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Abstract. We answer, in the affirmative, the following question pro-
posed by Mike Steel as a $100 challenge: “Is the following problem NP -
hard? Given a ternary† phylogenetic X-tree T and a collection Q of
quartet subtrees on X, is T the only tree that displays Q?” [28, 29] As a
particular consequence of this, we show that the unique chordal sandwich
problem is also NP -hard.

1 Introduction

One of the major efforts in molecular biology has been the computation of phy-
logenetic trees, or phylogenies, which describe the evolution of a set of species
from a common ancestor. A phylogenetic tree for a set of species is a tree in
which the leaves represent the species from the set and the internal nodes repre-
sent the (hypothetical) ancestral species. One standard model for describing the
species is in terms of characters, where a character is an equivalence relation on
the species set, partitioning it into different character states. In this model, we
also assign character states to the (hypothetical) ancestral species. The desired
property is that for each state of each character, the set of nodes in the tree hav-
ing that character state forms a connected subgraph. When a phylogeny has this
property, we say it is perfect. The Perfect Phylogeny problem [18] then asks for a
given set of characters defining a species set, does there exist a perfect phylogeny?
Note that we allow that states of some characters are unknown for some species;
we call such characters partial, otherwise we speak of full characters. This ap-
proach to constructing phylogenies has been studied since the 1960s [7, 23–25,
32] and was given a precise mathematical formulation in the 1970s [10–13]. In
particular, Buneman [6] showed that the Perfect Phylogeny problem reduces to
a specific graph-theoretic problem, the problem of finding a chordal completion
of a graph that respects a prescribed colouring. In fact, the two problems are
polynomially equivalent [21]. Thus, using this formulation, it has been proved
that the Perfect Phylogeny problem is NP -hard in [3] and independently in [30].
These two results rely on the fact that the input may contain partial characters.
In fact, the characters in these constructions only have two states. If we insist on
full characters, the situation is different as for any fixed number r of character

† Some formulations of this question use the term “binary”, as in “rooted binary tree”.



states, the problem can be solved in time polynomial [1] in the size of the input
(and exponential in r). In particular, for r = 2 (or r = 3), the solution exists if
and only if it exists for every pair (or triple) of characters [13, 22]. Also, when the
number of characters is k (even if there are partial characters), the complexity
[26] is polynomial in the number of species (and exponential in k).

Another common formulation of this problem is the problem of a consensus
tree [9, 17, 30], where a collection of subtrees with labelled leaves is given (for
instance, the leaves correspond to species of a partial character). Here, we ask
for a (phylogenetic) tree such that each of the input subtrees can be obtained
by contracting edges of the tree (we say that the tree displays the subtree). The
problem does not change [28] if we only allow particular input subtrees, the so-
called quartet trees, which have exactly six vertices and four leaves. This follows
from the fact that every ternary phylogenetic tree can be uniquely described by
a collection of quartet trees [28]. However, a collection of quartet trees does not
necessarily uniquely describe a ternary phylogenetic tree.

This leads to a natural question: what is the complexity of deciding whether or
not a collection of quartet trees uniquely describes a (ternary) phylogenetic tree?
This question was first posed in 1992 in [30], later conjectured to be NP -hard
[28] and listed on M. Steel’s personal webpage [29] where he offers $100 for the
first proof of NP -hardness.

In this paper, we are the first to answer this question by showing that the
problem is indeed NP -hard. That is, we prove the following theorem.

Theorem 1. It is NP -hard to determine, given a ternary phylogenetic X-tree
T and a collection Q of quartet subtrees on X, whether or not T is the only
phylogenetic tree that displays Q.

(We note that an alternative proof of this theorem recently appeared on arxiv [4].
The proof uses different techniques and extends the hardness result of [30].)

In light of this, we note that there are special cases of the problem that are
known to be solvable in polynomial time. For instance, this is so if the collection
Q contains a subcollection Q′ with the same set L of labels of leaves and with
|Q′| = |L|−3. However, finding such a subcollection is known to beNP -complete.
For these and similar results, we refer the reader to [2].

We prove Theorem 1 by describing a polynomial-time reduction from the
uniqueness problem for one-in-three-3sat, which is NP -hard by [20].†

Theorem 2. [20] It is NP -hard to decide, given an instance I to one-in-

three-3sat, and a truth assignment σ that satisfies I, whether or not σ is
the unique satisfying truth assignment for I.

Our construction in the reduction is essentially a modification of the con-
struction of [3] which proves NP -hardness of the Perfect Phylogeny problem.

† We extract this from [20] by encoding the problem as the relation {001, 010, 100}.
We check that this relation is not: 0-valid, 1-valid, Horn, anti-Horn, affine, 2SAT, or
complementive. Then the uniqueness of the satisfiability problem corresponding to
this relation is CoNP -hard by [20] and thus NP -hard (assuming Turing reductions).



