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Abstract. We show that one can compute the injective chromatic num-
ber of a chordal graph G at least as efficiently as one can compute the
chromatic number of (G−B)2, where B are the bridges of G. In particu-
lar, it follows that for strongly chordal graphs and so-called power chordal
graphs the injective chromatic number can be determined in polynomial
time. Moreover, for chordal graphs in general, we show that the decision
problem with a fixed number of colours is solvable in polynomial time. On
the other hand, we show that computing the injective chromatic number
of a chordal graph is NP -hard; and unless NP = ZPP , it is hard to
approximate within a factor of n1/3−ǫ, for any ǫ > 0. For split graphs,
this is best possible, since we show that the injective chromatic number
of a split graph is 3

√
n-approximable. (In the process, we correct a result

of Agnarsson et al. on inapproximability of the chromatic number of the
square of a split graph.)

1 Introduction

In this paper, a graph is always assumed to be undirected, loopless and
simple. An injective colouring of a graph G is a colouring c of the vertices
of G that assigns different colours to any pair of vertices that have a
common neighbour. (That is, for any vertex v, if we restrict c to the
(open) neighbourhood of v, this mapping will be injective; whence the
name.) Note that injective colouring is not necessarily a proper colouring,
i.e., it is possible for two adjacent vertices to receive the same colour. The
injective chromatic number of G, denoted χi(G), is the smallest integer
k such that G can be injectively coloured with k colours.

Injective colourings are closely related to (but not identical with) the
notions of locally injective colourings [9] and L(h, k)-labellings [2, 3, 11].
In particular, L(0, 1)-labellings unlike injective colourings assign distinct
colours only to non-adjacent vertices with a common neighbour.
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Injective colourings were introduced by Hahn, Kratochv́ıl, Širáň and
Sotteau in [12]. They attribute the origin of the concept to complex-
ity theory on Random Access Machines. They prove several interesting
bounds on χi(G), and also show that, for k ≥ 3, it is NP -complete to
decide whether the injective chromatic number of a graph is at most k.
Here we look at the complexity of this problem when the input graphs G
are restricted to be chordal. A graph is chordal if it does not contain any
induced cycle of length four or more [10]. Several difficult combinatorial
problems that are NP -complete in general (including graph colouring
[10], and many variants [5, 7, 13]) admit a polynomial time solution in
chordal graphs.

In Section 4, we show that determining χi(G) is still difficult when
restricted to chordal graphs. In fact, it is not only NP -hard, but unless
NP = ZPP , the injective chromatic number of a chordal graph can-
not be efficiently approximated within a factor of n1/3−ǫ, for any ǫ > 0.
(Here ZPP is the class of languages decidable by a randomized algorithm
that makes no errors and whose expected running time is polynomial.)
For split graphs, this is best possible since we show an 3

√
n-approximation

algorithm for the injective chromatic number of a split graph.

On the positive side, we show in Section 5 that for any fixed number
k, one can in linear time determine whether a chordal graph can be injec-
tively coloured using no more than k colours. Moreover, we describe large
subclasses of chordal graphs that allow computing the injective chromatic
number efficiently. We show that for a chordal graph G, one can efficiently
compute the injective chromatic number of G from the chromatic number
of the square of G − B(G), that is, the graph G with its bridges B(G)
removed. It follows that for strongly chordal graphs and power chordal
graphs (the graphs whose powers are all chordal) the problems is polyno-
mial time solvable.

2 Preliminaries

We follow the terminology of [4, 20]. For a subset S of the vertices (edges)
of G, we denote G[S] the subgraph of G induced on the vertices (edges)
of S, and G − S the subgraph of G that is obtained by removing from
G the vertices (edges) of S. In the case that S consists only of a single
element x, we write G − x instead of G − {x}.

For a connected graph G, a vertex u is a cutpoint of G if the graph
G − u is disconnected. An edge e = uv is a bridge of G if the graph
G − e is disconnected. A subset S of vertices of G is a separator of G if



G − S is disconnected. As usual, a clique of G is a complete subgraph
of G, and an independent set of G is a subgraph of G having no edges.
For any graph G, we denote by χ(G) and α(G), the chromatic number
of G, and the size of a maximum independent set in G, respectively. We
denote by Gk the k-th power of G, i.e., the graph obtained from G by
making adjacent any two vertices in distance at most k in G. We denote
by n, respectively m, the number of vertices, respectively edges of G. For
a vertex u in G, we denote by N(u) the set of vertices of G adjacent to u
(the neighbourhood of u); and for a subset S of vertices of G, we denote
by N(S) the set of vertices of G− S adjacent to at least one vertex of S.
We let deg(u) = |N(u)| be the degree of u, and let ∆(G) be the maximum
degree among the vertices of G.

