On P_{4}-transversals of Chordal Graphs

Juraj Stacho
School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

Abstract

A P_{4}-transversal of a graph G is a set of vertices T which meets every P_{4} of G. A P_{4} transversal T is called stable if there are no edges in the subgraph of G induced by T. It has been previously shown by Hoàng and Le that it is $N P$-complete to decide whether a comparability (and hence perfect) graph G has a stable P_{4}-transversal. In the following we show that the problem is $N P$-complete for chordal graphs. We apply this result to show that two related problems of deciding whether a chordal graph has a P_{3}-free P_{4}-transversal, and deciding whether a chordal graph has a P_{4}-free P_{4}-transversal (also known as a two-sided P_{4}-transversal) are both $N P_{-}$ complete. Additionally, we strengthen the main results to strongly chordal graphs.

Key words: chordal graphs, P_{4}-transversal

1 Introduction and results

A graph is perfect if for every induced subgraph H of G, the chromatic number $\chi(H)$ is equal to the clique number $\omega(H)$. The Strong Perfect Graph Theorem states that a graph is perfect if and only if it has no induced odd cycle or its complement [2]. This result had been conjectured by Berge [1]. In the long history of this conjecture, the study of the structure of P_{4} 's in a graph has been found to play an important role. In [8], the authors define the notion of a P_{4}-transversal to be a subset of vertices of a graph meeting every P_{4}. They show that if a graph has a P_{4}-transversal with certain properties it is guaranteed to be perfect. They also investigate the complexity of finding a P_{4}-transversal with various properties. In particular they investigate stable P_{4}-transversals, i.e., P_{4}-transversals which form a stable set - a set of vertices inducing a subgraph with no edges. They show that for comparability graphs

Email address: jstacho@cs.sfu.ca (Juraj Stacho).
(and therefore also for perfect graphs) it is $N P$-complete to decide whether a graph has a stable P_{4}-transversal. In [9], the authors consider a related problem of P_{4}-colourings. They show that finding a P_{4}-free P_{4}-transversal (a " P_{4}-free 2-colouring" in their terminology) is $N P$-complete for comparability graphs, P_{5}-free graphs and $\left(C_{4}, C_{5}\right)$-free graphs.

Here we first show that the problem of finding a stable P_{4}-transversal remains $N P$-complete when restricted to chordal graphs:

Theorem 1.1 It is NP-complete to decide whether a given chordal graph has a stable P_{4}-transversal.

We apply this result to derive the following consequences:
Theorem 1.2 It is $N P$-complete to decide whether a given chordal graph has a P_{3}-free P_{4}-transversal.

Theorem 1.3 It is NP-complete to decide whether a given chordal graph has a P_{4}-free P_{4}-transversal.

Note that Theorem 1.3 also improves on the results from [9] mentioned above. We contrast Theorem 1.1 with the result of [4], which can be reformulated as follows:

Theorem 1.4 [4] For chordal graphs, a stable P_{3}-transversal can be found in polynomial time.

We note that the $N P$-completeness of these kinds of partition problems for general graphs has been proved in [6].

In the last section of the paper we discuss some extensions of these results.

2 Preliminaries

A graph G is called H-free if G contains no induced subgraph isomorphic to a graph H. In particular, a P_{4}-free graph is called a cograph. (Recall that P_{4} is the path with four vertices and three edges.) It has been shown [3] that any P_{4}-free graph can be constructed from a single vertex using the operations of disjoint union and join. (The join of two graphs is constructed by taking their disjoint union and adding all possible edges between the two graphs.) The construction of a cograph G can be therefore represented as a rooted tree T in which the leaves are the vertices of the graph G, and the internal nodes are labeled either 0 or 1 , denoting the operations of disjoint union and join respectively. T shall be referred to as a tree representation of G. It could
be easily seen that two vertices of G are adjacent if and only if their least common ancestor in T is labeled 1 . Note that T is not necessarily unique. We call T a cotree if the labels of the internal nodes of T strictly alternate on any path in T. It is known[3] that every cograph has a unique cotree (up to isomorphism). If a tree representation T of a cograph G is not a cotree, one can easily transform it into an equivalent cotree by identifying consecutive vertices of T having the same label. Hence for simplicity, we shall refer to any tree representation of a cograph as a cotree.

