal chordal completions.
Lemma 11. Let G^{\prime} be a chordal completion of G. Then G^{\prime} is a minimal chordal completion of G if and only iffor all $u v \in E\left(G^{\prime}\right) \backslash E(G)$, the vertices u, v have at least two non-adjacent common neighbours in G^{\prime}.
Proof. Suppose that G^{\prime} is a minimal chordal completion. Let $u v \in E\left(G^{\prime}\right) \backslash E(G)$, and let $G^{\prime \prime}=G^{\prime}-u v$. Since G^{\prime} is a minimal chordal completion and $u v \notin E(G)$, we conclude that $G^{\prime \prime}$ is not chordal. Thus, there exists a set $C \subseteq V\left(G^{\prime}\right)$ that induces a cycle in $G^{\prime \prime}$. Since G^{\prime} is chordal, C does not induce a cycle in G^{\prime}. This implies $u, v \in C$, and hence, $u v$ is the unique chord of $G^{\prime}[C]$. So, we conclude $|C|=4$, because otherwise $G^{\prime}[C]$ contains an induced cycle. Let x, y be the two vertices of $C \backslash\{u, v\}$. Clearly, $x y \notin E\left(G^{\prime}\right)$ and both x and y are common neighbours of u and v in G^{\prime}, as required.

Conversely, suppose that G^{\prime} is not a minimal chordal completion. Then by [29], there exists an edge $u v \in$ $E\left(G^{\prime}\right) \backslash E(G)$ such that $G^{\prime}-u v$ is a chordal graph. If the vertices u, v have non-adjacent common neighbours x, y in G^{\prime}, then $\{u, x, v, y\}$ induces a 4-cycle in $G^{\prime}-u v$. This is impossible as we assume that $G^{\prime}-u v$ is chordal.

That concludes the proof.
Using this tool, we prove the following two important lemmas.
Lemma 12. Let G be a graph and G^{\prime} be a minimal chordal completion of G. If G contains vertices u, v with $N_{G}(u) \subseteq N_{G}(v)$, then also $N_{G^{\prime}}(u) \subseteq N_{G^{\prime}}(v)$.

Proof. Let u, v be vertices of G with $N_{G}(u) \subseteq N_{G}(v)$. Let $B=N_{G^{\prime}}(u) \backslash N_{G^{\prime}}(v)$ and $A=N_{G^{\prime}}(u) \cap N_{G^{\prime}}(v)$. Assume for contradiction that $B \neq \varnothing$, and let A_{1} denote the vertices of A with at least one neighbour in B. Look at the graph $G_{1}=G^{\prime}\left[A_{1} \cup B \cup\{v\}\right]$.

By the definition of A_{1} and B, the vertex v is adjacent to each vertex in A_{1} and non-adjacent to each vertex in B. Hence, no vertex in A_{1} is a simplicial vertex of G_{1}, since it is adjacent to v and at least one vertex in B.

Now, consider $w \in B$. By the definition of B, we have that w is adjacent in G^{\prime} to u but not v. Thus, $u w$ is not an edge of G, since $N_{G}(u) \subseteq N_{G}(v)$ and $N_{G}(v) \subseteq N_{G^{\prime}}(v)$. So, by Lemma 11, the vertices u, w have non-adjacent common neighbours x, y in G^{\prime}. Since x, y are adjacent to u, we have $x, y \in A \cup B$. In fact, since w has no neighbours in $A \backslash A_{1}$, we conclude $x, y \in A_{1} \cup B$. Thus, w is not a simplicial vertex of G_{1}.

This proves that no vertex of G_{1}, except possibly for v, is simplicial in G_{1}. Also, G_{1} is not a complete graph, since $B \neq \varnothing$, and v has no neighbour in B. Recall that G_{1} is chordal because G^{\prime} is. Thus, by the result of Dirac [11], it follows that G_{1} must contain at least two non-adjacent simplicial vertices, but this is clearly impossible.

Hence, we must conclude $B=\varnothing$. In other words, $N_{G^{\prime}}(u) \subseteq N_{G^{\prime}}(v)$ as promised.

Lemma 13. Let G be a graph, and let H be a graph obtained from G by substituting complete graphs for the vertices of G. Then there is a one-to-one correspondence between minimal chordal completions of G and H.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Since H is obtained from G by substituting complete graphs, there is a partition $C_{1} \cup \ldots \cup C_{n}$ of $V(H)$ where each C_{i} induces a complete graph in H, and for all distinct $i, j \in\{1 \ldots n\}$:
(\star) each $x \in C_{i}, y \in C_{j}$ satisfy $v_{i} v_{j} \in E(G)$ if and only if $x y \in E(H)$.
We define the following mapping Ψ : if G^{\prime} is a graph with vertex set $V(G)$, then $H^{\prime}=\Psi\left(G^{\prime}\right)$ denotes be the graph constructed from G^{\prime} by considering each $i \in\{1 \ldots n\}$, substituting the set C_{i} for the vertex v_{i}, and making all vertices in C_{i} pairwise adjacent. Thus, for all distinct $i, j \in\{1 \ldots n\}$:
$(\star \star)$ each $x \in C_{i}, y \in C_{j}$ satisfy $v_{i} v_{j} \in E\left(G^{\prime}\right)$ if and only if $x y \in E\left(H^{\prime}\right)$.
We prove that Ψ is a bijection between the minimal chordal completions of G and H which will yield the lemma.
Let G^{\prime} be a minimal chordal completion of G, and let $H^{\prime}=\Psi\left(G^{\prime}\right)$. Clearly, H^{\prime} is chordal, since G^{\prime} is chordal, and chordal graphs are closed under the operation of substituting a complete graph for a vertex. Also, observe that $V(H)=V\left(H^{\prime}\right)$. If $x y \in E(H)$ where $x, y \in C_{i}$ for some $i \in\{1 \ldots n\}$, then also $x y \in E\left(H^{\prime}\right)$, since C_{i} induces a complete graph in H^{\prime}. If $x y \in E(H)$ and $x \in C_{i}, y \in C_{j}$ for distinct $i, j \in\{1 \ldots n\}$, then $v_{i} v_{j} \in E(G)$ by (\star), implying $v_{i} v_{j} \in E\left(G^{\prime}\right)$, since $E(G) \subseteq E\left(G^{\prime}\right)$. Hence, $x y \in E\left(H^{\prime}\right)$ by $(\star \star)$. This proves that $E(H) \subseteq E\left(H^{\prime}\right)$, and thus, H^{\prime} is a chordal completion of H.

To prove that H^{\prime} is a minimal chordal completion of H, it suffices, by Lemma 11, to show that for all $x y \in E\left(H^{\prime}\right) \backslash$ $E(H)$, the vertices x, y have at least two non-adjacent common neighbours in H^{\prime}. Consider $x y \in E\left(H^{\prime}\right) \backslash E(H)$, and let $i, j \in\{1 \ldots n\}$ be such that $x \in C_{i}$ and $y \in C_{j}$. Since $x y \notin E(H)$ and C_{i} induces a complete graph in H, we conclude $i \neq j$. Thus, by $(\star \star)$, we have $v_{i} v_{j} \in E\left(G^{\prime}\right)$, and so, $v_{i} v_{j} \in E\left(G^{\prime}\right) \backslash E(G)$ by (\star). Now, recall that G^{\prime} is a minimal chordal completion of G. Thus, by Lemma 11, the vertices v_{i}, v_{j} have non-adjacent common neighbours v_{k}, v_{ℓ} in G^{\prime}. So, we let $w \in C_{k}$ and $z \in C_{\ell}$. By $(\star \star)$, we conclude $w z \notin E\left(H^{\prime}\right)$, since $v_{k} v_{\ell} \notin E\left(G^{\prime}\right)$. Moreover, ($\star \star$) also implies that z, w are common neighbours of x, y, since v_{k}, v_{ℓ} are common neighbours of v_{i}, v_{j}. This proves that x, y have non-adjacent common neighbours, and thus shows that H^{\prime} is a minimal chordal completion of H.

Conversely, let H^{\prime} be a minimal chordal completion of H. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ such that $v_{i} v_{j} \in E\left(G^{\prime}\right)$ if and only if there exists $x \in C_{i}, y \in C_{j}$ with $x y \in E\left(H^{\prime}\right)$. Let $i \in\{1 \ldots n\}$ and consider vertices $x, y \in C_{i}$ in the graph H. Recall that C_{i} induces a complete graph in H. This implies that $x y \in E(H)$ and both x and y are adjacent in H to every $z \in C_{i} \backslash\{x, y\}$. Further, by (\star), if $z \in C_{j}$ where $j \neq i$, then x, y are both adjacent to z if $v_{i} v_{j} \in E(G)$, and x, y are both non-adjacent to z if $v_{i} v_{j} \notin E(G)$. This shows that $N_{H}(x)=N_{H}(y)$, and hence, $N_{H^{\prime}}(x)=N_{H^{\prime}}(y)$ by Lemma 12 and the fact that H^{\prime} is a minimal chordal completion of H. This proves that $H^{\prime}=\Psi\left(G^{\prime}\right)$, and hence, G^{\prime} is chordal. In fact, $E(G) \subseteq E\left(G^{\prime}\right)$ by (\star) and $(\star \star)$. Thus G^{\prime} is a chordal completion of G.

It remains to show that G^{\prime} is a minimal chordal completion of G. Again, it suffices to show that for each $v_{i} v_{j} \in$ $E\left(G^{\prime}\right) \backslash E(G)$, the vertices v_{i}, v_{j} have non-adjacent common neighbours in G^{\prime}. Consider $v_{i} v_{j} \in E\left(G^{\prime}\right) \backslash E(G)$, and let $x \in C_{i}$ and $y \in C_{j}$. So, $i \neq j$ and $x y \in E\left(H^{\prime}\right)$ by $(\star \star)$. Further, $x y \in E\left(H^{\prime}\right) \backslash E(H)$ by (\star) and the fact that $v_{i} v_{j} \notin E(G)$. So, the vertices x, y have non-adjacent common neighbours w, z in H^{\prime} by Lemma 12 and the fact that H^{\prime} is a minimal chordal completion of H. Let $k, \ell \in\{1 \ldots n\}$ be such that $w \in C_{k}$ and $z \in C_{\ell}$. Since $x z \in E\left(H^{\prime}\right)$ but $w x \notin E\left(H^{\prime}\right)$, we conclude by $(\star \star)$ that $i \neq k$. By symmetry, also $i \neq \ell, j \neq k$, and $j \neq \ell$. Further, $k \neq \ell$, since $w x \notin E\left(H^{\prime}\right)$ and C_{k} induces a complete graph in H^{\prime}. Thus, $(\star \star)$ implies that v_{k}, v_{ℓ} are non-adjacent common neighbours of v_{i}, v_{j} in G^{\prime}, since w, z are non-adjacent common neighbours of x, y in H^{\prime}. This proves that G^{\prime} is indeed a minimal chordal completion of G.

That concludes the proof.
Now, we are finally ready to prove Theorem 6.

Proof of Theorem 6. We observe that the $\operatorname{graph} \operatorname{int}(\mathcal{Q})$ can be obtained by substituting complete graphs for the vertices of int $^{*}(\mathcal{Q})$. Namely, for each vertex A of int* (\mathcal{Q}), we substitute A by the complete graph on vertices $C_{A}=\{(A, \pi) \mid \pi \in \mathcal{Q}$ and A is a cell of $\pi\}$. Thus, by Lemma 13, there is a bijection Ψ between the minimal chordal completions of $\operatorname{int}(\mathcal{Q})$ and $\operatorname{int}^{*}(\mathcal{Q})$. By translating the condition ($\star \star$) from the proof of Lemma 13, we
conclude that if G^{\prime} is a minimal chordal completion of $\operatorname{int}(\mathcal{Q})$, then $H^{\prime}=\Psi\left(G^{\prime}\right)$ is the graph whose vertex set is that of $\operatorname{int}(\mathcal{Q})$ and in which for all $A, A^{\prime} \in V\left(G^{\prime}\right)$:
$(\star \star)$ all meaningful $\pi, \pi^{\prime} \in \mathcal{Q}$ satisfy $A A^{\prime} \in V\left(G^{\prime}\right) \Longleftrightarrow(A, \pi)\left(A^{\prime}, \pi^{\prime}\right) \in V\left(H^{\prime}\right)$.
We show that Ψ is a bijection between the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$ and the minimal chordal sandwiches of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, forb $\left.(\mathcal{Q})\right)$.

First, let H^{\prime} be a minimal restricted chordal completion of $\operatorname{int}(\mathcal{Q})$. Then $G^{\prime}=\Psi^{-1}\left(H^{\prime}\right)$ is a minimal chordal completion of int* (\mathcal{Q}). Consider two cells A_{1}, A_{2} of $\pi \in \mathcal{Q}$. Since H^{\prime} is a restricted chordal completion of int (\mathcal{Q}), we have that $\left(A_{1}, \pi\right)$ is not adjacent to $\left(A_{2}, \pi\right)$ in H^{\prime}. Thus, $A_{1} A_{2} \notin E\left(G^{\prime}\right)$ by ($(\star \star)$. This shows that G^{\prime} contains no edge from forb (\mathcal{Q}). Thus G^{\prime} is a minimal chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, forb $\left.(\mathcal{Q})\right)$, since it is also a minimal chordal completion of int* (\mathcal{Q}).

Conversely, let G^{\prime} be a minimal chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, $\left.\operatorname{forb}(\mathcal{Q})\right)$. Then $H^{\prime}=\Psi\left(G^{\prime}\right)$ is a minimal chordal completion of $\operatorname{int}(\mathcal{Q})$. Consider two cells A_{1}, A_{2} of $\pi \in \mathcal{Q}$. Since $A_{1} A_{2}$ is an edge of forb (\mathcal{Q}), and G^{\prime} is a minimal chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$,forb $\left.(\mathcal{Q})\right)$, we have $A_{1} A_{2} \notin E\left(G^{\prime}\right)$. Thus, $\left(A_{1}, \pi\right)\left(A_{2}, \pi\right) \notin E\left(H^{\prime}\right)$ by $(\star \star)$. This shows that H^{\prime} is a minimal restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

That concludes the proof.