Recall that the construction of [3] produces instances Q that have a perfect
phylogeny if and only if a particular boolean formula Φ is satisfiable. We im-
mediately observed that these instances Q have, in addition, the property that
Φ has a unique satisfying assignment if and only if there is a unique minimal
restricted chordal completion of the partial partition intersection graph of Q (for
definitions see Section 2). This is precisely one of the two necessary conditions
for uniqueness of perfect phylogeny as proved by Semple and Steel in [27] (see
Theorem 4). Thus by modifying the construction of [3] to also satisfy the other
condition of uniqueness of [27], we obtained the construction that we present
in this paper. Note that, however, unlike [3] which uses 3sat, we had to use a
different NP -hard problem in order for the construction to work correctly. Also,
to prove that the construction is correct, we employ a variant of the characteri-
zation of [27] that uses the more general chordal sandwich problem [15] instead
of the restricted chordal completion problem (see Theorem 7). In fact, by way of
Theorems 5 and 6, we establish a direct connection between the problem of per-
fect phylogeny and the chordal sandwich problem, which apparently has not been
yet observed. (Note that the connection to the (restricted) chordal completion
problem of coloured graphs as mentioned above [6, 21] is a special case of this.)

Finally, as a corollary, we obtain the following result using [8].

Corollary 1. The Unique chordal sandwich problem is NP -hard. Counting the
number of minimal chordal sandwiches is #P -complete.

The paper is structured as follows. In Section 2, we introduce definitions and
some preliminary work. In Sections 3 and 4, we present our hardness reduction,
first informally and then formally. Then we sketch the proof of one of the main
theorems (Theorem 8) in Section 5, and conclude with some open questions.

2 Preliminaries

We mostly follow the terminology of [27, 28] and graph-theoretical notions of [31].
Let X be a non-empty set. An X-tree is a pair (T, φ) where T is tree and

φ : X → V (T ) is a mapping such that φ−1(v) 6= ∅ for all vertices v ∈ V (T )
of degree at most two. An X-tree (T, φ) is ternary if all internal vertices of T
have degree three. Two X-trees (T1, φ1), (T2, φ2) are isomorphic if there exists
an isomorphism ψ : V (T1) → V (T2) between T1 and T2 that satisfies φ2 = ψ◦φ1.

An X-tree (T, φ) is a phylogenetic X-tree (or a free X-free in [27]) if φ is
a bijection between X and the set of leaves of T . A partial partition of X is
a partition of a non-empty subset of X into at least two sets. If A1, A2, . . . ,
At are these sets, we call them cells of this partition, and denote the partition
A1|A2| . . . |At. If t = 2, we call the partition a partial split. A partial split A1|A2

is trivial if |A1| = 1 or |A2| = 1. A quartet tree is a ternary phylogenetic tree with
a label set of size four, that is, a ternary tree T with 6 vertices, 4 leaves labelled
a, b, c, d, and with only one non-trivial partial split {a, b}|{c, d} that it displays.
Note that such a tree is unambiguously defined by this partial split. Thus, in the
subsequent text, we identify the quartet tree T with the partial split {a, b}|{c, d},
that is, we say that {a, b}|{c, d} is both a quartet tree and a partial split.
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Fig. 1. a) quartet trees Q, b) and c) two X-trees displaying Q and distinguished by Q,
d) the graph int∗(Q); the dotted lines represent the edges of forb(Q).

Let T = (T, φ) be an X-tree, and let π = A1|A2| . . . |At be a partial partition
of X . Let F ⊆ E(T ) be a set of edges of T . We say that F displays π in T if for
all distinct i, j ∈ {1 . . . t}, the sets φ(Ai) and φ(Aj) are subsets of the vertex sets
of different connected components of T −F . We say that T displays π if there is
a set of edges that displays π in T . Further, an edge e of T is distinguished by π
if every set of edges that displays π in T contains e.

Let Q be a collection of partial partitions of X . An X-tree T displays Q if
it displays every partial partition in Q. An X-tree T = (T, φ) is distinguished
by Q if every internal edge of T is distinguished by some partial partition in Q;
we also say that Q distinguishes T . The set Q defines T if T displays Q, and
all other X-trees that display Q are isomorphic to T . Note that if Q defines T ,
then T is necessarily a ternary phylogenetic X-tree, since otherwise “resolving”
any vertex either of degree four or more, or with multiple labels results in a
non-isomorphic X-tree that also displays Q (also, see Proposition 2.6 in [27]).
See Figure 1 for an illustration of these concepts.

The partial partition intersection graph of Q, denoted by int(Q), is a graph
whose vertex set is {(A, π) | where A is a cell of π ∈ Q} and two vertices (A, π),
(A′, π′) are adjacent just if the intersection of A and A′ is non-empty.