A graph is chordal if it does not contain an induced cycle of length 4 or more. It is known [7] that a graph is chordal if and only if there exists a linear ordering \prec of its vertices such that if v, w are two neighbours of u with $u \prec v, u \prec w$, then v and w are adjacent. Such an ordering is called a perfect elimination ordering.

A literal is a variable v_{i} or its negation $\neg v_{i}$ (often written as \bar{v}_{i}). A clause is a disjunction of literals. A propositional formula is in conjunctive normal form if it is written as a conjunction of clauses. The set of all variables of the formula φ is denoted by $\operatorname{var}(\varphi)$. The truth assignment τ for the set of variables $\operatorname{var}(\varphi)$ is a mapping $\tau: \operatorname{var}(\varphi) \rightarrow\{$ true, false $\}$. The 3-satisfiability problem 3SAT is the problem of finding a satisfying truth assignment for all variables of a given formula in conjunctive normal form in which every clause has exactly 3 literals. It is known to be $N P$-complete.

It should be noted that all the problems mentioned in section 1 are clearly in $N P$; this follows from the fact that testing whether a graph contains a P_{4}, a P_{3}, or is a stable set, can be done in polynomial time.

3 Stable P_{4}-transversals

To prove Theorem 1.1, we describe a polynomial time reduction from the problem $3 S A T$. Let φ be a formula in conjunctive normal form with exactly three literals in any clause, i.e. $\varphi=\bigwedge_{j=1}^{m} C_{j}$ where $C_{j}=l_{1}^{j} \vee l_{2}^{j} \vee l_{3}^{j}$ where $l_{1}^{j}, l_{2}^{j}, l_{3}^{j}$ are literals. Let $\operatorname{var}(\varphi)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be all variables appearing in φ. Let $J_{i}^{(+)}$be the indices of clauses which contain the literal v_{i} and $J_{i}^{(-)}$be the indices of clauses which contain the literal $\neg v_{i}$.

Let $C\left(C_{j}\right)$ be the graph shown in Figure 1, and let $G(\varphi)$ for the formula φ be the graph G_{n} inductively defined as follows:
(1) Let G_{0} be the disjoint union of the graphs $\left\{C\left(C_{j}\right)\right\}_{j=1}^{m}$ (see Figure 1).
(2) Let G_{i} (see Figure 1) be the graph created from G_{i-1} as follows. Add two adjacent vertices v_{i} and \bar{v}_{i} and make them completely adjacent to all
vertices of G_{i-1}. For every $j \in J_{i}^{(+)}$add a vertex v_{i}^{j} adjacent to v_{i} and adjacent to the vertex l_{k}^{j} of $C\left(C_{j}\right)$ if v_{i} is the k-th literal of the clause C_{j}. Similarly, for every $j \in J_{i}^{(-)}$add a vertex \bar{v}_{i}^{j} adjacent to \bar{v}_{i} and adjacent to the vertex l_{k}^{j} in $C\left(C_{j}\right)$ if $\neg v_{i}$ is the k-th literal of the clause C_{j}. (Note that we can assume that a literal occurs in a clause only once.)