A split graph is a graph which can be partitioned into a clique and
an independent set with no other restriction on the edges between the
two. Any split graph is also chordal. A tree-decomposition (T,X) of a
connected graph G is a pair (T,X) where T is a tree and X is a mapping
from V (T ) to the subsets of V (G), such that (i) for any edge ab ∈ E(G),
there exists u ∈ V (T ) with a, b ∈ X(u), and (ii) for any vertex a ∈ V (G),
the vertices u ∈ V (T ) with a ∈ X(u) induce a connected subgraph in T .
A clique-tree of a chordal graph G is a tree-decomposition (T,X) of G
where {X(u) | u ∈ V (T )} is precisely the set of all maximal cliques of G.

3 Basic properties

We have the following simple observation.

Observation 1. For any graph G, χi(G) ≥ ∆(G) and χ(G2) ≥ ∆(G)+1.

For trees this is also an upper bound.

Proposition 2. For any tree T , χi(T ) = ∆(T ) and χ(T 2) = ∆(T ) + 1.

Proof. Let u be a leaf in T and v the parent of u. Then clearly, χ(T 2) =
max {deg(v)+1, χ((T −u)2)} and χi(T ) = max{deg(v), χi(T −u))}. The
claim follows by induction on |V (T )|. �

Now we look at the general case. Let G(2) be the common neighbour
graph of a graph G, that is, the graph on the vertices of G in which two
vertices are adjacent if they have a common neighbour in G. It is easy
to see that the injective chromatic number of G is exactly the chromatic
number of G(2). In general, as we shall see later, properties of the graph
G(2) can be very different from those of G. For instance, even if G is



efficiently colourable, e.g. if G is perfect, it may be difficult to colour
G(2). Note that any edge of G(2) must be also an edge of G2 (but not
conversely). This yields the following inequality.

Proposition 3. For any graph G, we have χi(G) ≤ χ(G2).

In fact, this inequality can be strengthened. Let F(G) be the set of
edges of G that do not lie in any triangle. Note that an edge of G is also
an edge of G(2) if and only if it belongs to a triangle of G. This proves
the following proposition.

Proposition 4. For any graph G, we have χi(G) = χ(G2 −F(G)).

Now we turn to chordal graphs. The following is easy to check.

Observation 5. Any edge in a bridgeless chordal graph lies in a triangle.

Let B(G) be the set of bridges of G. Since a bridge of a graph can
never be in a triangle, we have the following fact.

Proposition 6. For any chordal G, we have χi(G) = χ(G2 − B(G)).

Now since B(G − B(G)) = ∅, we have the following corollary.

Corollary 7. For any chordal G, χi(G − B(G)) = χ((G − B(G))2).

It turns out that there is a close connection between χi(G − B(G))
and both χi(G) and χ(G2).

Proposition 8. For any G, χ(G2) = max {∆(G) + 1, χ((G −B(G))2)}

Proof. Let k = max {∆(G) + 1, χ((G − B(G))2)}. It follows from Ob-
servation 1 and Corollary 7 that χ(G2) ≥ k. Now fix a set of k colours
(k ≥ χ((G − B(G))2)), and consider a colouring of (G − B(G))2 using
these k colours. We now add the bridges of G one by one, modifying the
colouring accordingly. Let uv be a bridge of G and let X and Y be the
connected components which become connected by the addition of uv.
Suppose that u ∈ X and v ∈ Y . We can permute the colours of X and
Y independently so that u and v obtain the same colour i. Since we have
k ≥ ∆(G) + 1 colours, there must be a colour j 6= i not used in the
neighbourhood of v in Y . By the same argument for u, we may assume
that j is not used in the neighbourhood of u in X. Finally, we exchange
in X the colours i and j. It is easy to see that after adding all bridges of
G one by one, we obtain a proper colouring of G2. �

A similar argument proves the next proposition.



Proposition 9. For any split graph G, χi(G) = max{∆(G), χi(G−B(G))}
Finally, combining Corollary 7, and Propositions 8 and 3, we obtain

the following tight lower bound on the injective chromatic number of a
chordal graph.