A graph is chordal if it contains no induced cycle of length four or more. A
chordal completion of a graph G = (V,E) is a chordal graph G′ = (V,E′) with
E ⊆ E′. A restricted chordal completion of int(Q) is a chordal completion G′

of int(Q) with the property that if A1,A2 are cells of π ∈ Q, then (A1, π) is
not adjacent to (A2, π) in G′. A restricted chordal completion G′ of int(Q) is
minimal if no proper subgraph of G′ is a restricted chordal completion of int(Q).

The problem of perfect phylogeny is equivalent to the problem of determining
the existence of anX-tree that display the given collectionQ of partial partitions.
In [6], it was given the following graph-theoretical characterization.

Theorem 3. [6, 28, 30] Let Q be a set of partial partitions of a set X. Then there
exists an X-tree that displays Q if and only if there exists a restricted chordal
completion of int(Q).

Of course, the X-tree in the above theorem might not be unique. For the
problem of uniqueness, Semple and Steel [27, 28] describe necessary and sufficient
conditions for when a collection of partial partitions defines an X-tree.



Theorem 4. [27] Let Q be a collection of partial partitions of a set X. Let T
be a ternary phylogenetic X-tree. Then Q defines T if and only if:

(i) T displays Q and is distinguished by Q, and
(ii) there is a unique minimal restricted chordal completion of int(Q).

In order to simplify our proof of Theorem 1, we now describe a variant of the
above theorem that, instead, deals with the notion of chordal sandwich [15].

Let G = (V,E) and H = (V, F ) be two graphs on the same set of vertices
with E ∩ F = ∅. A chordal sandwich of (G,H) is a chordal graph G′ = (V,E′)
with E ⊆ E′ and E′ ∩F = ∅.† A chordal sandwich G′ of (G,H) is minimal if no
proper subgraph of G′ is a chordal sandwich of (G,H).

The cell intersection graph of Q, denoted by int∗(Q), is the graph whose
vertex set is {A | where A is a cell of π ∈ Q} and two vertices A, A′ are adjacent
just if the intersection of A and A′ is non-empty. Let forb(Q) denote the graph
whose vertex set is that of int∗(Q) in which there is an edge between A and A′

just if A,A′ are cells of some π ∈ Q. See Figure 1d for an example.
The correspondence between the partial partition intersection graph and the

cell intersection graph is captured by the following theorem.

Theorem 5. Let Q be a collection of partial partitions of a set X. There is a
one-to-one mapping between the minimal restricted chordal completions of int(Q)
and the minimal chordal sandwiches of (int∗(Q), forb(Q)).

The proof of this theorem follows easily from the following lemma.

Lemma 1. Let G be a graph, and let G+ be a graph obtained from G by substi-
tuting complete graphs ‡ for the vertices of G. Then there is a one-to-one mapping
between minimal chordal completions of G and G+.

This combined with Theorem 3 yields that there is a phylogeneticX-tree that
displays Q if and only if there exists a chordal sandwich of (int∗(Q), forb(Q)).
Conversely, we can express every instance to the chordal sandwich problem as a
corresponding instance to the problem of perfect phylogeny as follows.

Theorem 6. Let (G,H) be an instance to the chordal sandwich problem. Then
there is a collection Q of partial splits such that there is a one-to-one mapping
between the minimal chordal sandwiches of (G,H) and the minimal restricted
chordal completions of int(Q). In particular, there exists a chordal sandwich for
(G,H) if and only if there exists a phylogenetic tree that displays Q.

Proof. (Sketch) Without loss of generality, we may assume that each connected
component of G has at least three vertices. As usual, G = (V,E) and H = (V, F )
where E ∩ F = ∅. The collection Q satisfying the claim is defined as follows:
for every edge xy ∈ F , we construct the partial split Dx|Dy, where Dx are the
edges of E incident to x, and Dy are the edges of E incident to y. �

As a corollary, we obtain the following desired characterization.

† we say that E are the forced edges and F are the forbidden edges.
‡ replacing v by a complete graph K and adding edges {ux | x ∈ V (K)∧ uv ∈ E(G)}



Theorem 7. Let Q be a collection of partial partitions of a set X. Let T be a
ternary phylogenetic X-tree. Then Q defines T if and only if:

(i) T displays Q and is distinguished by Q, and

(ii) there is a unique minimal chordal sandwich of
(

int∗(Q), forb(Q)
)

.

The main technical advantage of this theorem over Theorem 4 is that it is less
restrictive; it allows us to construct instances with arbitrary sets of forbidden
edges rather than just with forbidden edges between vertices of the same colour.
This makes our proof of Theorem 1 much simpler and more manageable.

3 Construction

Consider an instance I to one-in-three-3sat. The instance I consists of n
variables v1, . . . , vn and m clauses C1, . . . , Cm each of which is a disjunction of
exactly three literals (i.e., variables vi or their negations vi).