6. Minimal Chordal Sandwiches and Boolean Satisfiability

In this section, we prove Theorem 9. We consider an instance I of ONE-IN-THREE-3SAT, and carefully analyze chordal sandwiches of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. For a truth assignment σ for the instance I, we construct graphs G_{σ}, G_{σ}^{\prime}, and G_{σ}^{*}, starting from $\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$. We show that if σ is a satisfying assignment for I, then G_{σ}^{*} is a minimal chordal sandwich of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. Conversely, for every minimal chordal sandwich G^{\prime} of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, we describe a satisfying assignment σ for I such that $G^{\prime}=G_{\sigma}^{*}$. From this the theorem will follow.

For later, we need the following simple properties. The proofs are straightforward and left to the reader.
Lemma 14. Let G be a chordal graph, and let a, b be non-adjacent vertices of G. Then every two common neighbours of a and b are adjacent.

Lemma 15. Let G be a chordal graph, and $C=\{a, b, c, d, e\}$ be a 5 -cycle in G with edges $a b, b c, c d, d e, a e$.
(a) If $b d$, ce $\notin E(G)$, then $a c, a d \in E(G)$, and
(b) if $b d$, be $\notin E(G)$, then $a c \in E(G)$.

Lemma 16. Let G be a chordal graph, and $C=\{a, b, c, d, e, f\}$ be a 6 -cycle in G with edges $a b, b c, c d, d e, e f, a f$.
(a) If $b d, c e, d f \notin E(G)$, then $a c, a d, a e \in E(G)$,
(b) if $b d, c e, c f \notin E(G)$, then $a c, a d \in E(G)$, and
(c) if be, bf,ce,cf $\notin E(G)$, then ad $\in E(G)$.

To assist the reader in following the subsequent arguments, we now list here the cliques of int ${ }^{*}\left(\mathcal{Q}_{I}\right)$ according to the elements from which they arise:

$$
\begin{aligned}
& \delta: B, H_{v_{1}}, \ldots, H_{v_{n}}, H_{\overline{v_{1}}}, \ldots, H_{\overline{v_{n}}} \\
& \mu: B, F^{1}, \ldots, F^{m}
\end{aligned}
$$

For each $i \in\{1 \ldots n\}$ where $j_{1}, j_{2}, \ldots, j_{k}$ are the elements of Δ_{i} :

$$
\alpha_{v_{i}}: H_{v_{i}}, A_{i}, S_{\bar{v}_{i}}^{j_{1}}, S_{v_{i}}^{j_{2}}, \ldots, S_{v_{i}}^{j_{t}}, \quad \alpha_{\overline{v_{i}}}: H_{\overline{v_{i}}}, A_{i}, S_{\overline{v_{i}}}^{j_{1}}, S_{\overline{v_{i}}}^{j_{2}}, \ldots, S_{\overline{v_{i}}}^{j_{t}},
$$

For each $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$:

$$
\lambda^{j}: K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, F^{j}
$$

$$
\begin{array}{lll}
\gamma_{1}^{j}: K_{\bar{X}}^{j}, L_{Z}^{j}, D_{1}^{j} & \gamma_{2}^{j}: K_{\bar{Y}}^{j}, L_{X}^{j}, D_{2}^{j} & \gamma_{3}^{j}: K_{\bar{Z}}^{j}, L_{Y}^{j}, D_{3}^{j} \\
\beta_{X}^{j}: S_{X}^{j}, K_{\bar{X}}^{j} & \beta_{Y}^{j}: S_{Y}^{j}, K_{\bar{Y}}^{j} & \beta_{Z}^{j}: S_{Z}^{j}, K_{\bar{Z}}^{j} \\
\beta_{\bar{X}}^{j}: S_{\bar{X}}^{j}, K_{X}^{j}, L_{X}^{j} & \beta_{\bar{Y}}^{j}: S_{\bar{Y}}^{j}, K_{Y}^{j}, L_{Y}^{j} & \beta_{\bar{Z}}^{j}: S_{\bar{Z}}^{j}, K_{Z}^{j}, L_{Z}^{j}
\end{array}
$$

We start with a useful lemma describing an important property of int* $\left(\mathcal{Q}_{I}\right)$.
Lemma 17. Let G^{\prime} be a chordal sandwich of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$,forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, and let $i \in\{1 \ldots n\}$. Then
(a) there exists $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ such that for all $j \in \Delta_{i}$, the vertex K_{W}^{j} is adjacent to B, and
(b) for each $j \in \Delta_{i}$, and each $W \in\left\{v_{i}, \overline{v_{i}}\right\}$, if K_{W}^{j} is adjacent to B, then the vertices $S_{W}^{j}, K_{W}^{j}, L_{W}^{j}$ (if exists) are adjacent to $B, A_{i}, H_{W}, H_{\bar{W}}, F^{j}$. (See Fig. 7a)

Proof. Let $i \in\{1 \ldots n\}$. First, we observe the following.
(\star) for each $j \in \Delta_{i}$, each $W \in\left\{v_{i}, \overline{v_{i}}\right\}$, at least one of $S_{\bar{W}}^{j}, K_{W}^{j}$ is adjacent to B.
We may assume that $S_{\bar{W}}^{j}$ is not adjacent to B, otherwise we are done. Observe that $S_{\bar{W}}^{j}$ is adjacent to K_{W}^{j}, since $\beta_{\bar{W}}^{j} \in K_{W}^{j} \cap S_{\bar{W}}^{j}$. Moreover, there exists $p \in\{1,2,3\}$ such that $K_{W}^{j} \cap D_{p}^{j}$ contains λ^{j} or γ_{p}^{j}, implying that K_{W}^{j} is adjacent to D_{p}^{j}. Also, F^{j} is adjacent to D_{p}^{j} and B, since $\lambda^{j} \in D_{p}^{j} \cap F^{j}$ and $\mu \in B \cap F^{j}$, respectively. Further, $H_{\bar{W}}$ is adjacent to $S_{\bar{W}}^{j}$ and B, since $\alpha_{\bar{W}} \in H_{\bar{W}} \cap S_{\bar{W}}^{j}$ and $\delta \in H_{\bar{W}} \cap B$. Finally, $H_{\bar{W}}$ is not adjacent to F^{j}, and B is not adjacent to D_{p}^{j}, since $H_{\bar{W}} \mid F^{j}$ and $D_{p}^{j} \mid B$ are in \mathcal{Q}_{I}. So, by Lemma 16 applied to the cycle $\left\{K_{W}^{j}, S_{\bar{W}}^{j}, H_{\bar{W}}, B, F^{j}\right.$, $\left.D_{p}^{j}\right\}$, we conclude that K_{W}^{j} is adjacent to B. This proves (\star).

Now, to prove (a), suppose for contradiction that there are $j, j^{\prime} \in \Delta_{i}$ such that both $K_{\overline{v_{i}}}^{j}$ and $K_{v_{i}}^{j^{\prime}}$ are not adjacent to B. Then by (\star), both $S_{v_{i}}^{j}$ and $S_{\overline{v_{i}}}^{j^{\prime}}$ are adjacent to B. Note also that A_{i} is adjacent to both $S_{v_{i}}^{j}, S_{\overline{v_{i}}}^{j^{\prime}}$, since $\alpha_{v_{i}} \in A_{i} \cap S_{v_{i}}^{j}$ and $\alpha_{\overline{v_{i}}} \in A_{i} \cap S_{\overline{v_{i}}}^{j^{\prime}}$. Further, note that $A_{i} B$ and $S_{v_{i}}^{j} S_{\overline{v_{i}}}^{j^{\prime}}$ are not edges of G^{\prime}, since $A_{i} \mid B$ and $S_{v_{i}}^{j} \mid S_{\overline{v_{i}}}^{j^{\prime}}$ are in \mathcal{Q}_{I}. But then G^{\prime} contains an induced 4-cycle on $\left\{S_{v_{i}}^{j}, A_{i}, S_{\overline{v_{i}}}^{j^{\prime}}, B\right\}$, which is impossible, since G^{\prime} is chordal. This proves (a).

For (b), suppose that K_{W}^{j} is adjacent to B for $j \in \Delta_{i}$ and $W \in\left\{v_{i}, \overline{v_{i}}\right\}$. First observe that K_{W}^{j} is adjacent to $S_{\bar{W}}^{j}$, and the vertex $K_{\bar{W}}^{j}$ is adjacent to S_{W}^{j}, since $\beta_{\bar{W}}^{j} \in K_{W}^{j} \cap S_{\bar{W}}^{j}$ and $\beta_{W}^{j} \in K_{\bar{W}}^{j} \cap S_{W}^{j}$. Moreover, there exists $p \in\{1,2,3\}$ such that $K_{W}^{j} \cap D_{p}^{j}$ and $K_{\bar{W}}^{j} \cap D_{p}^{j}$ contain γ_{p}^{j} and λ^{j}, respectively, or λ^{j} and γ_{p}^{j}, respectively. This implies that K_{W}^{j} and $K_{\bar{W}}^{j}$ are adjacent to D_{p}^{j}. Also, A_{i} is adjacent to S_{W}^{j} and $S_{\bar{W}}^{j}$, since $\alpha_{W} \in A_{i} \cap S_{W}^{j}$ and $\alpha_{\bar{W}} \in A_{i} \cap S_{\bar{W}}^{j}$. Further,

Figure 7: Chordal completion edges for a) $W=1, b) X=1, Y=0, Z=0$.
note that $D_{p}^{j} B, A_{i} B, K_{W}^{j} K_{\bar{W}}^{j}$, and $S_{W}^{j} S_{\bar{W}}^{j}$ are not edges of G^{\prime}, since $D_{p}^{j}\left|B, A_{i}\right| B, K_{W}^{j} \mid K_{\bar{W}}^{j}$, and $S_{W}^{j} \mid S_{\bar{W}}^{j}$ are in \mathcal{Q}_{I}. This implies that $K_{\bar{W}}^{j}$ is not adjacent to B, since otherwise G^{\prime} contains an induced 4-cycle on $\left\{K_{W}^{j}, B, K_{\bar{W}}^{j}, D_{p}^{j}\right\}$. So, by (\star), we have that S_{W}^{j} is adjacent to B. Thus, Lemma 15 applied to $\left\{K_{W}^{j}, S_{\bar{W}}^{j}, A_{i}, S_{W}^{j}, B\right\}$ yields that K_{W}^{j} is adjacent to A_{i} and S_{W}^{j}. So, by Lemma 14 applied to $\left\{S_{W}^{j}, K_{W}^{j}, D_{p}^{j}, K_{\bar{W}}^{j}\right\}$, we have that S_{W}^{j} is adjacent to D_{p}^{j}.

Now, observe that $H_{W}, H_{\bar{W}}$ are adjacent to both A_{i} and B, since $\alpha_{W} \in H_{W} \cap A_{i}, \alpha_{\bar{W}} \in H_{\bar{W}} \cap A_{i}$, and $\delta \in$ $B \cap H_{W} \cap H_{\bar{W}}$. Thus, by Lemma 14 applied to $\left\{u, A_{i}, u^{\prime}, B\right\}$ where $u \in\left\{S_{W}^{j}, K_{W}^{j}\right\}$ and $u^{\prime} \in\left\{H_{W}, H_{\bar{W}}\right\}$, we conclude that S_{W}^{j} and K_{W}^{j} are adjacent to both H_{W} and $H_{\bar{W}}$. Similarly, we observe that F^{j} is adjacent to B and D_{p}^{j}, since $\mu \in F^{j} \cap B$ and $\lambda^{j} \in D_{p}^{j} \cap F^{j}$. Thus, Lemma 14 applied to $\left\{u, B, F^{j}, D_{p}^{j}\right\}$ yields that S_{W}^{j} and K_{W}^{j} are also adjacent to F^{j}.

Lastly, suppose that L_{W}^{j} exists. Then there is $q \in\{1,2,3\}$ such that $\gamma_{q}^{j} \in D_{q}^{j} \cap L_{W}^{j}$, implying that L_{W}^{j} is adjacent to D_{q}^{j}. Moreover, F^{j} is adjacent to D_{q}^{j} and B, since $\lambda^{j} \in D_{q}^{j} \cap F^{j}$ and $\mu \in F^{j} \cap B$. Also, $H_{\bar{W}}$ is adjacent to $B, S_{\bar{W}}^{j}$, and the vertex $S_{\bar{W}}^{j}$ is adjacent to L_{W}^{j}, since $\delta \in B \cap H_{\bar{W}}, \alpha_{\bar{W}} \in H_{\bar{W}} \cap S_{\bar{W}}^{j}$, and $\beta_{\bar{W}}^{j} \in S_{\bar{W}}^{j} \cap L_{W}^{j}$. Further, $H_{\bar{W}} F^{j}$ and $D_{q}^{j} B$ are not edges of G^{\prime}, since $H_{\bar{W}} \mid F^{j}$ and $D_{q}^{j} \mid B$ are in \mathcal{Q}_{I}. Also, $S_{\bar{W}}^{j} B$ is not an edge of G^{\prime}, since otherwise G^{\prime} contains an induced 4-cycle on $\left\{S_{W}^{j}, B, S_{\bar{W}}^{j}, A_{i}\right\}$. Thus, by Lemma 15 applied to $\left\{L_{W}^{j}, S_{\bar{W}}^{j}, H_{\bar{W}}, B, F^{j}, D_{q}^{j}\right\}$, we conclude that L_{W}^{j} is adjacent to $H_{\bar{W}}, B$, and F^{j}. Moreover, by Lemma 15 applied to $\left\{L_{W}^{j}, B, S_{W}^{j}, A_{i}, S_{\bar{W}}^{j}\right\}$, we conclude that L_{W}^{j} is adjacent to A_{i}. Finally, recall that H_{W} is adjacent to both A_{i} and B. Thus, Lemma 14 applied to $\left\{L_{W}^{j}, A_{i}, H_{W}, B\right\}$ yields that L_{W}^{j} is also adjacent to H_{W}.