Proposition 10. For any chordal graph G, we have

χ(G2) − 1 ≤ max{∆(G), χi(G − B(G))} ≤ χi(G) ≤ χ(G2)

4 Hardness and approximation results

In this section, we focus on hardness results for the injective chromatic
number problem. We begin by observing that it is NP -hard to compute
the injective chromatic number of a split graph. This also follows from
a similar proof in [12]; we include our construction here, since we shall
extend it to prove an accompanying inapproximability result in Theo-
rem 13.

Theorem 11. It is NP -complete for a given split (and hence chordal)
graph G and an integer k, to decide whether the injective chromatic num-
ber of G is at most k.

Proof. First, we observe that the problem is clearly in NP . We show
it is also NP -hard. Consider an instance of the graph colouring prob-
lem, namely a graph G and an integer l. We may assume that G is
connected and contains no bridges. Let HG be the graph constructed
from G by first subdividing each edge of G and then connecting all
the new vertices. That is, V (HG) = V (G) ∪ {xuv | uv ∈ E(G)} and
E(HG) = {uxuv , vxuv | uv ∈ E(G)} ∪ {xstxuv | uv, st ∈ E(G)}. The
graph HG can clearly be constructed in polynomial time. It is not diffi-
cult to see that HG is a split graph, hence it is also chordal. Moreover,
one can check that the subgraph of H2

G induced on the vertices of G is
precisely the graph G. Since G is bridgeless, HG is also bridgeless, hence
using Proposition 6 we have the following.

χi(HG) = χ(H2
G) = χ(G) + m

Therefore χi(HG) is at most k = l+m if and only if χ(G) is at most l.
That concludes the proof. �

By Proposition 10, for any chordal graph G, the injective chromatic
number of G is either χ(G2) or χ(G2) − 1. Interestingly, merely distin-
guishing between these two cases is already NP -complete.



Theorem 12. It is NP -complete to decide, for a given split (and hence
chordal) graph G, whether χi(G) = χ(G2) − 1. �

Now we extend the proof of Theorem 11 to show that under a certain
complexity assumption, it is not tractable to approximate the injective
chromatic number of a split (chordal) graph within a factor of n1/3−ǫ for
all ǫ > 0.

Theorem 13. Unless NP = ZPP , for any ǫ > 0, it is not possible to
efficiently approximate χ(G2) and χi(G) within a factor of n1/3−ǫ, for
any split (and hence chordal) graph G.

Proof. In [8], it was shown that for any fixed ǫ > 0, unless NP = ZPP ,
the problem of deciding whether χ(G) ≤ nǫ or α(G) < nǫ for a given
graph G is not solvable in polynomial time. Consider an instance of
this problem, namely a graph G. Again, as in the proof of Theorem
11, we may assume that G is connected and bridgeless. Let Hk,G be
the split graph constructed from k copies of HG (the graph used in
the proof Theorem 11) by identifying, for each uv ∈ E(G), all copies
of xuv. That is, if v1, v2, . . . , vn are the vertices of G, we have in Hk,G

vertices V (Hk,G) =
⋃k

i=1{vi
1, v

i
2, . . . , v

i
n} ∪ {xuv | uv ∈ E(G)}, and edges

E(Hk,G) =
⋃k

i=1{uixuv, vixuv | uv ∈ E(G)} ∪ {xuvxst | uv, st ∈ E(G)}.
Now since G is bridgeless, Hk,G is also bridgeless. Consider an inde-

pendent set I of H2
k,G. It is not difficult to check that either I trivially

contains only a single vertex xuv, or for each pair of vertices ui, vj ∈ I,
the vertices u and v are not adjacent in G. Hence it follows that from
any colouring of H2

k,G one can construct a fractional k-fold colouring of G
(i.e., a collection of independent sets covering each vertex of G at least
k times) by projecting each non-trivial colour class of H2

k,G to G, i.e.,

mapping each ui to u. Using this observation we obtain the following
inequalities.

k · n
α(G)

+ m ≤ k · χf (G) + m ≤ χ(H2
k,G) = χi(Hk,G) ≤ k · χ(G) + m

Therefore if χ(G) ≤ nǫ then χ(H2
k,G) ≤ k · nǫ + m, and if α(G) < nǫ

then χ(H2
k,G) > k · n1−ǫ + m. Now we fix k = m, and denote by N the

number of vertices in Hm,G. For n ≥ 21/ǫ we obtain the following.

m · n1−ǫ + m

m · nǫ + m
≥ 1

2
n1−2ǫ ≥ n1−3ǫ ≥ (m · n + m)