To simplify the presentation, we shall denote literals by capital letters X , Y ,
etc., and indicate their negations by X, Y , etc. (For instance, if X = vi then
X = vi, and if X = vi then X = vi.)

By standard arguments, we may assume that no variable appears twice in
the same clause. First, we discuss how to find a collection QI of quartet trees
arising from the instance I that satisfies the following theorem.

Theorem 8. There is a one-to-one mapping between the satisfying assignments
of the instance I and the minimal chordal sandwiches of (int∗(QI), forb(QI)).

Before describing the collection QI , let us briefly review the construction
from [3] that proves NP -hardness of the Perfect Phylogeny problem. For conve-
nience, we describe it in terms of the chordal sandwich problem whose input is a
graph with (forced) edges and forbidden edges. In the construction from [3], one
similarly considers a collection C1, . . . , Cm of 3-literal clauses, and treats it as an
instance of 3-satisfiability. From this instance, one constructs a graph where
each variable vi corresponds to two shoulders Svi and Svi , and where each literal
W in a clause Cj corresponds to a pair of knees Kj

W and Kj

W
. In addition, there

are two special vertices the head H and the foot F . All shoulders are adjacent
to the head while all knees are adjacent to the foot. Further, if vi occurs in the
clause Cj (positively or negatively), then the vertices H , Svi , K

j
vi
, F , Kj

vi
, Svi

form an induced 6-cycle (see Figure 2a). Also, if Cj = X∨Y ∨Z, then the vertices

K
j
X , Kj

Y , K
j
Z induce a triangle with pendant edges Kj

XK
j

Y
, Kj

YK
j

Z
, and Kj

ZK
j

X

(we call this the clause gadget, see Figure 2b).
Finally, the edge between H and F is forbidden in the desired chordal sand-

wich, and so is the edge between Svi and Svi , and between Kj
vi

and Kj
vi

for all
meaningful indices i and j (the dotted edges in Figure 2).

The main idea of this construction is that each of the 6-cycles allows only two
possible chordal sandwiches: either the path H,Kj

vi
, Svi , F is added, or the path

H,K
j
vi
, Svi , F is added (the authors of [3] call this path the “Mark of Zorro”).

These two choices correspond to assigning vi the value true or false, respectively,
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Fig. 2. a) and b) configurations from [3], c) and d) configurations from our construction
(note that in c) the literal W is either vi or vi, and is the p-th literal of the clause Cj)

and the construction ensures that this choice is consistent over all clauses. This
only produces satisfying assignments to 3-satisfiability, since we notice that
no chordal sandwich adds a triangle on Kj

X
,K

j

Y
,K

j

Z
.

We can try to use this construction to prove Theorem 1. We immediately ob-
serve that the truth assignments satisfying the clauses C1, . . . , Cm are in one-to-
one correspondence with the minimal chordal sandwiches of the above graph G.
This is a little technical to prove. To do this, one first observes that different as-
signments add a different mark of Zorro to at least one 6-cycle. For the converse,
one needs to find out which edges are forced in the sandwich after the marks
of Zorro are added according to a satisfying assignment. It turns out that these
edges yield a chordal sandwich, and thus a minimal chordal sandwich.

From G, using Theorems 5 and 6, one can construct a collection Q of partial
splits (phylogenetic trees) such that the satisfying assignments of the clauses
C1, . . . , Cm are in one-to-one correspondence with the minimal chordal sand-
wiches of (int∗(Q), forb(Q)). In particular, this collection Q satisfies the con-
dition (ii) of Theorem 7 if and only if the clauses C1, . . . , Cm have a unique
satisfying assignment. Since this is NP -hard to determine [20], it would seem
like we almost have a proof of Theorem 1. Unfortunately, we are missing a crucial
piece which is the phylogenetic tree T satisfying the condition (i) of Theorem 7
for the collection Q. A straightforward construction of such a tree based on [27]
yields a phylogenetic tree that is distinguished by Q, but whose internal nodes
may have degree higher than three. If we try to fix this (by “resolving” the high-
degree nodes in order to get a ternary tree), the resulting tree may no longer be



distinguished by Q. Moreover, the collection Q may not consist of quartet trees
only. For all these reasons, we need to modify the construction of G.

First, we discuss how to modify G so that it corresponds to a collection of
quartet trees. To do this, we must ensure that the neighbourhood of each vertex
consists of two cliques (with possibly edges between them). We construct a new
graph GI by modifying G as follows. Instead of one head H , we now have, for
each variable vi, two heads Hvi , Hvi , and an auxiliary head Ai. For a literal W
in the clause Cj , we now have two shoulders Sj

W and S
j

W
, and, as before, two

knees Kj
W and Kj

W
, but also an additional auxiliary knee Lj

W . Further, for each

clause Cj , we have a foot F j and three auxiliary feet Dj
1, D

j
2, and D

j
3. Finally, we

have one additional vertex B known as the backbone. The resulting modifications
to the 6-cycles and the clause gadgets can be seen in Figures 2c and 2d. (The
forbidden edges are again indicated by dotted lines.) Note that, unlike in the case
of G, this is not a complete description of GI as we need to add some additional
(forced) edges and forbidden edges not shown in these diagrams in order to make
the reduction work. This is rather technical and we omit this for brevity.