That concludes the proof.
Now, let σ be a truth assignment for the instance I. Recall that, for simplicity, we write $X=0$ and $X=1$ in place of $\sigma(X)=0$ and $\sigma(X)=1$, respectively. To facilitate the arguments in the subsequent proofs, we introduce a naming convention for the vertices in $\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$ similar to that of [4], as we already indicated in $\S 3$.

The vertices S_{W}^{j} for all meaningful choices of j and W are called shoulders. For a fixed j, we call them shoulders of the clause \mathcal{C}_{j}, and for a fixed W, we call them shoulders of the literal W. A shoulder is a a true shoulder if $W=1$. Otherwise, it is a false shoulder. The vertices K_{W}^{j}, L_{W}^{j} for all meaningful choices of j and W are called knees. For a fixed j, we call them knees of the clause \mathcal{C}_{j}, and for a fixed W, we call them knees of the literal W. A knee is a true knee if $W=1$. Otherwise, it is a false knee. The vertices $A_{i}, D_{p}^{j}, H_{W}, F^{j}$ for all meaningful choices of indices are called A-vertices, D-vertices, H-vertices, and F-vertices, respectively.

Based on σ, we define the following three graphs: $G_{\sigma}, G_{\sigma}^{\prime}$, and G_{σ}^{*}.

6.1. Definition of G_{σ}

The graph G_{σ} is constructed from int* $\left(\mathcal{Q}_{I}\right)$ by performing the following steps:
(i) make B adjacent to all true knees and true shoulders

6.2. Definition of G_{σ}^{\prime}

The graph G_{σ}^{\prime} is constructed from G_{σ} by performing the following steps:
(ii) make $\{$ true knees, true shoulders $\}$ pairwise adjacent,
(iii) for all $i \in\{1 \ldots n\}$, make A_{i} adjacent to all true knees of the literals v_{i} and $\overline{v_{i}}$,
(iv) for all $1 \leq i^{\prime} \leq i \leq n$, make $H_{v_{i}}, H_{\overline{v_{i}}}$ adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}$ and $\overline{v_{i^{\prime}}}$,
(v) for all $1 \leq j \leq j^{\prime} \leq m$, make F^{j} adjacent to all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$,
(vi) for all $i \in\{1 \ldots n\}$ and all $j, j^{\prime} \in \Delta_{i}$ such that $j \leq j^{\prime}$:
a) if $v_{i}=1$, make $S_{\overline{v_{i}}}^{j^{\prime}}$ adjacent to $K_{v_{i}}^{j}, L_{v_{i}}^{j}$ (if exists),
b) if $v_{i}=0$, make $S_{v_{i}}^{j^{\prime}}$ adjacent to $K_{\overline{v_{i}}}^{j}, L_{\bar{v}_{i}}^{j}$ (if exists).

6.3. Definition of G_{σ}^{*}

The graph G_{σ}^{*} is constructed from G_{σ}^{\prime} by adding the following edges:
(vii) for all $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$:
a) if $X=1$, then add edges $F^{j} L_{Z}^{j}, K_{X}^{j} L_{Z}^{j}, K_{Y}^{j} K_{\bar{Z}}^{j}, D_{2}^{j} K_{\bar{Z}}^{j}, D_{2}^{j} S_{\bar{Y}}^{j}, D_{3}^{j} S_{\bar{Y}}^{j}$ and also add all possible edges between the vertices $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{Y}^{j}$,
b) if $Y=1$, then add edges $F^{j} L_{X}^{j}, K_{Y}^{j} L_{X}^{j}, K_{Z}^{j} K_{\bar{X}}^{j}, D_{3}^{j} K_{\bar{X}}^{j}, D_{3}^{j} S_{\bar{Z}}^{j}, D_{1}^{j} S_{\bar{Z}}^{j}$ and also add all possible edges between the vertices $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{Y}^{j}, S_{\bar{X}}^{j}, L_{X}^{j}, K_{Z}^{j}$,
c) if $Z=1$, then add edges $F^{j} L_{Y}^{j}, K_{Z}^{j} L_{Y}^{j}, K_{X}^{j} K_{\bar{Y}}^{j}, D_{1}^{j} K_{\bar{Y}}^{j}, D_{1}^{j} S_{\bar{X}}^{j}, D_{2}^{j} S_{\bar{X}}^{j}$ and also add all possible edges between the vertices $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{Z}^{j}, S_{\bar{Y}}^{j}, L_{Y}^{j}, K_{X}^{j}$.

Lemma 18. G_{σ}^{\prime} is a subgraph of every chordal sandwich of $\left(G_{\sigma}, \operatorname{forb}\left(\mathcal{Q}_{I}\right)\right)$.
Proof. Let G^{\prime} be a chordal sandwich of $\left(G_{\sigma}\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. We prove the claim by showing that G^{\prime} contains all edges defined in steps (ii)-(vi). We consider these steps one by one.

- for (ii), consider true shoulders $S_{W}^{j}, S_{W^{\prime}}^{j^{\prime}}$ and true knees $K_{W}^{j}, K_{W^{\prime}}^{j^{\prime}}$ and $L_{W}^{j}, L_{W^{\prime}}^{j^{\prime}}$ (if they exist). We allow that W is possibly equal to W^{\prime} and possibly $j=j^{\prime}$. First, we observe that, by (i), the true knees K_{W}^{j} and $K_{W^{\prime}}^{j^{\prime}}$ are adjacent to B. Therefore, by Lemma 17, the vertices $S_{W}^{j}, K_{W}^{j}, L_{W}^{j}$ are adjacent to H_{W} and F^{j}, whereas $S_{W^{\prime}}^{j^{\prime}}, K_{W^{\prime}}^{j^{\prime}}, L_{W^{\prime}}^{j^{\prime}}$ are adjacent to $H_{W^{\prime}}$ and $F^{j^{\prime}}$. Also, H_{W} is adjacent to $H_{W^{\prime}}$, and F^{j} is adjacent to $F^{j^{\prime}}$, since $\delta \in H_{W} \cap H_{W^{\prime}}$ and $\mu \in F^{j} \cap F^{j^{\prime}}$, respectively. Further, $H_{W} F^{j}, H_{W} F^{j^{\prime}}, H_{W^{\prime}} F^{j}, H_{W^{\prime}} F^{j^{\prime}}$ are not edges of G^{\prime}, since $H_{W}\left|F^{j}, H_{W}\right| F^{j^{\prime}}, H_{W^{\prime}}\left|F^{j}, H_{W^{\prime}}\right| F^{j^{\prime}}$ are in \mathcal{Q}_{I}. Thus, if $j=j^{\prime}$ and W is equal to W^{\prime}, then, by Lemma 14 applied to cycles $\left\{u, H_{W}, u^{\prime}, F^{j}\right\}$ where $u, u^{\prime} \in\left\{S_{W}^{j}, S_{W^{\prime}}^{j^{\prime}}, K_{W}^{j}, K_{W^{\prime}}^{j^{\prime}}, L_{W}^{j}, L_{W^{\prime}}^{j^{\prime}}\right\}$, we conclude that $\left\{S_{W}^{j}, S_{W^{\prime}}^{j^{\prime}}\right.$, $\left.K_{W}^{j}, K_{W^{\prime}}^{j^{\prime}}, L_{W}^{j}, L_{W^{\prime}}^{j^{\prime}}\right\}$ are pairwise adjacent in G^{\prime}. If $j \neq j^{\prime}$ and W is not equal to W^{\prime}, we reach the same conclusion by Lemma 16 applied to the cycles $\left\{u, H_{W}, H_{W^{\prime}}, u^{\prime}, F^{j^{\prime}}, F^{j}\right\}$. Otherwise, we obtain the conclusion by applying Lemma 15 either to cycles $\left\{u, H_{W}, u^{\prime}, F^{j^{\prime}}, F^{j}\right\}$ or cycles $\left\{u, F^{j}, u^{\prime}, H_{W^{\prime}}, H_{W}\right\}$. This proves (ii).
- for (iii), consider the vertex A_{i} for $i \in\{1 \ldots n\}$. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Then, for each $j \in \Delta_{i}$, the vertex K_{W}^{j} is adjacent to B by (i). Thus, by Lemma 17, both K_{W}^{j} and L_{W}^{j} (if exists) are adjacent to A_{i}. This proves (iii).
- for (iv), we consider $1 \leq i^{\prime} \leq i \leq n$. Let $W^{\prime} \in\left\{v_{i^{\prime}}, \overline{v_{i^{\prime}}}\right\}$ be such that $W^{\prime}=1$. Then, for all $j \in \Delta_{i^{\prime}}$, the vertex $K_{W^{\prime}}^{j}$ is adjacent to B by (i), and hence, the vertices $S_{W^{\prime}}^{j}, K_{W^{\prime}}^{j}$ and $L_{W^{\prime}}^{j}$ (if exists) are adjacent by

Lemma 17 to $H_{v_{i^{\prime}}}, H_{\overline{\bar{v}_{i^{\prime}}}}$. In other words, the vertices $H_{v_{i^{\prime}}}, H_{\overline{\bar{v}_{i^{\prime}}}}$ are adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$. Thus, we may assume that $i^{\prime}<i$. Now, the vertex $H_{v_{i} i^{\prime}}$ is adjacent to $H_{\bar{v}_{i}}, H_{\overline{\bar{v}_{i}}}$, since $\delta \in H_{v_{i}} \cap H_{\overline{v_{i}}} \cap H_{v_{i^{\prime}}}$. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Then K_{W}^{j} is adjacent to B by (i), and hence, S_{W}^{j} is adjacent to $H_{v_{i}}, H_{\overline{v_{i}}}$ by Lemma 17. Also, S_{W}^{j} is adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$, by (ii), and the same is true for $H_{v_{i^{\prime}}}$ as proved earlier in this paragraph. Further, S_{W}^{j} is not adjacent to $H_{v_{i^{\prime}}}$, since $H_{v_{i^{\prime}}} \mid S_{W}^{j}$ is in \mathcal{Q}_{I}. Thus, by Lemma 14, both $H_{v_{i}}$ and $H_{\overline{v_{i}}}$ are adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$. This proves (iv).

- for (v), consider $1 \leq j \leq j^{\prime} \leq m$. Again, we observe that if $K_{W^{\prime}}^{j^{\prime}}$ is a true knee, then $K_{W^{\prime}}^{j^{\prime}}$ is adjacent to B by (i), and hence, $S_{W^{\prime}}^{j^{\prime}}, K_{W^{\prime}}^{j^{\prime}}$, and $L_{W^{\prime}}^{j^{\prime}}$ (if exists) are adjacent to $F^{j^{\prime}}$ by Lemma 17. In other words, the vertex $F^{j^{\prime}}$ is adjacent to all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$. So, we may assume that $j<j^{\prime}$. Now, let K_{W}^{j} be any true knee of the clause $\mathcal{C}{ }_{j}$. Then K_{W}^{j} is adjacent to B, and hence, to F^{j} by (i) and Lemma 17 , respectively. Also, K_{W}^{j} is adjacent to all true shoulders and true knees of $\mathcal{C}_{j^{\prime}}$ by (ii). Further, F^{j} is adjacent to $F^{j^{\prime}}$, since $\mu \in F^{j} \cap F^{j^{\prime}}$, and the vertex K_{W}^{j} is not adjacent to $F^{j^{\prime}}$, since $K_{W}^{j} \mid F^{j^{\prime}}$ is in \mathcal{Q}_{I}. Thus, by Lemma 14, the vertex F^{j} is adjacent to all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$. This proves (v).
- for (vi), let $i \in\{1 \ldots n\}$ and consider $j, j^{\prime} \in \Delta_{i}$ with $j \leq j^{\prime}$. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Observe that K_{W}^{j} is adjacent to $S_{\bar{W}}^{j}$, since $\beta_{\bar{W}}^{j} \in S_{\bar{W}}^{j} \cap K_{W}^{j}$. If L_{W}^{j} exists, also L_{W}^{j} is adjacent to $S_{\bar{W}}^{j}$, since then $\beta_{\bar{W}}^{j} \in S_{\bar{W}}^{j} \cap L_{W}^{j}$. Thus, we may assume that $j<j^{\prime}$. Now, $S_{\bar{W}}^{j^{\prime}}$ is adjacent to $S_{\bar{W}}^{j}$ and $K_{W}^{j^{\prime}}$, since $\alpha_{\bar{W}} \in S_{\bar{W}}^{j} \cap S_{\bar{W}}^{j^{\prime}}$, and $\beta_{\bar{W}}^{j^{\prime}} \in S_{\bar{W}}^{j^{\prime}} \cap K_{W}^{j^{\prime}}$. Also, K_{W}^{j} and L_{W}^{j} (if exists) are adjacent to $K_{W}^{j^{\prime}}$ by (ii). Further, $S_{\bar{W}}^{j} K_{W}^{j^{\prime}}$ is not an edge of G^{\prime}, since $S_{\bar{W}}^{j} \mid K_{W}^{j^{\prime}}$ is in \mathcal{Q}_{I}. Thus, by Lemma 14 , the vertices K_{W}^{j}, L_{W}^{j} (if exists) are adjacent to $S_{\bar{W}}^{j^{\prime}}$. This proves (vi).

The proof is now complete.
Lemma 19. If σ is a satisfying assignment for I, then G_{σ}^{*} is a subgraph of every chordal sandwich of $\left(G_{\sigma}, f o r b\left(\mathcal{Q}_{I}\right)\right)$.
Proof. Let G^{\prime} be a chordal sandwich of $\left(G_{\sigma}\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, and assume that σ is a satisfying assignment for I. That is, for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$.

