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Abstract

A cross-cycle in a flag simplicial complex K is an induced subcomplex that is isomorphic
to the boundary of a cross-polytope and that contains a maximal face of K. A cross-cycle is
the most efficient way to define a non-zero class in the homology of K. For an independence
complex of a graph G, a cross-cycle is equivalent to an induced matching containing a
maximal independent set of G.

We study the complexity of finding cross-cycles in independence complexes. We show
that in general this problem is NP-complete when input is a graph whose independence
complex we consider. This allows us to study special cases. Unfortunately, not a lot has
been done in this direction besides the recent polynomial time algorithm for forests [16].

In this contribution, we focus on the more general class of chordal graphs. This is a
natural choice for the problem as the independence complexes of chordal graphs are quite
well understood, namely they are wedges of spheres up to homotopy, and any wedge of
spheres can be realized as the independence complex of a chordal graph, up to homotopy.

As our main result, we present a polynomial time algorithm for detecting a cross-cycle
in the independence complex of a chordal graph. Our algorithm is based on the geometric
intersection representation of chordal graphs and has an efficient implementation.

We further prove that for chordal graphs cross-cycles detect all of homology of the in-
dependence complex. As a corollary, we obtain polynomial time algorithms for such topo-
logical properties as contractibility or simple-connectedness of independence complexes of
chordal graphs. These problems are undecidable for general independence complexes.

We conclude with a discussion of some related cases and open problems.

1 Introduction

The purpose of this paper is to investigate the algorithmic complexity of detecting certain
non-trivial homology classes in flag simplicial complexes and to explore the consequences for
deciding their topological properties. There is a certain efficient construction that defines a
class in the homology of a flag complex and, at the same time, delivers a proof that this class
is non-trivial. We describe it now. Let S0 be the zero-sphere, that is the simplicial complex
consisting of two disjoint vertices. The k-fold join Ok = S0 ∗ · · · ∗ S0 is a complex with 2k
vertices, combinatorially equivalent to the boundary of the cross-polytope and homeomorphic
to the (k − 1)-sphere.

Definition. A cross-cycle (of size k) in a flag simplicial complex K is an induced subcomplex
of K isomorphic to Ok and such that it contains a maximal face of K.

A cross-cycle is an embedded sphere Sk−1 ⊆ K, hence it defines a homology class in
H̃k−1(K). This class must be non-zero as its representing cycle contains a maximal face, so
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it cannot be hit by a differential (see Section 3 for details). The name cross-cycle refers to the
fact that the sphere is isomorphic to the boundary of the cross-polytope.

Cross-cycles have been used to construct homology classes in a number of contexts [1, 3,
13, 20]. They appear as the main contribution to the homology of the clique complexes of
random geometric graphs [15]. Moreover, they are the minimal models, in the sense that for
a flag complex K every non-zero homology class in H̃k−1(K) must be supported on at least 2k
vertices and, if the support size is exactly 2k, then the class must be given by an embedded Ok,
see [14]. This leads to our interest in their algorithmic properties.

There are two equivalent view-points of flag complexes. Geometers prefer to think of them
as clique complexes of graphs that encode some incidence relation, e.g., proximity in a metric
space (the Vietoris-Rips complex). We will follow the combinatorial topologists’ approach via
independence complexes of graphs. For a graph G, the independence complex I(G) is the simpli-
cial complex whose vertices are the vertices of G and whose faces are the independent sets of
G. Note that Ok is the independence complex of the disjoint union of k edges. This immediately
leads to a characterization of cross-cycles in I(G) in terms familiar to graph theorists.

Observation. If G is a graph then a cross-cycle of size k in I(G) determines, and is determined,
by an induced matching M of size k in G such that the vertex set of M contains a subset D that
is a maximal independent set in G. For simplicity we will say ‘an induced matching containing
a maximal independent set’.

Note that D must contain exactly one vertex from each edge of M and that D is a domi-
nating set of G (see Section 2). For example, in the graph G of Fig. 1, M = {(7, 9), (3, 8)} is
an induced matching containing an independent set D = {7, 3} which is maximal in G. That
defines a cross-cycle and therefore a nontrivial homology class in H̃1(I(G)).

For our algorithmic analysis we always assume that a flag complex is presented as I(G) and
the graph G is the input. Our first observation is that finding a cross-cycle is hard in general.

Theorem 1. Given a graph G, it is NP-complete to decide if G has an induced matching containing a
maximal independent set. Consequently, it is NP-complete to decide if I(G) has a cross-cycle.

We then concentrate on chordal graphs. Quite a lot is known about their independence
complexes. In particular, they are vertex-decomposable [23] and therefore homotopy equiva-
lent to wedges of spheres (also proved in [22, 16]). Moreover, every wedge of spheres arises, up
to homotopy, as an independence complex of a chordal graph [16]. Another reason to study
chordal graphs in this context is that for this family of graphs cross-cycles detect all of the
homology of the independence complex.