From the construction, we conclude that, just like in G, the “6-cycles” of GI

(Figure 2c) admit only two possible kinds of sandwiches, and this is consistent
over different clauses. However, unlike in G, the chordal sandwiches of GI no
longer correspond to satisfying assignments of 3-satisfiability but rather to
satisfying assignments of one-in-three-3-sat. Fortunately, this problem is also
NP -hard as is its uniqueness variant as previously discussed (see Theorem 2).

Now, from GI , we construct a collection QI of quartet trees. To do this, we
cannot just use Theorem 6 as before, since this may create partial partitions
that do not correspond to quartet trees. Moreover, even if we use [28] to replace
these partitions by an equivalent collection of quartet trees, this process may
not preserve the number of solutions. We need a more careful construction.

We recall that the each vertex v of GI belongs to two cliques that com-
pletely cover its neighbourhood; we assign greek letters to these two cliques (to
distinguish them from vertices), and associate them with v.

In particular, we use the following symbols: αW , βj
W , γj1, γ

j
2 , γ

j
3, λ

j , δ, µ where
W is a literal and j ∈ {1 . . .m}. They define specific cliques of GI as follows.
The letter αW defines the clique of GI consisting of all heads and shoulders
of W . The letter βj

W corresponds to the clique formed by the shoulder Sj
W and

the knees Kj

W
, Lj

W
(if exists). Further, λj yields a clique on F j , Dj

1, D
j
2, D

j
3,

K
j
X , Kj

Y , K
j
Z where Cj = X ∨Y ∨Z, while the clique for γjp where p ∈ {1, 2, 3} is

formed by Dj
p, K

j

W
, Lj

U where W and U are the p-th and (p− 1)-th (modulo 3)
literals of Cj . Finally, δ corresponds to the clique containing B and all heads HW

whereas µ correspond to the clique with B and all feet F j .

From this, we construct the collectionQI by considering every forbidden edge
uv of GI and by constructing a partial partition with two cells in which one cell
is the set of cliques assigned to u and the other is the set of cliques assigned to v.
Since we assign to each vertex of GI exactly two cliques, this yields partitions
corresponding to quartet trees. For instance, in Figure 2d, we have a forbidden



edge Kj
XK

j

X
where Kj

X is assigned cliques βj

X
, λj and K

j

X
is assigned β

j
X , γ

j
1 .

This yields a quartet tree {βj

X
, λj}|{βj

X , γ
j
1}. The complete definition of QI can

be found in Section 4. Finally, since by construction every vertex of GI is incident
to at least one forbidden edge, we conclude that GI = int∗(QI).

This completes the overview of the proof of Theorem 8. Its actual proof
is quite technical and involved, but it is along the same lines as the uniqueness
property we discussed for G, i.e., one describes the edges forced by an assignment
and proves that this yields a chordal sandwich. (We sketch this in Section 5.)

To complete the result, we need to explain how to construct a phylogenetic
tree corresponding to a satisfying assignment for C1, . . . , Cm (as an instance of
one-in-three-3sat) and show that it displays and is distinguished by the trees
in QI . Instead of giving a formal definition here, we discuss a small example.
(The complete description is rather technical and is presented in Section 4.)

The example instance I+ consists of four variables v1, v2, v3, v4 and three
clauses C1 = v1 ∨ v2 ∨ v3, C2 = v1 ∨ v2 ∨ v4, and C3 = v3 ∨ v2 ∨ v4. The unique
satisfying assignment assigns true to v1, v4 and false to v2, v3. The corresponding
phylogenetic tree T = (T, φ) is shown in Figure 3.
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Fig. 3. The phylogenetic tree for the example instance I+.

For instance, one of the quartet trees in QI+ is π = {αv1 , β
1
v1
}|{αv1 , β

1
v1
}

representing the forbidden edge of GI+ between S1
v1

and S1
v1
. It is easy to verify

T displays π. Another example fromQI+ is π′ = {β1
v1
, λ1}|{β1

v1
, γ11} representing

the forbidden edgeK1
v1
K1

v1
. Again, it is displayed by T , but this time one internal

edge of T is contained in every set of edges of T that displays π′ in T ; hence,
this edge is distinguished by π′. This way we can verify all other quartet trees
in QI+ and conclude that they are displayed by T and they distinguish T .