By Lemma 18, the graph G^{\prime} contain all edges defined in (ii)-(vi). Thus it remains to prove that it also contains the edges defined in (vii).

Consider $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$. By the rotational symmetry between X, Y, and Z, we may assume that $X=1, Y=0$, and $Z=0$. Observe that K_{Z}^{j} is adjacent to K_{X}^{j} and L_{Z}^{j}, since $\lambda^{j} \in K_{Z}^{j} \cap K_{X}^{j}$ and $\beta_{\bar{Z}}^{j} \in K_{Z}^{j} \cap L_{Z}^{j}$. Further, $K_{\bar{X}}^{j}$ is adjacent to L_{Z}^{j} and S_{X}^{j}, since $\gamma_{1}^{j} \in L_{Z}^{j} \cap K_{X}^{j}$ and $\beta_{X}^{j} \in K_{\bar{X}}^{j} \cap S_{X}^{j}$. By (ii), also K_{X}^{j} is adjacent to S_{X}^{j}. Moreover, $S_{X}^{j} K_{Z}^{j}$ and $K_{X}^{j} K_{\bar{X}}^{j}$ are not edges of G^{\prime}, since $S_{X}^{j}\left|K_{Z}^{j}, K_{X}^{j}\right| K_{\bar{X}}^{j}$ are in \mathcal{Q}_{I}. Thus, by Lemma 15 applied to the cycle $\left\{L_{Z}^{j}, K_{Z}^{j}, K_{X}^{j}, S_{X}^{j}, K_{\bar{X}}^{j}\right\}$, we conclude that L_{Z}^{j} is adjacent to S_{X}^{j} and K_{X}^{j}. Now, observe that L_{Y}^{j} is adjacent to K_{Y}^{j} and $K_{\bar{Z}}^{j}$, since $\beta_{\bar{Y}}^{j} \in L_{Y}^{j} \cap K_{Y}^{j}$ and $\gamma_{3}^{j} \in L_{Y}^{j} \cap K_{\bar{Z}}^{j}$. Recall that K_{Z}^{j} is adjacent to L_{Z}^{j} and also to K_{Y}^{j}, since $\lambda^{j} \in K_{Z}^{j} \cap K_{Y}^{j}$. Moreover, S_{X}^{j} is adjacent to $K_{\bar{Z}}^{j}$ and L_{Z}^{j} by (ii) and the above. Further, $K_{\bar{Z}}^{j} L_{Z}^{j}, S_{X}^{j} L_{Y}^{j}, S_{X}^{j} K_{Z}^{j}$ are not edges of G^{\prime}, since $K_{\bar{Z}}^{j}\left|L_{Z}^{j}, S_{X}^{j}\right| L_{Y}^{j}, S_{X}^{j} \mid K_{Z}^{j}$ are in \mathcal{Q}_{I}. Thus, by Lemma 16 applied to the cycle $\left\{K_{Y}^{j}, L_{Y}^{j}, K_{\bar{Z}}^{j}, S_{X}^{j}\right.$, $\left.L_{Z}^{j}, K_{Z}^{j}\right\}$, we conclude that K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}, S_{X}^{j}$, and L_{Z}^{j}. Next, observe that $S_{\bar{Z}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}$ and K_{Z}^{j} by (ii) and since $\beta_{\bar{Z}}^{j} \in S_{\bar{Z}}^{j} \cap K_{Z}^{j}$. Recall that K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}$ and K_{Z}^{j}. Further, $K_{Z}^{j} K_{\bar{Z}}^{j}$ is not an edge of G^{\prime}, since $K_{Z}^{j} \mid K_{\bar{Z}}^{j}$ is in \mathcal{Q}_{I}. Thus, by Lemma 14, the vertex $S_{\bar{Z}}^{j}$ is adjacent to K_{Y}^{j}. Now, recall that L_{Z}^{j} is adjacent to S_{X}^{j} and K_{Z}^{j}, and $S_{X}^{j} K_{Z}^{j}$ is not an edge of G^{\prime}. Also, F^{j} is adjacent to S_{X}^{j} and K_{Z}^{j} by (v) and since $\lambda^{j} \in F^{j} \cap K_{Z}^{j}$. Thus, by Lemma 14,
the vertex L_{Z}^{j} is adjacent to F^{j}. Now, observe that D_{1}^{j} is adjacent to $K_{X}^{j}, K_{\bar{X}}^{j}$, since $\lambda^{j} \in D_{1}^{j} \cap K_{X}^{j}$ and $\gamma_{1}^{j} \in D_{1}^{j} \cap K_{\bar{X}}^{j}$. Recall that also S_{X} is adjacent to both K_{X}^{j} and $K_{\bar{X}}^{j}$, and that $K_{X}^{j} K_{\bar{X}}^{j}$ is not an edge of G^{\prime}. Thus, by Lemma 14, we have that D_{1}^{j} is adjacent to S_{X}^{j}. Next, observe that D_{2}^{j} is adjacent to $K_{Y}^{j}, K_{\bar{Y}}^{j}$, since $\lambda^{j} \in D_{2}^{j} \cap K_{Y}^{j}$ and $\gamma_{2}^{j} \in D_{2}^{j} \cap K_{\bar{Y}}^{j}$. Recall that K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}$ and S_{X}^{j}. Also, $K_{\bar{Y}}^{j}$ is adjacent to $S_{X}^{j}, S_{\bar{Y}}^{j}, K_{\bar{Z}}^{j}$ by (ii), and K_{Y}^{j} is adjacent to $S_{\bar{Y}}^{j}$, since $\beta_{\bar{Y}}^{j} \in K_{Y}^{j} \cap S_{\bar{Y}}^{j}$. Further, $K_{Y}^{j} K_{\bar{Y}}^{j}$ is not an edge of G^{\prime}, since $K_{Y}^{j} \mid K_{\bar{Y}}^{j}$ is in \mathcal{Q}_{I}. Thus, by Lemma 14, the vertices S_{X}^{j}, $S_{\bar{Y}}^{j}$, $K_{\bar{Z}}^{j}$ are adjacent to D_{2}^{j}. Now, observe that D_{1}^{j}, D_{2}^{j} are adjacent to K_{Z}^{j}, since $\lambda^{j} \in D_{1}^{j} \cap D_{2}^{j} \cap K_{Z}^{j}$. Also, recall that S_{X}^{j} is adjacent to $D_{1}^{j}, D_{2}^{j}, L_{Z}^{j}$, the vertex K_{Z}^{j} is adjacent to $S_{\bar{Z}}^{j}, L_{Z}^{j}$, and $S_{X}^{j} K_{Z}^{j}$ is not an edge of G^{\prime}. Further, S_{X}^{j} is adjacent to $S_{\bar{Z}}^{j}$ by (ii). Thus, by Lemma 14 , both D_{1}^{j} and D_{2}^{j} are adjacent to $S_{\bar{Z}}^{j}$ and L_{Z}^{j}. Next, observe that D_{3}^{j} is adjacent to $K_{Z}^{j}, K_{\bar{Z}}^{j}$, since $\lambda^{j} \in D_{3}^{j} \cap K_{Z}^{j}$ and $\gamma_{3}^{j} \in D_{3}^{j} \cap K_{\bar{Z}}^{j}$. Recall that also $S_{\bar{Z}}^{j}$ is adjacent to $K_{Z}^{j}, K_{\bar{Z}}^{j}$, and that $K_{Z}^{j} K_{\bar{Z}}^{j}$ is not an edge of G^{\prime}. Thus, by Lemma 14 , the vertex D_{3}^{j} is adjacent to $S_{\bar{Z}}^{j}$. Further, recall that L_{Z}^{j} is adjacent to K_{Z}^{j}, S_{X}^{j}, the vertex $K_{\bar{Z}}^{j}$ is adjacent to S_{X}^{j}, and $S_{X}^{j} K_{Z}^{j}$ and $K_{\bar{Z}}^{j} L_{Z}^{j}$ are not edges of G^{\prime}. Thus, Lemma 15 applied to $\left\{D_{3}^{j}, K_{Z}^{j}, L_{Z}^{j}\right.$, $\left.S_{X}^{j}, K_{\bar{Z}}^{j}\right\}$ yields that D_{3}^{j} is adjacent to both L_{Z}^{j} and S_{X}^{j}. Moveover, $S_{\bar{Y}}^{j}$ is also adjacent to S_{X}^{j} by (ii), and L_{Y}^{j} is also adjacent to D_{3}^{j}, $S_{\bar{Y}}^{j}$, since $\gamma_{3}^{j} \in D_{3}^{j} \cap L_{Y}^{j}$ and $\beta_{\bar{Y}}^{j} \in S_{\bar{Y}}^{j} \cap L_{Y}^{j}$. Further, recall that $S_{X}^{j} L_{Y}^{j}$ is not an edge of G^{\prime}. Thus, by Lemma 14 applied to $\left\{D_{3}^{j}, L_{Y}^{j}, S_{\bar{Y}}^{j}, S_{X}^{j}\right\}$, the vertex D_{3}^{j} is adjacent to $S_{\bar{Y}}^{j}$.

To prove (vii), we observe that the above analysis yields that G^{\prime} contains edges $F^{j} L_{Z}^{j}, K_{X}^{j} L_{Z}^{j}, K_{Y}^{j} K_{\bar{Z}}^{j}, D_{2}^{j} K_{\bar{Z}}^{j}$, $D_{2}^{j} S_{\bar{Y}}^{j}$, and $D_{3}^{j} S_{\bar{Y}}^{j}$. It remains to show that $\left\{D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{Y}^{j}\right\}$ are pairwise adjacent. By the above paragraph, we have that $S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}$ are adjacent to $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$. Also, $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ and K_{Y}^{j} are pairwise adjacent, since $\lambda^{j} \in D_{1}^{j} \cap D_{2}^{j} \cap D_{3}^{j} \cap K_{Y}^{j}$. Further, L_{Z}^{j} is adjacent to S_{X}^{j}, and K_{Y}^{j} is adjacent to $S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}$, by the above paragraph. Finally, $S_{\bar{Z}}^{j}$ is adjacent to S_{X}^{j} and L_{Z}^{j} by (ii) and since $\beta_{\bar{Z}}^{j} \in S_{\bar{Z}}^{j} \cap L_{Z}^{j}$. This proves (vii).

The proof is now complete.
Lemma 20. If σ is a satisfying assignment for I, then G_{σ}^{*} is a chordal graph.
Proof. Assume that σ is a satisfying assignment for I, namely for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, we have either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$.

Consider the partition $V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}$ of $V\left(G_{\sigma}^{*}\right)$ defined as follows:
$V_{1}=\{$ false knees, D-vertices $\}$,
$V_{2}=\{$ false shoulders $\}$,
$V_{3}=\{A$-vertices $\}$,
$V_{4}=\{H$-vertices, F-vertices $\}$, and
$V_{5}=\{$ true knees, true shoulders, the vertex $B\}$.
Let π be an enumeration of $V\left(G_{\sigma}^{*}\right)$ constructed by listing the elements of $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$ in that order such that:

1. the elements of V_{1} are listed by considering each clause $\mathcal{C}_{j}=X \vee Y \vee Z$ and listing vertices (based on the truth assignment) as follows:
a) if $X=1$, then list $K_{\bar{X}}^{j}, K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}, D_{3}^{j}, D_{2}^{j}$ in that order,
b) if $Y=1$, then list $K_{\bar{Y}}^{j}, K_{X}^{j}, L_{Z}^{j}, L_{X}^{j}, D_{2}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{3}^{j}$ in that order,
c) if $Z=1$, then list $K_{\bar{Z}}^{j}, K_{Y}^{j}, L_{X}^{j}, L_{Y}^{j}, D_{3}^{j}, K_{X}^{j}, D_{2}^{j}, D_{1}^{j}$ in that order,
2. the elements of V_{2} are listed by listing the false shoulders of the clauses $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}$ in that order,
3. the elements of V_{3} are listed in any order,
4. the elements of V_{4} are listed as follows: first the vertices $H_{v_{1}}, H_{\overline{v_{1}}}, H_{v_{2}}, H_{\overline{v_{2}}}, \ldots H_{v_{n}}, H_{\overline{v_{n}}}$ in that order, and then the vertices $F^{m}, F^{m-1}, \ldots, F^{1}$ in that order,
5. the elements of V_{5} are listed in any order.

We show that π is a perfect elimination ordering of G_{σ}^{*} which will imply the claim.