Fig. 1. The graphs G_{i} and $C\left(C_{j}\right)$. Note that the circle in the center is the graph G_{i-1} completely adjacent to v_{i} and \bar{v}_{i}; and each of the vertices v_{i}^{j} and \bar{v}_{i}^{j} is adjacent to a single vertex in G_{i-1}. The graph $C\left(C_{j}\right)$ corresponds to the clause $C_{j}=l_{1}^{j} \vee l_{2}^{j} \vee l_{3}^{j}$.
We can also describe the graph $G(\varphi)$ in the following (non-inductive) way:
(1) $G(\varphi)$ contains the vertices v_{i}, \bar{v}_{i} for every i, the vertices v_{i}^{j} (resp. \bar{v}_{i}^{j}) for every occurrence of the literal v_{i} (resp. $\neg v_{i}$) in the clause C_{j}, and the vertices of $C\left(C_{j}\right)$ for every clause C_{j} containing among others the vertices l_{1}^{j}, l_{2}^{j} and l_{3}^{j}.
(2) The vertex v_{i} (resp. \bar{v}_{i}) is adjacent to all vertices of $C\left(C_{j}\right)$ for every j, to the vertices $v_{i^{\prime}}, \bar{v}_{i^{\prime}}$ for all i^{\prime}, to all vertices v_{i}^{j} (resp. \bar{v}_{i}^{j}) that may exist, and to all vertices $v_{i^{\prime}}^{j}, \bar{v}_{i^{\prime}}^{j}$ that may exist, for each i^{\prime} with $i^{\prime}<i$.
(3) The vertex v_{i}^{j} (resp. \bar{v}_{i}^{j}) is adjacent to the vertex v_{i} (resp. \bar{v}_{i}), to the vertex l_{k}^{j} such that v_{i} (resp. $\neg v_{i}$) is the k-th literal of the clause C_{j}, and to all vertices $v_{i^{\prime}}, \bar{v}_{i^{\prime}}$ for all i^{\prime} with $i^{\prime}>i$.
(4) The vertex l_{k}^{j} is adjacent to its only neighbour in $C\left(C_{j}\right)$, to the vertex v_{i}^{j} (resp. \bar{v}_{i}^{j}) such that v_{i} (resp. $\neg v_{i}$) is the k-th literal of the clause C_{j}, and to the vertices $v_{i^{\prime}}, \bar{v}_{i^{\prime}}$ for all i^{\prime}.
(5) The remaining vertices of $C\left(C_{j}\right)$ are only adjacent to their respective neighbours in $C\left(C_{j}\right)$ and to the vertices v_{i}, \bar{v}_{i} for all i.

First we need the following proposition and its corollary:
Proposition 3.1 For all i, the graph G_{i} is chordal.
Proof. We prove this by induction. For $i=0$, observe that the graph $C\left(C_{j}\right)$ is chordal for every j, hence G_{0} is chordal. For $i>0$, suppose that G_{i-1} is chordal; let π be a perfect elimination ordering of its vertices. Now it is not difficult to see that $v_{i}^{1}, v_{i}^{2}, \ldots, \bar{v}_{i}^{1}, \bar{v}_{i}^{2}, \ldots, \pi, v_{i}, \bar{v}_{i}$ is a perfect elimination ordering of G_{i}.

Corollary 3.2 The graph $G(\varphi)$ is chordal.
We make the following observations about the graph $G(\varphi)$ and its subgraphs:
Observation 3.3 Every stable P_{4}-transversal of the graph $C\left(C_{j}\right)$ contains at least one of the vertices l_{1}^{j}, l_{2}^{j} or l_{3}^{j}. Every maximal stable set of $C\left(C_{j}\right)$ is a P_{4}-transversal.

Proof. The proof is by inspection.

Proposition 3.4 Let S be a stable P_{4}-transversal of $G(\varphi)$. Then the following holds:
(1) For all $i, v_{i} \notin S$ and $\bar{v}_{i} \notin S$.
(2) For any $j, v_{i}^{j} \notin S$ implies for all $j^{\prime}, \bar{v}_{i}^{j^{\prime}} \in S$

Proof.