Now, with the help of Theorem 7, this allows us to prove that given an
instance I to one-in-three-3sat and a satisfying assignment ϕ for I, one can
in polynomial time construct a phylogenetic tree T and a collection of quartet
trees Q such that T is the unique tree defined by Q if and only if ϕ is the unique
satisfying assignment for I. Combined with Theorem 2, this proves Theorem 1.

That concludes this section. In the next sections, we formally describe the
above constructions and sketch some proofs. For full details of proofs, we invite
the reader to see our arxiv version of this paper [19].



4 Formal description

Let I be an instance to one-in-three-3sat consisting of variables v1, . . . , vn
and clauses C1, . . . , Cm. A truth assignment σ assigns to each variable vi a truth
value true or false; we indicate this by writing vi = 1 or vi = 0, respectively, and
extend this notation to literals. A truth assignment σ is a satisfying assignment
for I if in each clause Cj exactly one the three literals evaluates to true.

For each i ∈ {1 . . . n}, we let ∆i denote all indices j such that vi or vi appears
in the clause Cj. Let XI be the set consisting of the elements:

a) αvi , αvi for each i ∈ {1 . . . n},

b) βj
vi
, βj

vi
for each i ∈ {1 . . . n} and each j ∈ ∆i,

c) γj1 , γ
j
2, γ

j
3 , λ

j for each j ∈ {1 . . .m}, and

d) δ and µ.

Consider the following collection of 2-element subsets of XI :

a) B =
{

µ, δ
}

, b) for each i ∈ {1, . . . , n}:

Hvi={αvi, δ
}

, Hvi={αvi , δ
}

, Ai =
{

αvi , αvi

}

,

Sj
vi

=
{

αvi , β
j
vi

}

, Sj
vi

=
{

αvi , β
j
vi

}

for all j ∈ ∆i,

c) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

K
j

X
=

{

β
j
X , γ

j
1

}

, Kj

Y
=

{

β
j
Y , γ

j
2

}

, Kj

Z
=

{

β
j
Z , γ

j
3

}

,

K
j
X =

{

β
j

X
, λj

}

, Kj
Y =

{

β
j

Y
, λj

}

, Kj
Z =

{

β
j

Z
, λj

}

,

L
j
X =

{

β
j

X
, γ

j
2

}

, Lj
Y =

{

β
j

Y
, γ

j
3

}

, Lj
Z =

{

β
j

Z
, γ

j
1

}

,

D
j
1 =

{

γ
j
1 , λ

j
}

, D
j
2 =

{

γ
j
2 , λ

j
}

, D
j
3 =

{

γ
j
3, λ

j
}

, F j =
{

λj , µ
}

.

The collection QI of quartet trees is defined as follows:

QI =
⋃

i∈{1...n}

{

Ai|B
}

∪
⋃

j∈{1...m}

{

D
j
1|B,D

j
2|B,D

j
3|B

}

∪
⋃

i∈{1...n}
j,j′∈∆i

{

Sj
vi
|Sj′

vi

}

∪
⋃

i∈{1...n}
j,j′∈∆i and j<j′

{

Sj
vi
|Kj′

vi
, S

j
vi
|Kj′

vi

}

∪
⋃

i∈{1...n}
j∈∆i and j<j′≤m

{

K
j
vi
|F j′ ,Kj

vi
|F j′

}

∪
⋃

1≤i′<i≤n
j∈∆i

{

Hvi′
|Sj

vi
, Hvi′

|Sj
vi
, Hvi′

|Sj
vi
, Hvi′

|Sj
vi

}

∪
⋃

i∈{1...n}
j∈{1...m}

{

Hvi |F
j , Hvi |F

j
}

∪
⋃

j∈{1...m}
where Cj=X∨Y ∨Z

{

K
j

X
|Kj

X , Kj

Y
|Kj

Y , K
j

Z
|Kj

Z , K
j

X
|Lj

X , Kj

Y
|Lj

Y , K
j

Z
|Lj

Z

S
j
Y |K

j
X , Sj

Z |K
j
Y , S

j
X |Kj

Z , S
j
Z |L

j
X , S

j
X |Lj

Y , S
j
Y |L

j
Z

}

Let TI be the tree defined as follows:

V (TI) =
{

y0, y1, y
′
1, . . . , yn, y

′
n

}

∪
{

a1, a
′
1, . . . , an, a

′
n

}

∪
{

u0, u1, . . . , um

}

∪
{

x
j
1, x

j
2, x

j
3, x

j
4, x

j
5, x

j
6, b

j
1, b

j
2, b

j
3, g

j
1, g

j
2, g

j
3, ℓ

j
}m

j=1

∪
{

c
j
i , z

j
i | j ∈ ∆i

}n

i=1



E(TI) =
{

y1y
′
1, y2y

′
2, . . . , yny

′
n

}

∪
{

a1y
′
1, a2y

′
2, . . . any

′
n

}

∪
{

c
j
iz

j
i | j ∈ ∆i

}n

i=1

∪
{

y0y1, y1y2, y2y3, . . . , yn−1yn

}

∪
{

ynu1, u1u2, u2u3, . . . , um−1um, umu0

}

∪
{

ujx
j
1, x

j
1x

j
2, x

j
2x

j
3, x

j
2x

j
4, x

j
4x

j
5, x

j
4x

j
6, b

j
1x

j
6, b

j
2x

j
3, b

j
3x

j
5, g

j
1x

j
6, g

j
2x

j
1, g

j
3x

j
3, ℓ

jx
j
5

}m

j=1

∪
{

a′iz
j1
i , z

j1
i z

j2
i , . . . , z

jt−1

i z
jt
i , z

jt
i y

′
i

∣

∣

∣
j1 < j2 < . . . < jt are elements of ∆i

}n

i=1

Let σ be a satisfying assignment for the instance I, and let φσ be the mapping
of XI to V (TI) defined as follows:

a) for each i ∈ {1 . . . n}:
if vi = 1, then φσ(αvi) = ai, φσ(αvi) = a′i, φσ(β

j
vi
) = c

j
i for all j ∈ ∆i,

if vi = 0, then φσ(αvi) = ai, φσ(αvi) = a′i, φσ(β
j
vi
) = c

j
i for all j ∈ ∆i,

b) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

if X = 1, then φσ(β
j
X) = b

j
1, φσ(β

j

Y
) = b

j
2, φσ(β

j

Z
) = b

j
3,

φσ(γ
j
1) = g

j
1, φσ(γ

j
2) = g

j
2, φσ(γ

j
3) = g

j
3, φσ(λ

j) = ℓj ,

if Y = 1, then φσ(β
j
Y ) = b

j
1, φσ(β

j

Z
) = b

j
2, φσ(β

j

X
) = b

j
3,

φσ(γ
j
2) = g

j
1, φσ(γ

j
3) = g

j
2, φσ(γ

j
1) = g

j
3, φσ(λ

j) = ℓj ,

if Z = 1, then φσ(β
j
Z) = b

j
1, φσ(β

j

X
) = b

j
2, φσ(β

j

Y
) = b

j
3,

φσ(γ
j
3) = g

j
1, φσ(γ

j
1) = g

j
2, φσ(γ

j
2) = g

j
3, φσ(λ

j) = ℓj ,

c) φσ(δ) = y0 and φσ(µ) = u0.

Theorem 9. If σ is a satisfying assignment for I, then Tσ = (TI , φσ) is a
ternary phylogenetic XI-tree that displays QI and is distinguished by QI .

5 Proof of Theorem 8

To explain the proof, we need the following naming convention adopted from [3].
If W is a literal in the clause Cj , we say that Sj

W is a shoulder of the clause Cj
as well as a shoulder of the literal W . It is a a true shoulder if W = 1; otherwise,
a false shoulder. Similarly, the vertex Kj

W and L
j
W (if exists) are knees of the

clause Cj as well as knees of the literal W . A knee of W is a true knee if W = 1;
otherwise, a false knee. The vertices Ai, D

j
p, HW , F j for all meaningful choices of

indices are respectively called A-vertices, D-vertices, H-vertices, and F -vertices.

Let Gσ be the graph constructed from int∗(QI) by performing the following.

(i) make B adjacent to all true knees and true shoulders.

Let G′
σ be constructed from Gσ by performing the following steps.

(ii) make {true knees, true shoulders} into a complete graph,
(iii) for all i ∈ {1 . . . n}, make Ai adjacent to all true knees of the literals vi,vi,
(iv) for all 1 ≤ i′ ≤ i ≤ n, make Hvi , Hvi adjacent to all true knees and true

shoulders of the literals vi′ , vi′ ,
(v) for all 1 ≤ j ≤ j′ ≤ m, make F j adjacent to all true knees and true

shoulders of the clause Cj′ ,



(vi) for all 1 ≤ i ≤ n and all j, j′ ∈ ∆i such that j ≤ j′:

a) if vi = 1, make Sj′

vi
adjacent to Kj

vi
, Lj

vi
(if exists),

b) if vi = 0, make Sj′

vi
adjacent to Kj

vi
, Lj

vi
(if exists).

Finally, let G∗
σ be constructed from G′

σ by adding the following edges.