- consider V_{1}. Let $j \in\{1 \ldots m\}$ and let $\mathcal{C}_{j}=X \vee Y \vee Z$. By the rotational symmetry of X, Y, Z, assume that $X=1$ and $Y=Z=0$. So, π lists the false knees and D-vertices of \mathcal{C}_{j} as $K_{\bar{X}}^{j}, K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}, D_{3}^{j}, D_{2}^{j}$.
- consider the vertex $K_{\bar{X}}^{j}$. Recall that $K_{\bar{X}}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}$. Observe that S_{X}^{j} is the only other vertex containing β_{X}^{j}, and L_{Z}^{j}, D_{1}^{j} are the only other vertices containing γ_{1}^{j}. Moreover, none of the rules (i)-(vii) adds edges incident to $K_{\bar{X}}^{j}$. Thus, $S_{X}^{j}, L_{Z}^{j}, D_{1}^{j}$ are the only neighbours of $K_{\bar{X}}^{j}$, and they are pairwise adjacent by (vii). This proves that $K_{\bar{X}}^{j}$ is indeed a simplicial vertex of G_{σ}^{*}.
- consider K_{Z}^{j}. Since $K_{Z}^{j}=\left\{\beta_{\bar{Z}^{\prime}}^{j}, \lambda^{j}\right\}$, we conclude that K_{Z}^{j} is adjacent to $S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{X}^{j}, K_{Y}^{j}, D_{j}^{1}, D_{j}^{2}, D_{j}^{3}$, and F^{j}. Moreover, K_{Z}^{j} has no other neighbours by observing the rules (i)-(vii). Now, by (vii), we conclude that $S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{Y}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ are pairwise adjacent. Also, the vertices $F^{j}, K_{X}^{j}, K_{Y}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ are pairwise adjacent, since they all contain λ^{j}. Further, F^{j} is adjacent to $S_{\bar{Z}}^{j}$ and L_{Z}^{j} by (v) and (vii), respectively, and K_{X}^{j} is adjacent to $S_{\bar{Z}}^{j}$ and L_{Z}^{j} by (ii) and (vii), respectively. This proves that K_{Z}^{j} is a simplicial vertex of G_{σ}^{*}.
- consider L_{Y}^{j}. The neighbours of L_{Y}^{j} are $S_{\bar{Y}}^{j}, K_{Y}^{j}, K_{\bar{Z}}^{j}$, and D_{3}^{j}. So, $S_{\bar{Y}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}, D_{3}^{j}$, and K_{Y}^{j} by (ii), (vii), and since $\beta_{\bar{Y}}^{j} \in S_{\bar{Y}}^{j} \cap K_{Y}^{j}$. Similarly, K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}$ and D_{3}^{j} by (vii) and since $\lambda^{j} \in K_{Y}^{j} \cap D_{3}^{j}$. Finally, $K_{\bar{Z}}^{j}$ is adjacent to D_{3}^{j}, since $\gamma_{3}^{j} \in K_{\bar{Z}}^{j} \cap D_{3}^{j}$. This proves that L_{Y}^{j} is a simplicial vertex of G_{σ}^{*}.
- consider L_{Z}^{j}. The neighbours of L_{Z}^{j} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}$, and $K_{\bar{X}}^{j}$. By (vii), the vertices $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, K_{Y}^{j}$ are pairwise adjacent. Also, $F^{j}, K_{X}^{j}, K_{Y}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ are pairwise adjacent, since they all contain λ_{j}. Further, K_{X}^{j} and F^{j} are adjacent to $S_{X}^{j}, S_{\bar{Z}}^{j}$ by (ii) and (v), respectively. This proves that L_{Z}^{j} is a simplicial vertex of $G_{\sigma}^{*}-\left\{K_{\bar{X}}^{j} K_{Z}^{j}\right\}$.
- consider D_{1}^{j}. The neighbours of D_{1}^{j} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}$, and $K_{\bar{X}}^{j}$. By (vii), the vertices $D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, K_{Y}^{j}$ are pairwise adjacent. Also, $F^{j}, K_{X}^{j}, K_{Y}^{j}, D_{2}^{j}, D_{3}^{j}$ are pairwise adjacent, since they all contain λ^{j}. Further, K_{X}^{j} and F^{j} are adjacent to $S_{X}^{j}, S_{\bar{Z}}^{j}$ by (ii) and (v), respectively. This proves that D_{1}^{j} is a simplicial vertex of $G_{\sigma}^{*}-\left\{K_{\bar{X}}^{j}, K_{Z}^{j}, L_{Z}^{j}\right\}$.
- consider K_{Y}^{j}. The neighbours of K_{Y}^{j} are $F^{j}, K_{X}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}, L_{Y}^{j}$, and L_{Z}^{j}. By (vii), the vertices $D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}$ are pairwise adjacent. Also, $F, K_{X}^{j}, D_{2}^{j}, D_{3}^{j}$ are pairwise adjacent, since they all contain λ^{j}. Further, by (ii), the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{X}^{j}$, and $K_{\bar{Z}}^{j}$ are pairwise adjacent, and are adjacent to F^{j} by (v). Moreover, by (vii), $S_{\bar{Y}}^{j}$ and $K_{\bar{Z}}^{j}$ are adjacent to D_{2}^{j}, and they are also adjacent to D_{3}^{j} by (vii) and since $\gamma_{3}^{j} \in K_{\bar{Z}}^{j} \cap D_{3}^{j}$, respectively. This proves that K_{Y}^{j} is a simplicial vertex of $G_{\sigma}^{*}-\left\{K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}\right\}$.
- consider D_{j}^{3}. The neighbours of D_{j}^{3} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}, L_{Z}^{j}$, and L_{Y}^{j}. By (ii), the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{X}^{j}, K_{\bar{Z}}^{j}$ are pairwise adjacent. Also, $F^{j}, K_{X}^{j}, D_{2}^{j}$ are pairwise adjacent, since they all contain λ^{j}. Further, F^{j} and D_{2}^{j} are adjacent to $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}$ by (v) and (vii), respectively. This proves that D_{j}^{3} is a simplicial vertex of $G_{\sigma}^{*}-\left\{K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}\right\}$.
- consider D_{j}^{2}. The neighbours of D_{j}^{2} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{j}^{1}, D_{j}^{3}, S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}, K_{\bar{Y}}^{j}, L_{X}^{j}$ and L_{Z}^{j}. By (ii), the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{X}^{j}, L_{X}^{j}, K_{\bar{Y}}^{j}, K_{\bar{Z}}^{j}$ are pairwise adjacent, and are adjacent to F by (v). This proves that D_{j}^{2} is a simplicial vertex of $G_{\sigma}^{*}-\left\{K_{Z}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}, D_{3}^{j}\right\}$.

That concludes the vertices in V_{1}.

- consider the set V_{2}. Let $j \in\{1 \ldots m\}$ and consider a false shoulder S_{W}^{j} for some $W=0$. Let i be such that $W=v_{i}$ or $W=\overline{v_{i}}$. The neighbours of S_{W}^{j} are the vertices H_{W}, A_{i}, and the elements of the following sets:
$\mathcal{S}^{-}=\left\{S_{W}^{j^{\prime}} \mid j^{\prime} \in \Delta_{i}\right.$ and $\left.j^{\prime}<j\right\} \quad \mathcal{S}^{+}=\left\{S_{W}^{j^{\prime \prime}} \mid j^{\prime \prime} \in \Delta_{i}\right.$ and $\left.j^{\prime \prime}>j\right\}$
$\mathcal{K}^{-}=\left\{K_{\bar{W}}^{j^{\prime}}, L_{\bar{W}}^{j^{\prime}}(\right.$ if exists $) \mid j^{\prime} \in \Delta_{i}$ and $\left.j^{\prime} \leq j\right\}$
By (ii), the elements of \mathcal{K}^{-}are pairwise adjacent. Similarly, the elements of $\left\{H_{W}, A_{i}\right\} \cup \mathcal{S}^{+}$are pairwise adjacent, since they all contain α_{W}. Further, each element of \mathcal{S}^{+}is adjacent to every element of \mathcal{K}^{-}by (vi), and each element of \mathcal{K}^{-}is adjacent to A_{i} and H_{W} by (iii) and (iv), respectively. This proves that S_{W}^{j} is a simplicial vertex of $G_{\sigma}^{*}-\mathcal{S}^{-}$, and note that the elements of \mathcal{S}^{-}are false shoulders of the clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{j-1}$.
- consider the set V_{3}. Let $i \in\{1 \ldots n\}$ and consider the vertex A_{i}. The neighbours of A_{i} are the vertices $H_{v_{i}}$, $H_{\overline{v_{i}}}$, all shoulders of the literals $v_{i}, \overline{v_{i}}$, and all true knees of $v_{i}, \overline{v_{i}}$. By (ii), the true knees and true shoulders of $v_{i}, \overline{v_{i}}$ are pairwise adjacent, and are adjacent to both $H_{v_{i}}$ and $H_{\overline{\bar{v}_{i}}}$ by (iv). Also, $H_{v_{i}}$ is adjacent to $H_{\overline{v_{i}}}$, since $\delta \in H_{\bar{v}_{i}} \cap H_{\overline{v_{i}}}$. Therefore A_{i} is a simplicial vertex of $G_{\sigma}^{*}-V_{2}$, since the false shoulders of $v_{i}, \overline{v_{i}}$ belong to V_{2}.
- consider the set V_{4}.
- let $i \in\{1 \ldots n\}$ and consider $H_{v_{i}}, H_{\overline{v_{i}}}$. The vertices $H_{v_{i}}, H_{\overline{v_{i}}}$ are adjacent to the vertices B, A_{i}, the elements of the following sets

$$
\mathcal{H}^{-}=\left\{H_{v_{i^{\prime}}}, H_{\overline{\bar{v}_{i^{\prime}}}} \mid i^{\prime}<i\right\} \quad \mathcal{H}^{+}=\left\{H_{v_{i^{\prime \prime}}}, H_{\overline{\overline{v_{i}}}} \mid i^{\prime \prime}>i\right\}
$$

and all true knees, true shoulders of $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$ for all $i^{\prime} \in\{1 \ldots i\}$. Further, $H_{v_{i}}$ is adjacent to $H_{\overline{v_{i}}}$, to all shoulders of v_{i} and to no other vertices, whereas $H_{\overline{v_{i}}}$ is adjacent $H_{\bar{v}_{i}}$, to all shoulders of $\overline{v_{i}}$ and to no other vertices. Now, by (ii), the true knees and true shoulders of $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$ for all $i^{\prime} \in\{1 \ldots i\}$, are pairwise adjacent, and are adjacent to B and each element of \mathcal{H}^{+}by (i) and (iv), respectively. Also, the elements of $\{B\} \cup \mathcal{H}^{+}$are pairwise adjacent, since they all contain δ. Finally, observe that A_{i} belongs to V_{3}, and the false shoulders of $v_{i}, \overline{v_{i}}$ belong to V_{2}. This proves that both $H_{v_{i}}$ and $H_{\overline{v_{i}}}$ are simplicial vertices of $G_{\sigma}^{*}-\left(V_{2} \cup V_{3} \cup \mathcal{H}^{-}\right)$as required.

- let $j \in\{1 \ldots m\}$ and consider F^{j}. Let $\mathcal{C}_{j}=X \vee Y \vee Z$, and by the rotational symmetry, assume that $X=1$ and $Y=Z=0$. Then the neighbours of F^{j} are $B, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, L_{Z}^{j}$, the elements of the following sets
$\mathcal{F}^{+}=\left\{F^{j^{\prime}} \mid j^{\prime}>j\right\} \quad \mathcal{F}^{-}=\left\{F j^{\prime \prime} \mid j^{\prime \prime}<j\right\}$
and all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$ for all $j^{\prime} \in\{j \ldots m\}$. By (ii), the true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$ for all $j^{\prime} \in\{j \ldots m\}$, are pairwise adjacent, and are adjacent to B and each elements of \mathcal{F}^{-}by (i) and (v), respectively. Also, the vertices of $\{B\} \cup \mathcal{F}^{-}$are pairwise adjacent, since they all contain μ. Thus F^{j} is a simplicial vertex of $G_{\sigma}^{*}-\left(V_{1} \cup \mathcal{F}^{+}\right)$, since the vertices $K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}$, D_{3}^{j}, L_{Z}^{j} belong to V_{1}.

That concludes all vertices in V_{4}.

- consider the set V_{5}. Observe that all vertices of V_{5} are pairwise adjacent by (i) and (ii).

That concludes the proof.
Lemma 21. For every chordal sandwich G^{\prime} of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, there exists σ such that G_{σ} is a subgraph of G^{\prime}, and such that σ is a satisfying assignment for I.

Proof. Let G^{\prime} be a chordal sandwich of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$,forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. By Lemma 17, for each $i \in\{1 \ldots n\}$, there exists $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ such that for all $j \in \Delta_{i}$, the vertices S_{W}^{j}, K_{W}^{j}, and L_{W}^{j} (if exists) are adjacent to B in G^{\prime}. Set $\sigma\left(v_{i}\right)=1$ if $W=v_{i}$, and otherwise set $\sigma\left(v_{i}\right)=0$. It follows that for such a mapping σ, the graph G^{\prime} contains all edges of G_{σ}. Thus, by Lemma 19, the graph G_{σ}^{\prime} is a subgraph of G^{\prime}, that is, G^{\prime} contains the edges defined in (ii)-(vi).

It remains to prove that σ is a satisfying assignment for I. Let $j \in\{1 \ldots m\}$ and the clause $\mathcal{C}_{j}=X \vee Y \vee Z$. If $X=Y=1$, then the vertex S_{Y}^{j} is a true shoulder, and K_{X}^{j} is a true knee. Thus, by (ii), we conclude that S_{Y}^{j} is adjacent K_{X}^{j}. However, this is impossible, since $S_{Y}^{j} \mid K_{X}^{j}$ is in \mathcal{Q}_{Y}. Similarly, if $X=Z=1$, we have that S_{X}^{j} is adjacent to K_{Z}^{j} by (ii) while $S_{X}^{j} \mid K_{Z}^{j}$ is in \mathcal{Q}_{I}, and if $Y=Z=1$, then S_{Z}^{j} is adjacent to K_{Y}^{j} by (ii) while $S_{Z}^{j} \mid K_{Y}^{j}$ is in \mathcal{Q}_{I}.