(1) The vertex v_{i} is adjacent to all vertices of $C\left(C_{j}\right)$, and so if it belongs to the stable set S, then no vertex of $C\left(C_{j}\right)$ can be in S. Therefore $G(\varphi) \backslash S$ contains all vertices of $C\left(C_{j}\right)$ and hence contains a P_{4}, contrary to S being a P_{4}-transversal. The same holds for \bar{v}_{i}.
(2) Suppose that $v_{i}^{j} \notin S$ and also $\bar{v}_{i}^{j^{\prime}} \notin S$ for some j, j^{\prime}. Then by the previous argument also $v_{i} \notin S$ and $\bar{v}_{i} \notin S$, and hence S cannot be a P_{4}-transversal since the vertices $v_{i}^{j}, v_{i}, \bar{v}_{i}, \bar{v}_{i}^{j}$ form a P_{4} in $G(\varphi) \backslash S$.

Lemma 3.5 The formula φ is satisfiable if and only if the graph $G(\varphi)$ has a stable P_{4}-transversal.

Proof. First suppose that τ is a satisfying truth assignment of φ. We use τ to construct a stable P_{4}-transversal of $G(\varphi)=G_{n}$.

Let S_{0}^{j} be any maximal stable set in $C\left(C_{j}\right)$ with the following property. For all k, the vertex $l_{k}^{j} \in S_{0}^{j}$ if and only if v_{i} is the k-th literal of the clause C_{j} and $\tau\left(v_{i}\right)=$ true, or $\neg v_{i}$ is the k-th literal of the clause C_{j} and $\tau\left(v_{i}\right)=$ false. Clearly since τ satisfies φ and therefore also satisfies the clause C_{j}, at least one of the vertices $l_{1}^{j}, l_{2}^{j}, l_{3}^{j}$ is in S_{0}^{j}. By Observation $3.3, S_{0}^{j}$ is a P_{4}-transversal in $C\left(C_{j}\right)$. Now let $S_{0}=\bigcup_{j=1}^{m} S_{0}^{j}$. Since the graphs $C\left(C_{j}\right)$ in G_{0} are vertex disjoint, it follows that S_{0} is a stable P_{4}-transversal of G_{0}.

Now let $S=S_{0} \cup \bigcup_{i=1}^{n} S_{i}^{+}$where

$$
S_{i}^{+}= \begin{cases}\left\{\bar{v}_{i}^{j}\right\}_{j \in J_{i}^{(-)}} & \text {if } \tau\left(v_{i}\right)=\text { true } \\ \left\{v_{i}^{j}\right\}_{j \in J_{i}^{(+)}} & \text {if } \tau\left(v_{i}\right)=\text { false }\end{cases}
$$

Fig. 2. The cotree for the graph $G_{i} \backslash S_{i}$
We show that S is a stable P_{4}-transversal of $G(\varphi)$. First let $S_{i}=S_{0} \cup \bigcup_{j=1}^{i} S_{j}^{+}$. Clearly $S_{i}=S_{i-1} \cup S_{i}^{+}$and $S_{i-1} \subseteq S_{i}$. We show by induction that S_{i} is a stable P_{4}-transversal of G_{i}.

For $i=0$ the claim follows from the above. Therefore suppose that $i>0$ and S_{i-1} is a stable P_{4}-transversal of the graph G_{i-1}. Without loss of generality, we may assume that $\tau\left(v_{i}\right)=$ true. Then $S_{i}=S_{i-1} \cup\left\{\bar{v}_{i}^{j}\right\}_{j \in J_{i}^{(-)}}$, where S_{i-1} is a stable set. Using the fact that $\tau\left(v_{i}\right)=$ true and the definition of S_{0}^{j}, we have that $l_{k}^{j} \notin S_{0}^{j}$ whenever $\neg v_{i}$ is the k-th literal of the clause C_{j}. Since in that case l_{k}^{j} and \bar{v}_{i} are the only neighbours of the vertex \bar{v}_{i}^{j} in G_{i}, it easily follows that S_{i} is a stable set. Now we only need to show that S_{i} is a P_{4}-transversal of G_{i}, that is that $G_{i} \backslash S_{i}$ is a P_{4}-free graph. From the induction hypothesis $G_{i-1} \backslash S_{i-1}$ is already a P_{4}-free graph. Therefore there exists a cotree T_{i-1} for this graph. To show the claim we construct a cotree for $G_{i} \backslash S_{i}$. As in the previous argument, it follows that $l_{k}^{j} \in S_{0}^{j}$, whenever v_{i} is the k-th literal of the clause C_{j}. Since in that case the vertex v_{i}^{j} is only adjacent to the vertex v_{i} in $G_{i} \backslash S_{i}$, we obtain the cotree for $G_{i} \backslash S_{i}$ as shown in Figure 2.