1

3
(1−3ǫ) = N

1

3
−ǫ



Hence if we can efficiently (N
1

3
−ǫ)-approximate the colouring of H2

m,G

then we can decide whether χ(G) ≤ nǫ or α(G) < nǫ. That concludes the
proof. �

Note that a seemingly stronger result appeared in [1]. Namely, the
authors claim that the chromatic number of the square of a split graph
is not (n1/2−ǫ)-approximable for all ǫ > 0. However this result is not cor-
rect. In fact, we show below that there exists a polynomial time algorithm
3
√

n-approximating the chromatic number of the square of a split graph
G, and also 3

√
n-approximating the injective chromatic number of G. Note

that this is also a strengthening of best known
√

n-approximation algo-
rithm for the chromatic number of the square in general graphs (cf. [1]).
We need the following lemma.

Lemma 14. For chordal graphs, the injective chromatic number is α-
approximable if and only if the chromatic number of the square is α-
approximable. �

Theorem 15. There exists a polynomial time algorithm that given a split
graph G approximates χ(G2) and χi(G) within a factor of 3

√
n.

Proof. Let G be a connected split graph with a clique X and an indepen-
dent set Y . Denote by H the subgraph of G2 induced on Y . Let p = |X|,
N = |V (H)|, and M = |E(H)|. Clearly, χ(G2) = p + χ(H). Consider an
optimal colouring of H with colour classes V1, V2, . . . , Vχ(H). Let Eij be
the edges of H between Vi and Vj. Clearly, for each edge uv ∈ Eij there
must exist a vertex xuv in X adjacent to both u and v. Moreover, for any
two edges uv, st ∈ Eij we have xuv 6= xst, since otherwise we obtain a
triangle in H[Vi ∪ Vj] which is bipartite. Hence p ≥ |Eij | and considering

all pairs of colours in H we conclude that p ≥ M/
(χ(H)

2

)

≥ 2M/χ2(H).

A simple edge count shows that any graph with t edges can be coloured
with no more than 1/2 +

√

2t + 1/4 colours. Such a colouring can be
found by a simple greedy algorithm [4]. We can apply this algorithm to
H, and use additional p colours to colour the vertices of X. This way we
obtain a colouring c of G2 using at most p + 1 +

√
2M colours. Using

the lower bound from the previous paragraph one can prove the following
inequalities (assuming M ≥ 6 or p ≥ 17).

p + 1 +
√

2M

χ(G2)
≤ p + 1 +

√
2M

p +
√

2M
p

≤ (2M)1/6 ≤ N1/3 ≤ n1/3



Hence, the colouring c is an 3
√

n-approximation of χ(G2), and by
Lemma 14 we can obtain a 3

√
n-approximation of χi(G). �

5 Exact algorithmic results

Now we focus on algorithms for injective colouring of chordal graphs.
Although, computing the injective chromatic number of a chordal graph
is hard, the associated decision problem with a fixed number of colours has
a polynomial time solution, i.e., the problem is fixed parameter tractable.
We need the following lemma.

Lemma 16. For any chordal G, the treewidth of G2 is at most 1
4∆(G)2+

∆(G). �

Theorem 17. Given a chordal graph G and a fixed integer k, one can
decide in time O(n · k · k(k/2+1)2) whether χi(G) ≤ k and also whether
χ(G2) ≤ k.

Proof. It is easy to see that if χi(G) ≤ k or if χ(G2) ≤ k, then ∆(G)
must be at most k. Thus if ∆(G) > k, we can reject G immediately. Using
Lemma 16, we can construct in time O(nk2) a tree decomposition (T,X)
of G2 whose width is at most k2/4 + k. Now, using standard dynamic
programming techniques on the tree T (cf. [4, 7]), we can decide in time
O(n · k · k(k/2+1)2) whether χ(G2) ≤ k and whether χi(G) ≤ k. �

Now we show that for certain subclasses of chordal graphs, the injec-
tive chromatic number can be computed in polynomial time (in contrast
to Theorem 11). First, we summarise the results; the details are presented
in subsequent sections.

We call a graph G a power chordal graph if all powers of G are chordal.
Recall that in Propositions 8 and 9, we showed how, from the chromatic
number of the square of the graph G − B(G), one can compute χ(G2)
for any graph G, respectively χi(G) for a split graph G. The following
theorem describes a similar property for the injective chromatic number
in chordal graphs. The proof will follow from Corollary 25 and Theorem
28 which we prove in sections 5.2 and 5.4 respectively.