Now, suppose that $X=Y=Z=0$. First, observe that K_{X}^{j} is adjacent to L_{X}^{j}, K_{Z}^{j}, and the vertex L_{Z}^{j} is adjacent to $K_{Z}^{j}, K_{\bar{X}}^{j}$, since $\beta_{\bar{X}}^{j} \in K_{X}^{j} \cap L_{X}^{j}, \lambda^{j} \in K_{X}^{j} \cap K_{Z}^{j}, \beta_{\bar{Z}}^{j} \in L_{Z}^{j} \cap K_{Z}^{j}$, and $\gamma_{1}^{j} \in L_{Z}^{j} \cap K_{\bar{X}}^{j}$. Also, $K_{\bar{X}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}$ by (ii). Further, $K_{\bar{Z}}^{j} K_{Z}^{j}, K_{\bar{Z}}^{j} L_{Z}^{j}$ and $K_{\bar{X}}^{j} L_{X}^{j}$ are not edges of G^{\prime}, since $K_{\bar{Z}}^{j}\left|K_{Z}^{j}, K_{\bar{Z}}^{j}\right| L_{Z}^{j}$, and $K_{\bar{X}}^{j} \mid L_{X}^{j}$ are in \mathcal{Q}_{I}. Thus, if L_{X}^{j} is adjacent to $K_{\bar{Z}}^{j}$, then by Lemma 16 applied to $\left\{K_{X}^{j}, L_{X}^{j}, K_{\bar{Z}}^{j}, K_{\bar{X}}^{j}, L_{Z}^{j}, K_{Z}^{j}\right\}$, we conclude that K_{X}^{j} is adjacent to $K_{\bar{X}}^{j}$, which is impossible since $K_{\bar{X}}^{j} \mid K_{X}^{j}$ is in \mathcal{Q}_{I}. Similarly, if K_{X}^{j} is adjacent to $K_{\bar{Z}}^{j}$, then by Lemma 15 applied to $\left\{K_{X}^{j}, K_{\bar{Z}}^{j}, K_{\bar{X}}^{j}, L_{Z}^{j}, K_{Z}^{j}\right\}$, we again conclude that K_{X}^{j} is adjacent to $K_{\bar{X}}^{j}$, a contradiction. So, we may assume that both K_{X}^{j} and L_{X}^{j} are not adjacent to $K_{\bar{Z}}^{j}$. Now, observe that L_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}, K_{Y}^{j}$, and the vertex K_{X}^{j} is adjacent to L_{X}^{j}, K_{Y}^{j}, since $\gamma_{3}^{j} \in K_{\bar{Z}}^{j} \cap L_{Y}^{j}, \beta_{\bar{Y}}^{j} \in L_{Y}^{j} \cap K_{Y}^{j}, \beta_{\bar{X}}^{j} \in K_{X}^{j} \cap L_{X}^{j}$, and $\lambda^{j} \in K_{Y}^{j} \cap K_{X}^{j}$. Also, $K_{\bar{Y}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}$ and L_{X}^{j} by (ii) and since $\gamma_{2}^{j} \in K_{\bar{Y}}^{j} \cap L_{X}^{j}$. Further, $K_{\bar{Y}}^{j} K_{Y}^{j}$ and $K_{\bar{Y}}^{j} L_{Y}^{j}$ are not edges of G^{\prime}, since $K_{\bar{Y}}^{j} \mid K_{Y}^{j}$ and $K_{\bar{Y}}^{j} \mid L_{Y}^{j}$ are in \mathcal{Q}_{I}. Recall that K_{X}^{j}, L_{X}^{j} are not adjacent to $K_{\bar{Z}}^{j}$. This contradicts Lemma 16 when applied to $\left\{K_{X}^{j}, L_{X}^{j}, K_{\bar{Y}}^{j}, K_{\bar{Z}}^{j}, L_{Y}^{j}, K_{Y}^{j}\right\}$.

Thus, it is not the case that $X=Y=Z=0$, and by the above also not $X=Y=1$, nor $X=Z=1$, nor $Y=Z=1$. Therefore, either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$.

This proves that σ is indeed a satisfying assignment for I, which concludes the proof.
We are finally ready to prove Theorem 9 .

Proof of Theorem 9. Let G^{\prime} be a minimal chordal sandwich of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. By Lemma 21, there exists σ, a satisfying assignment for I, such that G_{σ} is a subgraph of G^{\prime}. Thus, G^{\prime} is also a chordal sandwich of $\left(G_{\sigma}, \operatorname{forb}\left(\mathcal{Q}_{I}\right)\right)$, and hence, G_{σ}^{*} is a subgraph of G^{\prime} by Lemma 19. But by Lemma 20, G_{σ}^{*} is chordal, and so G^{\prime} is equal to G_{σ}^{*} by the minimality of G^{\prime}. Conversely, if σ is a satisfying assignment for I, then the graph G_{σ}^{*} is chordal by Lemma 20. Moreover, $\operatorname{int}{ }^{*}\left(\mathcal{Q}_{I}\right)$ is a subgraph of G_{σ}^{*}, by definition, and G_{σ}^{*} contains no edges of forb $\left(\mathcal{Q}_{I}\right)$, also by definition. Thus, G_{σ}^{*} is a chordal sandwich of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, and it is minimal by Lemma 19.

This proves that by mapping each satisfying assigment σ to the graph G_{σ}^{*}, we obtain the required bijection.

7. Perfect Phylogenies and Boolean Satisfiability

In this section, we prove Theorem 10. Let σ be a satisfying assignment for I; for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$. Consider $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$ as defined in $\S 4$.
(We refer the reader to Fig. 5 and 6 for an illustration. We recommend the reader to observe this depiction when following the subsequent arguments.)

For each $i \in\{1 \ldots n\}$, let $\mathcal{A}_{i}=\left\{a_{i}, a_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{j_{1}}, \ldots, z_{i t}^{j_{t}}, c_{i}^{j_{1}}, \ldots, c_{i}^{j_{t}}\right\}$ where $\Delta_{i}=\left\{j_{1}, \ldots, j_{t}\right\}$, and for each $j \in\{1 \ldots m\}$, let $\mathcal{B}_{j}=\left\{x_{1}^{j}, x_{2}^{j}, x_{3}^{j}, x_{4}^{j}, x_{5}^{j}, x_{6}^{j}, g_{1}^{j}, g_{2}^{j}, g_{3}^{j}, b_{1}^{j}, b_{2}^{j}, b_{3}^{j}, \ell^{j}\right\}$. (See Fig 6.)

It is not difficult to see that ϕ_{σ} defines a bijection between the elements of \mathcal{X}_{I} and the leaves of T_{I}. For instance, for each $i \in\{1 \ldots n\}$, we note that $\left\{\phi_{\sigma}\left(\alpha_{v_{i}}\right), \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)\right\}=\left\{a_{i}, a_{i}^{\prime}\right\}$, and for each $j \in \Delta_{i}$, either $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right)=c_{i}^{j}$ and $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right) \in\left\{b_{1}^{j}, b_{2}^{j}, b_{3}^{j}\right\}$, or $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right)=c_{i}^{j}$ and $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right) \in\left\{b_{1}^{j}, b_{2}^{j}, b_{3}^{j}\right\}$. Also, for each $j \in\{1 \ldots m\}$, we have $\phi_{\sigma}\left(\lambda^{j}\right)=$ ℓ^{j}, and $\left\{\phi_{\sigma}\left(\gamma_{1}^{j}\right), \phi_{\sigma}\left(\gamma_{2}^{j}\right), \phi_{\sigma}\left(\gamma_{3}^{j}\right)\right\}=\left\{g_{1}^{j}, g_{2}^{j}, g_{3}^{j}\right\}$. Further, it can be readily verified that T_{I} is a ternary tree. Thus, $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$ is indeed a ternary phylogenetic \mathcal{X}_{I}-tree. We show that it displays and is distinguished by \mathcal{Q}_{I}.

First, we show that \mathcal{T}_{σ} displays \mathcal{Q}_{I}. We consider the quartet trees in \mathcal{Q}_{I} one by one.