It follows that $S=S_{n}$ is a stable P_{4}-transversal of the graph $G(\varphi)=G_{n}$.
Now suppose that $G(\varphi)$ has a stable P_{4}-transversal, say S. We construct the truth assignment τ for the formula φ in the following way: for every variable v_{i} we set $\tau\left(v_{i}\right)=$ true just if for some j the vertex $v_{i}^{j} \notin S$. We show that τ satisfies φ.

Consider the clause C_{j} of φ. Since S is a stable P_{4}-transversal of $G(\varphi)$, the set $S \cap C\left(C_{j}\right)$ is a stable P_{4}-transversal of $C\left(C_{j}\right)$. It follows from Observation 3.3 that the vertex $l_{k}^{j} \in S \cap C\left(C_{j}\right)$ for some k, and hence $l_{k}^{j} \in S$. If v_{i} is the k-th literal of the clause C_{j}, it follows that v_{i}^{j} is not in the stable set S. (Recall that the vertex v_{i}^{j} is a neighbour of l_{k}^{j}.) Therefore by the definition of τ, we have that $\tau\left(v_{i}\right)=$ true, and therefore τ satisfies C_{j}. If $\neg v_{i}$ is the k-th literal of the clause C_{j}, we deduce that $\bar{v}_{i}^{j} \notin S$. By Proposition 3.4, we must have for all $j^{\prime}, v_{i}^{j^{\prime}} \in S$. Therefore it follows from the definition of τ that $\tau\left(v_{i}\right)=$ false,
and we again conclude that τ satisfies C_{j}.
Clearly, since τ satisfies all clauses C_{j}, it satisfies the formula φ; this concludes the proof.

Proof. [Theorem 1.1] One can easily see that the graph $G(\varphi)$ can be constructed in polynomial time. Hence the claim follows from Lemma 3.5.

$4 \quad P_{3}$-free and P_{4}-free P_{4}-transversals

We now proceed to prove Theorem 1.2 and 1.3.
Proposition 4.1 Let Y be the graph shown in Figure 3.
(1) Every P_{3}-free P_{4}-transversal S of the graph Y has the property that $u \in S$ and $v \notin S$ (see Figure 3a).
(2) Every P_{4}-free P_{4}-transversal S of the graph Y has the property that either $u \in S$ and $v \notin S$, or $u \notin S$ and $v \in S$ (see Figure 3a,3b).

a)

b)

Fig. 3. The graph Y and a sketch of some possible P_{4}-transversals (the doubly circled vertices)

Proof. Observe that among the neighbours of x and the neighbours of y there must always be a vertex $x^{\prime} \in S$ and a vertex $x^{\prime \prime} \notin S$, and similarly a vertex $y^{\prime} \in S$ and a vertex $y^{\prime \prime} \notin S$. (Clearly both neighbourhoods contain a P_{4}, so they cannot be entirely in S, nor entirely not in S.) It follows that x and y cannot both be in S, and cannot both be not in S. (In the former case the vertices $y^{\prime}, y, x, x^{\prime}$ form a P_{4} in S, and in the latter case, the vertices $y^{\prime \prime}, y, x, x^{\prime \prime}$ form a P_{4} in $Y \backslash S$.) Without loss of generality we may assume that $y \in S$ and $x \notin S$.