Theorem 2. For a chordal graph G and any k ≥ 0, the homology group H̃k−1(I(G)) is non-trivial if
and only if G has an induced matching of size k containing a maximal independent set.

Since a wedge of spheres is completely determined by the ranks of homology groups, The-
orem 2 implies that for a chordal graph G the whole homotopy type of I(G) is encoded in the
cross-cycles. The next two results describe quite precisely how much of that information can
be recovered from G in polynomial time.

Theorem 3. There is a polynomial time algorithm that decides, for a chordal graph G, if G has an
induced matching containing a maximal independent set.

Theorem 4. Given a chordal graph G and an integer k, it is NP-complete to decide if G has an induced
matching of size k containing a maximal independent set.

By Theorem 2 these results have immediate topological corollaries.
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Figure 1: A sample graph with an induced matching containing a maximal independent set.

Theorem 5. For a chordal graph G one can decide in polynomial time

a) if I(G) is contractible,

b) if I(G) is simply-connected.

Theorem 6. Given a chordal graph G and integer k, it is NP-complete to decide if the group H̃k−1(I(G))
is non-trivial.

Let us briefly comment on these results. Theorem 6 implies that in general computing the
homology groups of flag complexes is NP-hard with the one-skeleton as input. That this must
be the case is not surprising, as such a calculation requires the enumeration of (exponetially
many) k-faces, and there does not seem to be a significantly faster method, although there
is much research on practical algorithms and their performance (see [26] and the references
therein). However, we are not aware of any previous proof that this problem is in fact hard.

Also the positive results break some barriers. First, note that for an arbitrary graph G
the problems of deciding if I(G) is simply-connected or contractible are both undecidable [6].
Moreover all previous work on topological features of chordal graphs [23, 5, 16, 22] made use
exclusively of the existence of simplicial vertices (see Section 2). Our algorithm in Theorem 5
makes essential use of the geometric intersection representation of chordal graphs and their
tree models. Finally, we remark that a straightforward application of Lemma 10 yields an
algorithm that solves the problem of Theorem 3 in linear time for forests. This improves the
result of [17] and answers a question of [7]. If G is a forest we obtain a complete information
about the homotopy type of I(G), since it is known to be homotopy equivalent to a single
sphere or contractible [7].

Finally, one can ask for natural subclasses of chordal graphs for which also the dimensions
of non-trivial homology groups could be recovered in polynomial time. We prove such results
for interval graphs and chordal graphs of bounded leafage (see Section 6 for the definitions).

Theorem 7. There is a polynomial time algorithm that decides, for an interval graph G and integer k,
if G has an induced matching of size k containing a maximal independent set.

Theorem 8. There is a O(kℓnℓ+2) time algorithm that decides, for an chordal graph G of leafage ℓ and
integer k, if G has an induced matching of size k containing a maximal independent set.

The rest of the paper is set out as follows. In Sections 2 and 3, we provide the necessary
prerequisites in graph theory and combinatorial topology. In Section 4, we prove Theorem 2
and use it to deduce Theorems 5, 6 from the corresponding combinatorial results. Our main
algorithm from Theorem 3 is presented in Section 5 and its extensions (Theorems 7, 8) are
described in Section 6. Finally in Section 7, we prove the hardness results of Theorems 1, 4.
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2 Preliminaries on graph theory

A graph G = (V, E) with vertex set V(G) and edge set E(G) ⊆ V(G)× V(G) is always finite,
undirected, with no loops or parallel edges. The neighbourhood of a vertex v ∈ V(G) is defined
as N(v) = {u | uv ∈ E(G)}. We write N[v] for N(v) ∪ {v}. For a set X ⊆ V(G), we define
N[X] =

⋃
v∈X N[v] and write N(X) for N[X] \ X. We denote by G[X] the subgraph of G induced

on X, i.e. the graph G[X] = (X, E∩X ×X). Further, we write G−X for the graph G[V(G) \X].
A set X ⊆ V(G) is dominating if N[X] = V(G). A clique of G is a set of pairwise adjacent

vertices of G. An independent set of G is a set of pairwise non-adjacent vertices of G. A vertex
v ∈ V(G) is simplicial if N(v) is a clique of G. A set of edges of G is a matching if no two edges
in the set share a common endpoint. A matching M of G is an induced matching if the subgraph
of G induced by the endpoints of the edges in M contains only the edges in M. Simply put a
matching of G is induced if it occurs as an induced subgraph of G.

A graph is chordal if it contains no induced cycle of length four or longer. By [4], every
chordal graph has a simplicial vertex. Removing it yields a smaller chordal graph, which gives
rise to the so-called perfect elimination ordering. Such orderings only exist for chordal graphs [11].