(vii) for all j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

a) if X = 1, then add edges F jL
j
Z , K

j
XL

j
Z , K

j
YK

j

Z
, Dj

2K
j

Z
, Dj

2S
j

Y
, Dj

3S
j

Y

and make {Dj
1, D

j
2, D

j
3, S

j
X , Sj

Z
, Lj

Z , K
j
Y } into a complete graph,

b) if Y = 1, then add edges F jL
j
X , Kj

Y L
j
X , Kj

ZK
j

X
, Dj

3K
j

X
, Dj

3S
j

Z
, Dj

1S
j

Z

and make {Dj
1, D

j
2, D

j
3, S

j
Y , S

j

X
, Lj

X , Kj
Z} into a complete graph,

c) if Z = 1, then add edges F jL
j
Y , K

j
ZL

j
Y , K

j
XK

j

Y
, Dj

1K
j

Y
, Dj

1S
j

X
, Dj

2S
j

X

and make {Dj
1, D

j
2, D

j
3, S

j
Z , S

j

Y
, Lj

Y , K
j
X} into a complete graph.

Lemma 2. G′
σ is a subgraph of every chordal sandwich of (Gσ, forb(QI)).

Lemma 3. If σ is a satisfying assignment for I, then G∗
σ is a subgraph of every

chordal sandwich of (Gσ, forb(QI)).

Lemma 4. For every chordal sandwich G′ of (int∗(QI), forb(QI)), there is σ
such that Gσ is a subgraph of G′, and such that σ is a satisfying assignment for I.

Lemma 5. If σ is a satisfying assignment for I, then G∗
σ is chordal.

Proof. (Sketch) Assume that σ is a satisfying assignment for I, i.e., in each
clause Cj exactly one literal evaluates to 1 by the assignment.

Consider the partition V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 of V (G∗
σ) where V1 = {false

knees, D-vertices}, V2 = {false shoulders}, V3 = {A-vertices}, V4 = {H-vertices,
F -vertices}, and V5 = {true knees, true shoulders, the vertex B}.

Let π be an enumeration of V (G∗
σ) constructed by listing the elements of V1,

V2, V3, V4, V5 in this order such that:

(•) the elements of V1 are listed by considering each clause Cj = X ∨ Y ∨Z and
listing vertices (based on the truth assignment) as follows:

a) if X = 1, then list Kj

X
, Kj

Z , L
j
Y , L

j
Z, D

j
1, K

j
Y , D

j
3, D

j
2 in this order,

b) if Y = 1, then list Kj

Y
, Kj

X , Lj
Z , L

j
X , Dj

2, K
j
Z , D

j
1, D

j
3 in this order,

c) if Z = 1, then list Kj

Z
, Kj

Y , L
j
X , Lj

Y , D
j
3, K

j
X , Dj

2, D
j
1 in this order,

(•) the elements of V2 (the false shoulders) are listed by listing the false shoulders
of the clauses C1, C2, . . . , Cm in this order,

(•) the elements of V4 are listed as follows: first Hv1 , Hv1 , Hv2 , Hv2 , . . .Hvn ,
Hvn in this order, then Fm, Fm−1, . . . , F 1 in this order,

(•) the elements of V3 and V5 are listed in any order.

A simple but tedious analysis shows that π is a perfect elimination ordering
of the vertices of G∗

σ. This proves that G
∗
σ is indeed a chordal graph (see [14]). �

Proof of Theorem 8. Let G′ be a minimal chordal sandwich of (int∗(QI),
forb(QI)). By Lemma 4, there exists σ, a satisfying assignment for I, such that



Gσ is a subgraph fo G′. Thus, G′ is also a chordal sandwich of (Gσ , forb(QI)),
and hence, G∗

σ is a subgraph of G′ by Lemma 3. But by Lemma 5, G∗
σ is chordal,

and so G′ is isomorphic to G∗
σ by the minimality of G′.

Conversely, if σ is a satisfying assignment for I, then the graph G∗
σ is chordal

by Lemma 5. Moreover, int∗(QI) is a subgraph of G∗
σ, by definition, and G∗

σ

contains no edges of forb(QI), also by definition. Thus, G∗
σ is a chordal sandwich

of (int∗(QI), forb(QI)), and it is minimal by Lemma 3.
This proves that by mapping each satisfying assignment σ to the graph G∗

σ,
we obtain the required bijection. That concludes the proof. �

6 Conclusion

In this paper, we have shown that determining whether a given phylogenetic tree
represents the unique evolution of given species is an NP -hard problem. This
implies that the problem is actually CoNP -complete, as it can be defined by
the formula “for every pair of trees, if they are solutions, they are isomorphic”.
Moreover, the problem clearly remains NP -hard even if the tree is not provided
and we only want to test whether there is a unique solution. (For this, note that
isomorphism of trees and testing if a tree is a solution takes polynomial time.)

In addition, we proved that the unique chordal sandwich problem isNP -hard.
Following this direction, it would be interesting to consider the complexity of
uniqueness of other sandwich problems, for instance, interval sandwich (DNA
physical mapping) or cograph sandwich (genome comparison); the decision prob-
lem for the former is NP -hard [16] while it is polynomial for the latter [5, 15].
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