First suppose that S is P_{3}-free. Then we have $v \notin S$, since otherwise the vertices v, y, y^{\prime} form a P_{3} in S. Moreover u must be in S, since otherwise the vertices $u, v, x, x^{\prime \prime}$ form a P_{4} in $Y \backslash S$. This proves the first part of the claim.

Now suppose that S is P_{4}-free. Then either $v \notin S$ and we similarly find that $u \in S$, or $v \in S$ and then we have that $u \notin S$, since otherwise the vertices u, v, y, y^{\prime} form a P_{4} in S. This concludes the proof.

a)

b)

Fig. 4. The construction of the graph G^{\prime} used in the proof of Theorem $1.2(a)$ and Theorem 1.3 (b)

Proof. [Theorem 1.2] In order to prove the $N P$-completeness of the problem of recognizing the existence of a P_{3}-free P_{4}-transversal, we construct a polynomial time reduction from the stable P_{4}-transversal problem for chordal graphs.

Let G be a chordal graph. Let G^{\prime} be the graph constructed from G in the following way (see Figure 4a). For every vertex $w \in V(G)$ we add a copy Y_{w} of the graph Y (see Figure 3) in which we change the labels of the vertices u and v to u_{w} and v_{w} respectively, and we make the vertices w and u_{w} adjacent. Observe that G^{\prime} is chordal, since both G and Y are chordal. We now prove that G has a stable P_{4}-transversal if and only if G^{\prime} has a P_{3}-free P_{4}-transversal.

Suppose that G has a stable P_{4}-transversal S. Let S_{w} be any P_{3}-free transversal of Y_{w}. Let $S^{\prime}=S \cup \bigcup_{w \in V(G)} S_{w}$. By Proposition 4.1, we have $u_{w} \in S^{\prime}$ for all $w \in V(G)$. Since for every w the vertex u_{w} is a cut-vertex in G^{\prime}, it easily follows that S^{\prime} is a P_{4}-transversal of G^{\prime}. Moreover, since S is stable, and for every w the vertex $v_{w} \notin S^{\prime}$, it follows that S^{\prime} is P_{3}-free.

Now suppose that G^{\prime} has a P_{3}-free P_{4}-transversal S^{\prime}. Let $S=S^{\prime} \cap V(G)$. Clearly S is a P_{4}-transversal of G. We show that S is also stable, thus proving the claim. Suppose that there are two adjacent vertices $w, w^{\prime} \in S$. By Proposition 4.1, we have $u_{w} \in S^{\prime}$ and $u_{w^{\prime}} \in S^{\prime}$. Therefore the vertices $u_{w}, w, w^{\prime}, u_{w^{\prime}}$ form a P_{4} in S^{\prime} contrary to S^{\prime} being P_{3}-free.

Proof. [Theorem 1.3] As in the previous proof, we construct a polynomial time reduction from the stable P_{4}-transversal problem for chordal graphs. Let G be a chordal graph. Let Y^{\prime} be the graph obtained from Y by adding an additional vertex u^{\prime} adjacent to both u and v. Let G^{\prime} be the graph obtained from G as follows (see Figure 4b). For every vertex $w \in V(G)$ we add a copy Y_{w}^{\prime} of the graph Y^{\prime} in which we change the labels of the vertices u, u^{\prime} and v to u_{w}, u_{w}^{\prime} and v_{w} respectively, and we make w adjacent to u_{w} and u_{w}^{\prime}. Moreover, we add a copy $Y^{\prime \prime}$ of the graph Y^{\prime}, in which we change the labels of the vertices u, u^{\prime} and v to a, b and f respectively. We make a and b adjacent to all vertices of G, and make b adjacent to u_{w} for every $w \in V(G)$.