- consider $A_{i} \mid B$ for $i \in\{1 \ldots n\}$. Recall that $A_{i}=\left\{\alpha_{v_{i}}, \alpha_{\overline{v_{i}}}\right\}, B=\{\delta, \mu\}$, and that $\left\{\phi_{\sigma}\left(\alpha_{v_{i}}\right), \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)\right\}=$ $\left\{a_{i}, a_{i}^{\prime}\right\}$. Also, $\phi_{\sigma}(\delta)=y_{0}$ and $\phi_{\sigma}(\mu)=u_{0}$. Observe that $a_{i}, a_{i}^{\prime} \in \mathcal{A}_{i}$. Hence, both a_{i}, a_{i}^{\prime} are in one connected component of $T_{I}-y_{i} y_{i}^{\prime}$ whereas y_{0}, u_{0} are in another component. Thus, \mathcal{T}_{σ} indeed displays $A_{i} \mid B$.
- consider $D_{p}^{j} \mid B$ for $j \in\{1 \ldots m\}$ and $p \in\{1,2,3\}$. Recall that $D_{p}^{j}=\left\{\gamma_{p}^{j}, \lambda^{j}\right\}$, and $\phi_{\sigma}\left(\gamma_{p}^{j}\right) \in \mathcal{B}_{j}, \phi_{\sigma}\left(\lambda^{j}\right) \in$ \mathcal{B}_{j}. Also, $B=\{\delta, \mu\}$ and $\phi_{\sigma}(\delta)=y_{0}, \phi_{\sigma}(\mu)=u_{0}$. Thus both $\phi_{\sigma}\left(\gamma_{p}^{j}\right), \phi_{\sigma}\left(\lambda^{j}\right)$ are in one component of $T_{I}-u_{j} x_{1}^{j}$ whereas y_{0}, u_{0} are in another component. This shows that \mathcal{T}_{σ} displays $D_{p}^{j} \mid B$.
- consider $S_{v_{i}}^{j} \mid S_{\overline{v_{i}}}^{j^{\prime}}$ where $i \in\{1 \ldots n\}$ and $j, j^{\prime} \in \Delta_{i}$. Recall that $S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}$ and $S_{\overline{v_{i}}}^{j^{\prime}}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j^{\prime}}\right\}$. By symmetry, we may assume that $v_{i}=1$. Then $\phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}^{\prime}, \phi_{\sigma}\left(\beta_{v_{i}}^{j}\right) \in \mathcal{B}_{j}$, and $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j^{\prime}}\right)=c_{i}^{j^{\prime}}$. Let j_{t} denote the largest element in Δ_{i}. Then, both $a_{i}^{\prime}, c_{i}^{j^{\prime}}$ are in one component of $T_{I}-y_{i}^{\prime} z_{i}^{j_{t}}$ whereas a_{i} and $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right)$ are in a different component. This proves that \mathcal{T}_{σ} displays $S_{v_{i}}^{j} \mid S_{\overline{v_{i}}}^{j^{\prime}}$.
- consider $S_{v_{i}}^{j} \mid K_{\overline{v_{i}}}^{j^{\prime}}$ and $S_{\bar{v}_{i}}^{j} \mid K_{v_{i}}^{j^{\prime}}$ for $i \in\{1 \ldots n\}$ and $j, j^{\prime} \in \Delta_{i}$ where $j<j^{\prime}$. Recall that $K_{\overline{v_{i}}}^{j^{\prime}} \subseteq\left\{\beta_{v_{i}}^{j^{\prime}}\right.$, $\left.\gamma_{1}^{j^{\prime}}, \gamma_{2}^{j^{\prime}}, \gamma_{3}^{j^{\prime}}, j^{j^{\prime}}\right\}, K_{v_{i}}^{j^{\prime}} \subseteq\left\{\beta_{\overline{v_{i}}}^{j^{\prime}} \gamma_{1}^{j^{\prime}}, \gamma_{2}^{j^{\prime}}, \gamma_{3}^{j^{\prime}}, \lambda^{j^{\prime}}\right\}, S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}$ and $S_{\overline{v_{i}}}^{j}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j}\right\}$. Again, by symmetry, we may assume $v_{i}=1$. So, $\phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}^{\prime}, \phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right)=c_{i}^{j}, \phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j^{\prime}}\right)=c_{i}^{j^{\prime}}, \phi_{\sigma}\left(\beta_{v_{i}}^{j}\right) \in \mathcal{B}_{j}$, and $\left\{\phi_{\sigma}\left(\beta_{v_{i}}^{j^{\prime}}\right), \phi_{\sigma}\left(\gamma_{1}^{j^{\prime}}\right), \phi_{\sigma}\left(\gamma_{2}^{j^{\prime}}\right), \phi_{\sigma}\left(\gamma_{3}^{j^{\prime}}\right), \phi_{\sigma}\left(\lambda j^{\prime}\right)\right\} \subseteq \mathcal{B}_{j^{\prime}}$. Let $j_{1}<j_{2}<\ldots<j_{t}$ be the elements of Δ_{i}. Since $j \in \Delta_{i}$, let k be such that $j=j_{k}$. We conclude $k<t$, since $j<j^{\prime}$ and $j^{\prime} \in \Delta_{i}$. Thus, the elements of $\phi_{\sigma}\left(S_{\overline{v_{i}}}^{j}\right)$ and $\phi_{\sigma}\left(K_{v_{i}}^{j^{\prime}}\right)$, respectively are in different components of $T_{I}-z_{i}^{j_{k}} z_{i}^{j_{k+1}}$. Further, observe that $\phi_{\sigma}\left(K_{\overline{v_{i}}}^{j^{\prime}}\right) \subseteq \mathcal{B}_{j^{\prime}}$, and since $j \neq j^{\prime}$, the elements of $\phi_{\sigma}\left(S_{v_{i}}^{j}\right)$ and $\phi_{\sigma}\left(K_{\overline{v_{i}}}^{j^{\prime}}\right)$ are in different components of $T_{I}-u_{j^{\prime}} x^{j^{\prime}}$. This proves that \mathcal{T}_{σ} displays both $S_{v_{i}}^{j} \mid K_{\overline{v_{i}}}^{j^{\prime}}$ and $S_{\overline{v_{i}}}^{j} \mid K_{v_{i}}^{j}$.
- consider $K_{\overline{v_{i}}}^{j} \mid F^{j^{\prime}}$ and $K_{v_{i}}^{j} \mid F^{j^{\prime}}$ for $i \in\{1 \ldots n\}$ and $j<j^{\prime}$ where $j \in \Delta_{i}$. Again, recall that $K_{\overline{v_{i}}}^{j} \subseteq$ $\left\{\beta_{v_{i},}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}\right\}, K_{v_{i}}^{j} \subseteq\left\{\beta_{\overline{v_{i}}}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}\right\}$, and that $F^{j^{\prime}}=\left\{\lambda^{j^{\prime}}, \mu\right\}$. So, $\phi_{\sigma}\left(K_{\overline{v_{i}}}^{j}\right) \cup \phi_{\sigma}\left(K_{v_{i}}^{j}\right) \subseteq \mathcal{A}_{i} \cup \mathcal{B}_{j}$ whereas $\phi_{\sigma}\left(F^{j^{\prime}}\right) \subseteq \mathcal{B}_{j^{\prime}} \cup\left\{u_{0}\right\}$. Since $j<j^{\prime} \leq m$, we conclude that $\phi_{\sigma}\left(K_{\overline{v_{i}}}^{j}\right) \cup \phi_{\sigma}\left(K_{v_{i}}^{j}\right)$ and $\phi_{\sigma}\left(F^{j^{\prime}}\right)$ are in different components of $T_{I}-u_{j} u_{j+1}$. This proves that \mathcal{T}_{σ} displays both $K_{\overline{v_{i}}}^{j} \mid F^{j^{\prime}}$ and $K_{v_{i}}^{j} \mid F^{j^{\prime}}$.
- consider $H_{v_{i^{\prime}}}\left|S_{v_{i}}^{j}, H_{\overline{v_{i^{\prime}}}}\right| S_{v_{i}}^{j}, H_{v_{i^{\prime}}} \mid S_{\overline{v_{i}}}^{j}$, and $H_{\overline{v_{i^{\prime}}}} \mid S_{\overline{v_{i}}}^{j}$ for $1 \leq i^{\prime}<i \leq n$ and $j \in \Delta_{i}$. Recall that $H_{v_{i^{\prime}}}=$ $\left\{\alpha_{\bar{v}_{i^{\prime}}} \delta\right\}, H_{\overline{v_{i^{\prime}}}}=\left\{\alpha_{\overline{\bar{v}_{i^{\prime}}}}, \delta\right\}, S_{v_{i}}^{j}=\left\{\alpha_{\bar{v}_{i}}, \beta_{v_{i}}^{j}\right\}$, and $S_{\overline{v_{i}}}^{j}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j}\right\}$. So, $\phi_{\sigma}\left(S_{v_{i}}^{j}\right) \cup \phi_{\sigma}\left(S_{\overline{v_{i}}}^{j}\right) \subseteq \mathcal{A}_{i} \cup \mathcal{B}_{j}$ whereas $\phi_{\sigma}\left(H_{v_{i^{\prime}}}\right) \cup \phi_{\sigma}\left(H_{\overline{\bar{v}_{i^{\prime}}}}\right) \subseteq \mathcal{A}_{i^{\prime}} \cup\left\{y_{0}\right\}$. Thus, since $i^{\prime}<i \leq n$, we conclude that $\phi_{\sigma}\left(S_{v_{i}}^{j}\right) \cup \phi_{\sigma}\left(S_{\overline{v_{i}}}^{j}\right)$ and $\phi_{\sigma}\left(H_{v_{i^{\prime}}}\right) \cup \phi_{\sigma}\left(H_{\overline{\bar{v}_{i^{\prime}}}}\right)$ are in different components of $T_{I}-y_{i^{\prime}} y_{i^{\prime}+1}$. This proves that \mathcal{T}_{σ} displays all the four quartet trees $H_{\bar{v}_{i^{\prime}}}\left|S_{v_{i}}^{j}, H_{\overline{v_{i^{\prime}}}}\right| S_{v_{i}}^{j}, H_{v_{i^{\prime}}} \mid S_{\overline{v_{i}}}^{j}$ and $H_{\overline{v_{i^{\prime}}}} \mid S_{\overline{v_{i}}}^{j}$.
- consider $H_{\overline{v_{i}}} \mid F^{j}$ and $H_{v_{i}} \mid F^{j}$ for $i \in\{1 \ldots n\}$ and $j \in\{1 \ldots m\}$. Recall that $H_{v_{i}}=\left\{\alpha_{v_{i}}, \delta\right\}, H_{\overline{v_{i}}}=\left\{\alpha_{\overline{v_{i}}}, \delta\right\}$, and $F^{j}=\left\{\lambda^{j}, \mu\right\}$. Hence, it follows that $\left\{\phi_{\sigma}\left(H_{\overline{v_{i}}}\right) \cup \phi_{\sigma}\left(H_{v_{i}}\right)\right\} \subseteq \mathcal{A}_{i} \cup\left\{y_{0}\right\}$ and $\phi_{\sigma}\left(F^{j}\right) \subseteq \mathcal{B}_{j} \cup\left\{u_{0}\right\}$. Thus,
we conclude that $\phi_{\sigma}\left(H_{\overline{v_{i}}}\right) \cup \phi_{\sigma}\left(H_{v_{i}}\right)$ and $\phi_{\sigma}\left(F^{j}\right)$ are in different components of $T_{I}-y_{n} u_{1}$. This proves that \mathcal{T}_{σ} displays both $H_{\overline{v_{i}}} \mid F^{j}$ and $H_{v_{i}} \mid F^{j}$.
- consider the clause $\mathcal{C}_{j}=X \vee Y \vee Z$ for $j \in\{1 \ldots m\}$. Since σ is a satisfying assignment, and by the rotational symmetry between X, Y, and Z, we may assume that $X=1, Y=0$, and $Z=0$. Let i_{X} be the index such that $X=v_{i_{X}}$ or $X=\overline{v_{i_{X}}}$, let i_{Y} be such that $Y=v_{i_{Y}}$ or $Y=\overline{v_{i_{Y}}}$, and let i_{Z} be such that $Z=v_{i_{Z}}$ or $Z=\overline{v_{i_{Z}}}$. Note that i_{X}, i_{Y}, i_{Z} are all distinct, since we assume that no variable appears more than once in the same clause. Thus we have that $\phi_{\sigma}\left(\beta_{X}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{3}^{j}, \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{1}^{j}, \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{2}^{j}, \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{3}^{j}$, and $\phi_{\sigma}\left(\lambda^{j}\right)=\ell^{j}$. (See Fig. 6c.) Also, $\left\{\phi_{\sigma}\left(\alpha_{X}\right), \phi_{\sigma}\left(\alpha_{\bar{X}}\right), \phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{X}},\left\{\phi_{\sigma}\left(\alpha_{Y}\right), \phi_{\sigma}\left(\alpha_{\bar{Y}}\right), \phi_{\sigma}\left(\beta_{Y}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Y}}$, and $\left\{\phi_{\sigma}\left(\alpha_{Z}\right), \phi_{\sigma}\left(\alpha_{\bar{Z}}\right), \phi_{\sigma}\left(\beta_{Z}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Z}}$.
- consider $K_{\bar{X}}^{j} \mid K_{X}^{j}$ and $K_{\bar{X}}^{j} \mid L_{X}^{j}$. Recall that $K_{\bar{X}}^{j}=\left\{\beta_{X^{\prime}}^{j} \gamma_{1}^{j}\right\}, K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda\right\}$, and $L_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \gamma_{2}^{j}\right\}$. Also, recall that $\phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right) \in \mathcal{A}_{i_{X}}$. Thus it follows that $\phi_{\sigma}\left(K_{X}^{j}\right) \cup \phi_{\sigma}\left(L_{X}^{j}\right)$ and $\phi_{\sigma}\left(K_{\bar{X}}^{j}\right)$ are in different components of $T_{I}-x_{4}^{j} x_{6}^{j}$.
- consider $K_{\bar{Y}}^{j} \mid K_{Y}^{j}$ and $K_{\bar{Y}}^{j} \mid L_{Y}^{j}$. Recall that $K_{\bar{Y}}^{j}=\left\{\beta_{Y}^{j}, \gamma_{2}^{j}\right\}, K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}$, and $L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Y}^{j}\right) \in \mathcal{A}_{i_{Y}}$. Thus, $\phi_{\sigma}\left(K_{Y}^{j}\right) \cup \phi_{\sigma}\left(L_{Y}^{j}\right)$ and $\phi_{\sigma}\left(K_{\bar{Y}}^{j}\right)$ are in different components of $T_{I}-x_{1}^{j} x_{2}^{j}$.
- consider $K_{\bar{Z}}^{j} \mid K_{Z}^{j}$ and $K_{\bar{Z}}^{j} \mid L_{Z}^{j}$. Recall that $K_{\bar{Z}}^{j}=\left\{\beta_{Z^{\prime}}^{j} \gamma_{3}^{j}\right\}, K_{Z}^{j}=\left\{\beta_{\bar{Z}^{\prime}}^{j} \lambda^{j}\right\}$, and $L_{Z}^{j}=\left\{\beta_{\bar{Z}^{\prime}}^{j} \gamma_{1}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Z}^{j}\right) \in \mathcal{A}_{i_{Z}}$. Thus, $\phi_{\sigma}\left(K_{Z}^{j}\right) \cup \phi_{\sigma}\left(L_{Z}^{j}\right)$ and $\phi_{\sigma}\left(K_{Z}^{j}\right)$ are in different components of $T_{I}-x_{2}^{j} x_{4}^{j}$.
- consider $S_{Y}^{j} \mid K_{X}^{j}$ and $S_{Y}^{j} \mid L_{Z}^{j}$. Recall that $S_{Y}^{j}=\left\{\alpha_{Y}, \beta_{Y}^{j}\right\}, K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda^{j}\right\}$ and $L_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \gamma_{1}^{j}\right\}$. Also, $\left\{\phi_{\sigma}\left(\alpha_{Y}\right), \phi_{\sigma}\left(\beta_{Y}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Y}}$ whereas $\phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right) \in \mathcal{A}_{i_{X}}$. Thus, since $i_{X} \neq i_{Y}$, we conclude that $\phi_{\sigma}\left(S_{Y}^{j}\right)$ and $\phi_{\sigma}\left(K_{X}^{j}\right) \cup \phi_{\sigma}\left(L_{Z}^{j}\right)$ are in different components of $T_{I}-y_{i_{\gamma}} y_{i_{Y}}^{\prime}$.
- consider $S_{Z}^{j} \mid K_{Y}^{j}$ and $S_{Z}^{j} \mid L_{X}^{j}$. Recall that $S_{Z}^{j}=\left\{\alpha_{Z}, \beta_{Z}^{j}\right\}, K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}$, and $L_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \gamma_{2}^{j}\right\}$. Also, $\left\{\phi_{\sigma}\left(\alpha_{Z}\right), \phi_{\sigma}\left(\beta_{Z}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Z}}$, and $\phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right) \in \mathcal{A}_{i_{X}}$. Thus, since $i_{X} \neq i_{Z}$, we conclude that $\phi_{\sigma}\left(S_{Z}^{j}\right)$ and $\phi_{\sigma}\left(K_{Y}^{j}\right) \cup \phi_{\sigma}\left(L_{X}^{j}\right)$ are in different components of $T_{I}-y_{i_{Z}} y_{i_{Z}}^{\prime}$.
- consider $S_{X}^{j} \mid K_{Z}^{j}$ and $S_{X}^{j} \mid L_{Y}^{j}$. Recall that $S_{X}^{j}=\left\{\alpha_{X}, \beta_{X}^{j}\right\}, K_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \lambda^{j}\right\}$ and $L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}$ where $\phi_{\sigma}\left(\alpha_{X}\right) \in \mathcal{A}_{i_{X}}$. Thus, $\phi_{\sigma}\left(S_{X}^{j}\right)$ and $\phi_{\sigma}\left(K_{Z}^{j}\right)$ are in different components of $T_{I}-x_{4}^{j} x_{5}^{j}$, whereas $\phi_{\sigma}\left(S_{X}^{j}\right)$ and $\phi_{\sigma}\left(L_{Y}^{j}\right)$ are in different components of $T_{I}-x_{2}^{j} x_{3}^{j}$.

This proves that \mathcal{T}_{σ} displays \mathcal{Q}_{I}. It remains to prove that \mathcal{T}_{σ} is distinguished by \mathcal{Q}_{I}. We analyze the edges of T_{I}.