Theorem 18. There exists an O(n + m) time algorithm that computes
χi(G) given a chordal graph G and χi(G−B(G)). Using this algorithm one
can also construct an optimal injective colouring of G from an optimal
injective colouring of G − B(G) in time O(n + m).



A class C of graphs is called induced-hereditary, if C is closed under
taking induced subgraphs. For an induced-hereditary subclasses of chordal
graphs we have the following property.

Proposition 19. Let C be an induced-hereditary subclass of chordal graphs.
Then the following statements are equivalent.

(i) One can efficiently compute χ(G2) for any G ∈ C.
(ii) One can efficiently compute χi(G − B(G)) for any G ∈ C.
(iii) One can efficiently compute χi(G) for any G ∈ C.

This follows from Theorem 18, Proposition 8, and the fact that each
connected component of G − B(G) must be in C. In some cases, e.g.,
in the class of power chordal graph, this is true even if C is not induced-
hereditary. The following corollary will follow from Theorem 18 and Corol-
lary 27 which we prove in section 5.3.

Corollary 20. The injective chromatic number of a power chordal graph
can be computed in polynomial time.

Thus the injective chromatic number of a strongly chordal graph can
also be computed in polynomial time.

Finally, observe that due to Theorem 12 one cannot expect the prop-
erty from Proposition 19 to hold for any subclass of chordal graphs.

5.1 Injective structure

In order to prove Theorem 18, we investigate the structural properties
of graphs G that allow efficient computation of χi(G). In this section, G
refers to an arbitrary connected graph (not necessarily chordal).

A clique separator of G is a separator of G which induces a clique in
G. A tree decomposition (T,X) of G is a decomposition by clique sep-
arators, if for any uv ∈ E(T ), the set X(u) ∩ X(v) induces a clique in
G. This type of decomposition of graphs was introduced and studied by
Tarjan [19]. The decomposition turns out to be particularly useful for the
graph colouring problem; namely, one can efficiently construct an optimal
colouring of G from optimal colourings of G[X(u)] for all u ∈ V (T ). We
define and study a similar concept for the injective colouring problem.
Recall that G(2) denotes the common neighbour graph of G defined in
section 3.

We say that a subset S of vertices of G is injectively closed, if for any
two vertices x, y ∈ S having a common neighbour in G, there exists a



common neighbour of x and y that belongs to S. A subset S of vertices
of G is called an injective clique, if S induces a clique in G(2). Note that
an injective clique is not necessarily injectively closed in G. A subset of
vertices S of G is called an injective separator of G, if S is injectively
closed in G, S is a separator of G(2), and G(2) is connected. Note that
G(2) can be disconnected even if G is connected, e.g., if G is bipartite.
An injective decomposition of G is a tree decomposition (T,X) of G such
that for any uv ∈ E(T ), the set X(u) ∩ X(v) is an injective separator
of G. An injective separator S is an injective clique separator, if S is
also an injective clique. An injective clique decomposition is an injective
decomposition (T,X) such that for any uv ∈ E(T ), the set X(u) ∩ X(v)
is an injective clique. Note that any injective clique decomposition of G
is a decomposition of G(2) and G2 by clique separators.

We have the following properties.

Lemma 21. Let (T,X) be an injective decomposition of a graph G. Then
for each u ∈ V (T ), the set X(u) is injectively closed. �

Theorem 22. Let (T,X) be an injective clique decomposition of a graph
G. Then

χi(G) = χ(G(2)) = max
u∈V (T )

χ
(

G(2)[X(u)]
)

= max
u∈V (T )

χi

(

G[X(u)]
)

.

Proof. The first equality is by definition. We obtain the second equality
from the fact that (T,X) is a decomposition of G(2) by clique separators.
The last equality follows easily, since by Lemma 21, we have G(2)[X(u)] =
G[X(u)](2) , and by definition χ(G[X(u)](2)) = χi(G[X(u)]). �

5.2 Computing χi(G) in chordal graphs

In this section, we focus on injective clique decompositions of chordal
graphs. The following is easy to check.

Observation 23. Let H be a bridgeless graph having a dominating ver-
tex. Then H is an injective clique. �

We say that a graph G is decomposable, if G contains an an injective
clique separator S; we say that S decomposes G. A graph G is indecompos-
able, if it is not decomposable. A graph G is called perfectly tree-dominated,
if G contains an induced tree T , such that any vertex and any connected
component of G − V (T ) has exactly one neighbour in T . For such T , we
say that T perfectly dominates G, or that G is perfectly dominated by T .