Observe that G^{\prime} is chordal. Indeed, since G is chordal, it has a perfect elimination ordering π. Similarly, since Y_{w}^{\prime} is chordal, it also has a perfect elimination ordering π_{w}. It is easy to see, by inspection, that we may choose π_{w} to end with the vertices u_{w}^{\prime} and u_{w}, in that order. Lastly, since $Y^{\prime \prime}$ is chordal, let $\pi^{\prime \prime}$ be any perfect elimination ordering of $Y^{\prime \prime}$. Now one can easily verify that $\pi_{w_{1}}, \pi_{w_{2}}, \ldots, \pi, \pi^{\prime \prime}$ is a perfect elimination ordering of G^{\prime}, where w_{1}, w_{2}, \ldots is an enumeration of the vertices of G.

We now prove that G has a stable P_{4}-transversal if and only if G^{\prime} has a P_{4} free P_{4}-transversal. Suppose that G has a stable P_{4}-transversal S. Let S_{w} be a P_{4}-free P_{4}-transversal of Y_{w}^{\prime} satisfying $u_{w}, u_{w}^{\prime} \in S_{w}$. Let $S^{\prime \prime}$ be a P_{4}-free P_{4}-transversal of $Y^{\prime \prime}$ satisfying $a, b \notin S^{\prime \prime}$; it also follows that $f \in S^{\prime \prime}$. Now let $S^{\prime}=S \cup S^{\prime \prime} \cup \bigcup_{w \in V(G)} S_{w}$. We show that S^{\prime} is a P_{4}-free P_{4}-transversal of the graph G^{\prime}.

Since S_{w} is P_{4}-free, let T_{w} be the cotree representing $S_{w} \backslash\left\{u_{w}, u_{w}^{\prime}\right\}$. Similarly, let $T^{\prime \prime}$ be the cotree for $S^{\prime \prime}, \bar{T}$ the cotree for $G \backslash S, \bar{T}_{w}$ the cotree for $Y_{w} \backslash S_{w}$, and $\bar{T}^{\prime \prime}$ the cotree for $Y^{\prime \prime} \backslash\left(S^{\prime \prime} \cup\{a, b\}\right)$. Let T^{\prime} and \bar{T}^{\prime} be the cotrees depicted on Figure 5.

Fig. 5. The cotrees corresponding to the subgraphs of G^{\prime} induced on S^{\prime} and $G^{\prime} \backslash S^{\prime}$. (The subtrees marked with $\forall w \in V(G)$ indicate that for every vertex in G, such subtree is added.)

One can easily verify that T^{\prime} and \bar{T}^{\prime} are exactly the cotrees of the subgraphs of G^{\prime} induced on S^{\prime} and $G^{\prime} \backslash S^{\prime}$ respectively. That shows that S^{\prime} and $G^{\prime} \backslash S^{\prime}$ are both P_{4}-free, and hence S^{\prime} is a P_{4}-free P_{4}-transversal of the graph G^{\prime}.

Now suppose that S^{\prime} is a P_{4}-free P_{4}-transversal of G^{\prime}. We may assume that the vertex f of $Y^{\prime \prime}$ is in S^{\prime}. (Otherwise we consider $G^{\prime} \backslash S^{\prime}$ in place of $S^{\prime \prime}$ since both S^{\prime} and $G^{\prime} \backslash S^{\prime}$ are P_{4}-free.) Now it follows from Proposition 4.1 that $a, b \notin S^{\prime}$. Similarly, it follows that for every w either $u_{w}, u_{w}^{\prime} \in S^{\prime}$ and $v_{w} \notin S^{\prime}$, or $u_{w}, u_{w}^{\prime} \notin S^{\prime}$ and $v_{w} \in S^{\prime}$. Since the latter would create a P_{4} in $G^{\prime} \backslash S^{\prime}$ (i.e., the vertices $a, b, u_{w}, u_{w}^{\prime}$ form a P_{4} in G^{\prime}), it follows that $u_{w}, u_{w}^{\prime} \in S^{\prime}$ and $v_{w} \notin S^{\prime}$ for every $w \in V(G)$.