- consider the edge $y_{i} y_{i}^{\prime}$ for $i \in\{1 \ldots n\}$. Recall that $A_{i}=\left\{\alpha_{v_{i}}, \alpha_{\overline{\bar{v}_{i}}}\right\}$ and $B=\{\delta, \mu\}$. By definition, we have $\phi_{\sigma}\left(A_{i}\right)=\left\{a_{i}, a_{i}^{\prime}\right\}$ and $\phi_{\sigma}(B)=\left\{y_{0}, u_{0}\right\}$. Note that every connected subgraph of T_{I} that contains both y_{0} and u_{0} must also contain y_{i}, since it lies on the path between u_{0} and y_{0} in T_{I}. Likewise, every connected subgraph of T_{I} that contains a_{i}, a_{i}^{\prime} also contains y_{i}^{\prime}. This shows that the edge $y_{i} y_{i}^{\prime}$ is distinguished by $A_{i} \mid B$ which is in \mathcal{Q}_{I}.
- consider the edge $u_{j} x_{1}^{j}$ for $j \in\{1 \ldots m\}$. By the definition of ϕ_{σ}, we observe that there exists $p \in\{1,2,3\}$ such that $\phi_{\sigma}\left(\gamma_{p}^{j}\right)=g_{2}^{j}$. We recall that $B=\{\delta, \mu\}$ and $D_{p}^{j}=\left\{\gamma_{p}^{j}, \lambda^{j}\right\}$. Thus, $\phi_{\sigma}(B)=\left\{y_{0}, u_{0}\right\}$ and $\phi_{\sigma}\left(D_{p}^{j}\right)=\left\{g_{2}^{j}, \ell^{j}\right\}$. Since g_{j}^{2} is adjacent to x_{1}^{j}, and u_{j} lies on the path between y_{0} and u_{0}, it follows that the edge $u_{j} x_{1}^{j}$ is distinguished by $D_{p}^{j} \mid B$ which is in \mathcal{Q}_{I}.
- consider $i \in\{1 \ldots n\}$ and let $j_{1}<j_{2}<\ldots<j_{t}$ be the elements of Δ_{i}. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Then we have $\phi_{\sigma}\left(\alpha_{W}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\bar{W}}\right)=a_{i}^{\prime}$, and $\phi_{\sigma}\left(\beta_{\bar{W}}^{j}\right)=c_{i}^{j}$ for all $j \in \Delta_{i}$. Recall that $S_{\bar{W}}^{j}=\left\{\alpha_{\bar{W}}, \beta_{\bar{W}}^{j}\right\}$
and $K_{W}^{j} \subseteq\left\{\beta_{\overline{W^{\prime}}}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}\right\}$ where $\left\{\phi_{\sigma}\left(\gamma_{1}^{j}\right), \phi_{\sigma}\left(\gamma_{2}^{j}\right), \phi_{\sigma}\left(\gamma_{3}^{j}\right), \phi_{\sigma}\left(\lambda^{j}\right)\right\} \subseteq \mathcal{B}_{j}$ for all $j \in \Delta_{i}$. Thus, for each $k \in\{1 \ldots t-1\}$, it follows that $\phi_{\sigma}\left(\beta_{\bar{W}}^{j_{k}}\right)$ is adjacent to $z_{i}^{j_{k}}$ whereas $\phi_{\sigma}\left(\beta_{\bar{W}}^{j_{k+1}}\right)$ is adjacent to $z_{i}^{j_{k+1}}$. This proves that the edge $z_{i}^{j_{k}} z_{i}^{j_{k+1}}$ is distinguished by $S_{\bar{W}}^{j_{k}} \mid K_{W}^{j_{k+1}}$. Similarly, recall that $S_{W}^{j}=\left\{\alpha_{W}, \beta_{W}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{W}^{j}\right) \in \mathcal{B}_{j}$ and $\phi_{\sigma}\left(\alpha_{W}\right)$ is adjacent to y_{i}^{\prime}. Thus, the edge $z_{i}^{j_{t}} y_{i}^{\prime}$ is distinguished by $S_{W}^{j_{t}} \mid S_{\bar{W}}^{j_{t}}$. Further, if $i \geq 2$, then we recall that $H_{v_{i-1}}=\left\{\alpha_{v_{i-1}}, \delta\right\}$ where $\phi_{\sigma}\left(\alpha_{v_{i-1}}\right) \in \mathcal{A}_{i-1}$ and $\phi_{\sigma}(\delta)=y_{0}$. Thus $y_{i-1} y_{i}$ is distinguished by $H_{v_{i-1}} \mid S_{W}^{j_{t}}$.
- consider $j \in\{1, \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$. By the rotational symmetry, we may assume that $X=1$ and $Y=Z=0$. Thus $\phi_{\sigma}\left(\beta_{X}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{3}^{j}, \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{1}^{j}, \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{2}^{j}, \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{3}^{j}$, and $\phi_{\sigma}\left(\lambda^{j}\right)=\ell^{j}$. (Again see Fig. 6c.) Recall that $K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j} \lambda^{j}\right\}$ and $K_{\bar{Y}}^{j}=\left\{\beta_{Y}^{j}, \gamma_{2}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Y}^{j}\right) \notin \mathcal{B}_{j}$. This shows that the edge $x_{1}^{j} x_{2}^{j}$ is distinguished by $K_{\bar{Y}}^{j} \mid K_{Y}^{j}$. Recall that $S_{X}^{j}=\left\{\alpha_{X}, \beta_{X}^{j}\right\}, L_{Y}^{j}=\left\{\beta_{\bar{Y}^{\prime}}^{j} \gamma_{3}^{j}\right\}$, and $K_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \lambda^{j}\right\}$ where $\phi_{\sigma}\left(\alpha_{X}\right) \notin \mathcal{B}_{j}$. Thus, the edge $x_{2}^{j} x_{3}^{j}$ is distiguished by $S_{X}^{j} \mid L_{Y}^{j}$ whereas the edge $x_{4}^{j} x_{5}^{j}$ is distinguished by $S_{X}^{j} \mid K_{Z}^{j}$. Recall that $K_{\bar{Z}}^{j}=\left\{\beta_{Z}^{j} \gamma_{3}^{j}\right\}$ and $L_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j} \gamma_{1}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Z}^{j}\right) \notin \mathcal{B}_{j}$. Thus, the edge $x_{2}^{j} x_{4}^{j}$ is distinguished by $K_{\bar{Z}}^{j} \mid L_{Z}^{j}$. Recall that $K_{X}^{j}=\left\{\beta_{\bar{X}}^{j} \lambda^{j}\right\}$ and $K_{\bar{X}}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right) \notin \mathcal{B}_{j}$. Thus, the edge $x_{4}^{j} x_{6}^{j}$ is distinguished by $K_{\bar{X}}^{j} \mid K_{X}^{j}$. Further, if $j<m$, recall that $F^{j+1}=\left\{\lambda^{j+1}, \mu\right\}$ where $\phi_{\sigma}\left(\lambda^{j+1}\right) \in \mathcal{B}_{j+1}$ and $\phi_{\sigma}(\mu)=u_{0}$. Thus $u_{j} u_{j+1}$ is distinguished by $K_{X}^{j} \mid F^{j+1}$.
- consider the edge $y_{n} u_{1}$ and recall that $H_{v_{n}}=\left\{\alpha_{v_{n}}, \delta\right\}$ and $F^{1}=\left\{\lambda^{1}, \mu\right\}$. So, $\phi_{\sigma}\left(H_{v_{n}}\right) \subseteq \mathcal{A}_{n} \cup\left\{y_{0}\right\}$ and $\phi_{\sigma}\left(F^{1}\right) \subseteq \mathcal{B}_{1} \cup\left\{u_{0}\right\}$. Thus, the edge $y_{n} u_{1}$ is distinguished by $H_{v_{n}} \mid F^{1}$.

This concludes the proof of Theorem 10.
Finally, we have all pieces to prove Theorem 1.

8. Proof of Theorem 1

The problem is clearly in CoNP as it can be defined by the formula " \mathcal{T} displays \mathcal{Q}, and for every X -tree \mathcal{T}^{\prime}, if \mathcal{T}^{\prime} displays \mathcal{Q}, then \mathcal{T}^{\prime} is isomorphic to $\mathcal{T}^{\prime \prime}$. For this, note that isomorphism of labelled trees admits a polynomial-time algorithm [2], and checking if a given X-tree displays a given quartet tree $\{a, b\} \mid\{c, d\}$ can be done easily (by testing if the path between the leaves labelled a and b is disjoint from the path between the leaves labelled c and d).

To prove CoNP-hardness, consider an instance I of ONE-IN-THREE-3SAT and a satisfying assignment σ for I. We construct the collection \mathcal{Q}_{I} of quartet trees, as well as the ternary phylogenetic tree \mathcal{T}_{σ} as described in $\S 4$. Clearly, constructing \mathcal{Q}_{I} and \mathcal{T}_{σ} takes polynomial time. By combining Theorem 8 with Theorems 9 and 10, we obtain that σ is the unique satisfying assignment of I if and only if \mathcal{T}_{σ} is the only phylogenetic tree that displays \mathcal{Q}_{I}. Since, by Theorem 2, it is CoNP-hard to determine if an instance of ONE-IN-THREE-3SAT has a unique satisfying assignment, it is therefore CoNP-hard to decide, for a given phylogenetic tree \mathcal{T} and a collection of quartet trees \mathcal{Q}, whether or not \mathcal{Q} defines \mathcal{T}. That concludes the proof of Theorem 1 .

9. Concluding remarks

In this paper, we have shown that determining whether a given phylogenetic tree represents the unique evolution of a given collection of species is a CoNP-complete problem.

In addition, we proved that the unique minimal chordal sandwich problem is CoNP-complete. This is interesting from the perspective of applications that deal with incomplete data, where sandwich problems [17] allow one to approximate or complete the dataset, assuming a priori that it should posses specific properties (like being from a specific structured family of graphs). Deciding uniqueness in this context serves as a test of quality of the sandwich, namely it allows one to see whether there are alternative explanations of the dataset or not. Here, we provide complexity for
the case of having a unique minimal sandwich that is a chordal graph. Following this direction, it would be interesting to consider the complexity of uniqueness of other sandwich problems, especially those with interesting applications. For instance, for interval sandwich (DNA physical mapping) or cograph sandwich (genome comparison) problems. Note that the decision problem for the former is NP-complete [18] while it is polynomial for the latter [6, 17].

Acknowledgements

We would like to thank anonymous referees for their useful comments, and in particular, for noting the subtle difference concerning the membership of uniqueness problems in CoNP. The conference version of this paper appeared as [21]. The second author gratefully acknowledges support from EPSRC, award EP/I01795X/1, and also from the Caesarea Rothschild Institute of the University of Haifa in Israel, where the main work on this result was done.

References

[1] R. Agarwala, D. Fernández-Baca, A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed, SIAM Journal of Computing 23 (1994) 1216-1224.
[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.
[3] S. Böcker, D. Bryant, A.W.M. Dress, M.A. Steel, Algorithmic aspects of tree amalgamation, Journal of Algorithms 37 (2000) 522-537.
[4] H.L. Bodlaender, M.R. Fellows, T.J. Warnow, Two strikes against perfect phylogeny, in: Proceedings of ICALP 1992, Lecture Notes in Computer Science 623, Springer Berlin/Heidelberg, 1992, pp. 273-283.
[5] M.L. Bonet, S. Linz, K.S. John, The complexity of finding multiple solutions to betweenness and quartet compatibility, IEEE/ACM Transactions on Computational Biology and Bioinformatics 9 (2012) 273-285.
[6] B.M. Bui-Xuan, M. Habib, C. Paul, Competitive graph searches, Journal Theoretical Computer Science 393 (2008) 72-80.
[7] P. Buneman, A characterization of rigid circuit graphs, Discrete Mathematics 9 (1974) 205-212.
[8] J. Camin, R. Sokal, A method for deducing branching sequences in phylogeny, Evolution 19 (1965) 311-326.
[9] N. Creignou, M. Hermann, Complexity of generalized satisfiability counting problems, Information and Computation 125 (1996) 1-12.
[10] M.C.H. Dekker, Reconstruction methods for derivation trees, Master's thesis, Vrije Universiteit, Amsterdam, 1986.
[11] G.A. Dirac, On rigid circuit graphs, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25 (1961) 71-76.
[12] G.F. Estabrook, Cladistic methodology: a discussion of the theoretical basis for the induction of evolutionary history, Annual Review of Ecology and Systematics 3 (1972) 427-456.
[13] G.F. Estabrook, J. C. S. Johnson, F.R. McMorris, An idealized concept of the true cladistic character, Mathematical Biosciences 23 (1975) 263-272.
[14] G.F. Estabrook, J. C. S. Johnson, F.R. McMorris, An algebraic analysis of cladistic characters, Discrete Mathematics 16 (1976) 141-147.
[15] G.F. Estabrook, J. C. S. Johnson, F.R. McMorris, A mathematical foundation for the analysis of cladistic character compatibility, Mathematical Biosciences 29 (1976) 181-187.
[16] C.M.H. de Figueiredo, L. Faria, S. Klein, R. Sritharan, On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs, Theoretical Computer Science 381 (2007) 57-67.
[17] M.C. Golumbic, H. Kaplan, R. Shamir, Graph sandwich problems, Journal of Algorithms 19 (1995) 449-473.
[18] M.C. Golumbic, R. Shamir, Complexity and algorithms for reasoning about time: a graph-theoretic approach, Journal of the ACM 40 (1993) 1108-1133.
[19] A.D. Gordon, Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves, Journal of Classification 3 (1986) 335-348.
[20] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks 21 (1991) 19-28.
[21] M. Habib, J. Stacho, Unique perfect phylogeny is NP-hard, in: Combinatorial Pattern Matching (CPM 2011), Lecture Notes in Computer Science 6661, Springer Berlin/Heidelberg, 2011, pp. 132-146.
[22] L. Juban, Dichotomy theorem for the generalized unique satisfiability problem, in: Proceedings of FCT 1999, Lecture Notes in Computer Science 1684, Springer Berlin/Heidelberg, 1999, pp. 327-337.
[23] S.K. Kannan, T.J. Warnow, Triangulating 3-colored graphs, SIAM Journal on Discrete Mathematics 5 (1992) 249-258.
[24] F. Lam, D. Gusfield, S. Sridhar, Generalizing the splits equivalence theorem and four gamete condition: Perfect phylogeny on three state characters, in: Algorithms in Bioinformatics (WABI 2009), Lecture Notes in Computer Science 5724, Springer Berlin/Heidelberg, 2009, pp. 206-219.
[25] W.J. LeQuesne, Further studies on the uniquely derived character concept, Systematic Zoology 21 (1972) 281-288.
[26] W.J. LeQuesne, The uniquely evolved character concept and its cladistic application, Systematic Zoology 23 (1974) 513-517.
[27] W.J. LeQuesne, The uniquely evolved character concept, Systematic Zoology 26 (1977) 218-223.
[28] F.R. McMorris, T. Warnow, T. Wimer, Triangulating vertex colored graphs, SIAM Journal on Discrete Mathematics 7 (1994) 296-306.
[29] D. Rose, R. Tarjan, G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM Journal of Computing 5 (1976) 266-283.
[30] C. Semple, M. Steel, A characterization for a set of partial partitions to define an X-tree, Discrete Mathematics 247 (2002) 169-186.
[31] C. Semple, M. Steel, Phylogenetics, Oxford lecture series in mathematics and its applications, Oxford University Press, 2003.
[32] M. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, Journal of Classification 9 (1992) 91-116.
[33] M. Steel, 2012, Personal webpage. URL: http://www.math.canterbury.ac.nz/~m.steel/.
[34] D. West, Introduction to Graph Theory, Prentice Hall, 1996.
[35] E.O. Wilson, A consistency test for phylogenies based upon contemporaneous species, Systematic Zoology 14 (1965) 214-220.

[^0]: ${ }^{*}$ Corresponding author
 Email addresses: habib@liafa.univ-paris-diderot.fr(Michel Habib), j.stacho@warwick.ac.uk (Juraj Stacho)