The following statement relates indecomposable chordal graphs and
perfectly tree-dominated graphs.



Proposition 24. Any perfectly tree-dominated graph is indecomposable.
Any indecomposable chordal graph is either perfectly tree-dominated or
bridgeless. �

The property above has an important corollary.

Corollary 25. For any chordal graph G, there exists an injective clique
decomposition (T,X) of G, such that for any u ∈ V (T ), the set X(u)
induces either a bridgeless graph or a perfectly tree-dominated graph. This
decomposition can be constructed in time O(n + m).

Proof. First, we find the bridges B(G) of G. Then, we construct a tree
decomposition (T,X) of G such that for u ∈ V (T ), the set X(u) is either
a connected component of G − B(G), or a connected component T of
G[B(G)] augmented with the neighbours of T in G. It follows from the
proof of Proposition 24 that (T,X) is a injective clique decomposition. �

5.3 Bridgeless chordal graphs

In this section, we describe some classes of chordal graphs G that allow
efficiently computing χ(G2).

We focus on chordal graphs whose square is also a chordal graph.
Clearly, for any such graph G, one can efficiently colour the square of
G. Chordal graphs whose powers are also chordal were already studied
in the past. In particular, it was shown by Duchet [16] that for any k, if
Gk is chordal, then also Gk+2 is chordal. Therefore, if a chordal graph G
has a chordal square, then any power of G must be chordal, that is, G is
power chordal. Interestingly, many known subclasses of chordal graphs,
e.g. trees, interval graphs, and strongly chordal graphs, were shown to be
power chordal [1]. Moreover, Laskar and Shier [16] found the following
subgraph characterisation of power chordal graphs. A k-sun is a graph
formed by a cycle v0, v1, . . . , vk−1 with edges vivi+1 (and possibly other
edges), and an independent set w0, w1, . . . wk−1, where wi is adjacent only
to vi and vi+1 (all indices are taken modulo k). A k-sun of a graph G is
suspended in G, if there exists a vertex z in G adjacent to wi and wj

where j 6= i and j 6= i ± 1 modulo k.

Theorem 26. [16] A graph G is power chordal if and only if any k-sun
of G, k ≥ 4, is suspended.

Based on this characterisation, it is easy to check the following.



Corollary 27. If G is power chordal, the graph G − B(G) is also power
chordal. �

Note that by Theorem 26, strongly chordal graphs are trivially power
chordal, since no strongly chordal graph can contain an induced k-sun,
k ≥ 3 [6]. Also notice, that the class of power chordal graphs is not
induced-hereditary (closed under taking induced subgraphs), since a graph
that contains a k-sun can be power chordal, but the k-sun itself (taken
as an induced subgraph) is not.

5.4 Perfectly tree-dominated graphs

In this section, we show how to efficiently compute the injective chromatic
number of a perfectly tree-dominated graph.

Let G be a perfectly tree-dominated graph. If G is a tree, then by
Proposition 2, we have χi(G) = ∆(G), and a greedy injective colour-
ing of G will be optimal. Otherwise, let T be a minimal tree perfectly
dominating G. We define a tree decomposition (TG,X) of G as follows.
We set TG = T , and for u ∈ V (T ), we set X(u) = N(u) ∪ {u}. Clearly,
X(u) ∩ X(v) = {u, v} is injectively closed, and the set X(u) ∩ X(v) is a
separator of G(2). Hence (T,X) is an injective decomposition of G. Note
that for any u ∈ V (T ), the graph G[X(u)] admits only deg(u) different
injective colourings, up to renaming colours. It follows, that using dy-
namic programming on the rooted tree T , one can determine χi(G) and
an optimal injective colouring of G, by computing, for each u ∈ V (T )
and each colouring of G[X(u)], the minimum number of colours needed
to injectively colour the subgraph of G induced on the union of X(u)
and the sets X(v) for all descendants v of u. Using an additional simple
argument it can be shown that the algorithm we just described can be
performed in time O(n + m). Hence we have the following theorem.

Theorem 28. The injective chromatic number χi(G) and an optimal in-
jective colouring of a perfectly tree-dominated graph G can be computed
in time O(n + m).

The above algorithm turns out to be an instance of a more general
approach to graph colouring problems [18].

Note added in proof

We have just learned of a related result of Král’[15] showing that χ(G2) =
O(∆(G)3/2) for any chordal G. This is easily seen to allow strengthening
Theorem 15 from split to chordal graphs.
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