Now let $S=S^{\prime} \cap V(G)$. We show that S is a stable P_{4}-transversal of the graph G. Clearly S is a P_{4}-transversal of G. We only need to show that S is also stable. Suppose otherwise, i.e., let $w, w^{\prime} \in S$ be adjacent. Then the vertices $u_{w}, w, w^{\prime}, u_{w^{\prime}}$ clearly form a P_{4} in S^{\prime} (recall that $u_{w} \in S^{\prime}$ for all $w \in V(G)$), which leads to a contradiction since S^{\prime} is P_{4}-free. Hence S must be stable.

5 Further Results

A graph G is strongly chordal if it is chordal and there exists a perfect elimination ordering \prec of the vertices of G such that if $u \prec v \prec w \prec z$ and (u, z), (u, w) and (v, w) are edges of G then also (v, z) is an edge (such ordering is called strong elimination ordering). Strongly chordal graphs form an interesting subclass of chordal graph as there are several difficult combinatorial graph problems that are polynomially solvable in strongly chordal graphs, but are $N P$-complete for chordal graphs [5].

In the previous sections we proved that it is $N P$-complete to decide whether a chordal graph has a stable P_{4}-transversal, a P_{3}-free P_{4}-transversal or a $P_{4^{-}}$ free transversal. It is easy to check that the perfect elimination orderings of $G(\varphi)$ and G^{\prime} used in the proofs of these results are in fact strong elimination orderings (provided G is strongly chordal in the case of G^{\prime}). Note that it suffices to show this for $G(\varphi)$ and G^{\prime} from Theorem 1.3 since G^{\prime} from Theorem 1.2 is an induced subgraph of G^{\prime} from Theorem 1.3. Hence we obtain the following stronger result.

Theorem 5.1 (1) It is NP-complete to decide whether a strongly chordal graph has a stable P_{4}-transversal.
(2) It is NP-complete to decide whether a strongly chordal graph has a P_{3}-free P_{4}-transversal.
(3) It is $N P$-complete to decide whether a strongly chordal graph has a P_{4}-free P_{4}-transversal.

Acknowledgements

The author would like to thank his advisor Pavol Hell for directing this research and for his help with the preparation of this article. The author would also like to thank anonymous referees for their useful comments that greatly improved the presentation of this work.

References

[1] C. Berge: Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Zeitschrift, Martin-Luther-Univ. Halle-Wittenberg, Math.Natur. Reihe 10 (1961), 114-115.
[2] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas: The Strong Perfect Graph Theorem, Annals of Mathematics 164 (2006), 51-229.
[3] D.G. Corneil, H. Lerchs, L. Stewart: Complement Reducible Graphs, Discrete Applied Mathematics 3 (1981), 163-174.
[4] T. Ekim, P. Hell, J. Stacho, D. de Werra: Polar chordal graphs, manuscript.
[5] M. Farber: Domination, independent domination, and duality in strongly chordal graphs, Discrete Applied Mathematics 7 (1984), 115-130.
[6] A. Farrugia: Vertex-Partitioning into Fixed Additive Induced-Hereditary Properties is NP-hard, Electron. J. Combin. 11 (2004).
[7] M.C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[8] C. T. Hò̀ng, V. B. Le: On P_{4}-transversals of perfect graphs, Discrete Mathematics 216 (2000), 195-210.
[9] C. T. Hoàng, V. B. Le: P_{4}-free Colorings and P_{4}-Bipartite Graphs, Discrete Mathematics and Theoretical Computer Science 4 (2001), 109-122.
[10] J. Stacho: Ph.D. Thesis, Simon Fraser University, 2008, to appear.