A tree model of a graph G = (V, E) consists of a tree T, called a a host tree, and a collection
of subtrees of T associated with the vertices of G, denoted by {Tu}u∈V , with the property that
uv ∈ E if and only if V(Tu) ∩ V(Tv) 6= ∅. In the interest of clarity, we shall use capital letters
X, Y, . . . for the vertices of T and call them nodes. The following is a well-known fact [10].

Theorem 9. [10] A graph is chordal if and only if it has a tree model.

We remark that there exists a linear time algorithm [24, 11] to determine whether an input
graph G is chordal, and if so, to construct a tree model of G.

For further notation and terminology we invite the reader to consult [11, 25].

3 Preliminaries on combinatorial algebraic topology

We now recall some basic notions of algebraic topology and homology theory. An excellent
concise introduction is [21, Chapter 0.3]. More details can be found in [18].

A simplicial complex K with vertex set V is a collection of subsets of V such that if B ∈ K
and A ⊆ B then B ∈ K. The elements of K are called faces. For a face σ ∈ K we denote by
|σ| its cardinality (number of vertices) and by dim σ = |σ| − 1 its dimension. We think of K as
of the triangulation of a topological space (namely the geometric realization of K). The join of
two simplicial complexes K and L with disjoint vertex sets is the complex K ∗ L = {σ ∪ τ : σ ∈
K, τ ∈ L}. It is also convenient to treat the empty simplicial complex (with no vertices and the
unique face ∅) as the (−1)-dimensional sphere S−1.

A simplicial complex K is called flag if every minimal non-face of K has dimension 1. This
is equivalent to saying that K is the clique complex of its 1-dimensional skeleton or the inde-
pendence complex of the complement of that skeleton.

Two topological spaces X, Y are homotopy equivalent or have the same homotopy type, which
we denote X ≃ Y if there are continuous mas f : X → Y and g : Y → X such that f g ∼ idY

and g f ∼ idX where ∼ denotes the relation of homotopy between maps [18]. Loosely speaking
it means that one can continuously deform one map to the other. This is a relaxation of the
notion of homeomorphism. A space is contractible if it is homotopy equivalent to a point.

We now proceed to define simplicial homology. An oriented face of K is a face σ together
with an equivalence class of orderings of the vertices of σ, where two orderings are equivalent
if they differ by an even permutation. We will denote by [v0, . . . , vp] the oriented face corre-
sponding to the face σ = {v0, . . . , vp} together with the ordering v0 < · · · < vp. Let Cp(K) be
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the free abelian group with basis consisting of the oriented faces of dimension p modulo the
relations σ1 + σ2 = 0 whenever σ1 and σ2 are oriented faces corresponding to the same face σ
but with opposite orientations. The elements of Cp(K) are called p-chains and Cp(K) = 0 when
p ≤ −2. There are maps ∂p : Cp(K) → Cp−1(K) defined on the basis elements via

∂p[v0, . . . , vp] =
p

∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vp].

Then ∂p extend to group homomorphisms and ∂p∂p+1 = 0. The elements of ker ∂p ⊆ Cp(K)
are called cycles and the elements of im ∂p+1 ⊆ Cp(K) are boundaries. The p-th reduced homology

group of K is the quotient H̃p(K) = ker ∂p/im ∂p+1. If K is finite, it is a finitely generated abelian

group whose rank is called the p-th reduced Betti number b̃p(K). The homology groups are an
invariant of the homotopy type of the space.

We can now describe the homology classes defined by cross-cycles in flag complexes. First
of all, suppose M = {(v1,1, v1,2), (v2,1, v2,2), . . . , (vk,1, vk,2)} is an induced matching in a graph
G. Then we define a (k − 1)-chain αM ∈ Ck−1(I(G)) by

αM = ∑
ǫ1,...,ǫk∈{1,2}

(−1)ǫ1+···+ǫk [v1,ǫ1
, v2,ǫ2 , . . . , vk,ǫk

].

Since M is an induced matching, each collection {v1,ǫ1
, . . . , vk,ǫk

} is an independent set in
G, so the definition makes sense. We leave it to the reader to verify that ∂k−1αM = 0, therefore
αM is a cycle and it determines a homology class [αM] ∈ H̃k−1(I(G)). Now assume that M
contains a maximal independent set D of G, which we can without loss of generality assume
to be D = {v1,1, v2,1, . . . , vk,1}. Then the face [v1,1, v2,1, . . . , vk,1] is maximal in I(G), so it does
not appear in the image of ∂k : Ck(I(G)) → Ck−1(I(G)) and it follows that the homology class
[αM] ∈ H̃k−1(I(G)) represented by αM is non-zero.

Unfortunately it is not the case that H̃k−1(I(G)) is generated by the classes [αM] for induced
matchings M of size k. For example it is easy to see that I(C5) = S1, but C5 does not even have
induced matchings of size two.

In the next section, we show that the situation is much better for chordal graphs.

4 Homology for chordal graphs

In this section we prove that if G is chordal then all of the homology of I(G) can be detected
using cross-cycles.

Recall that for a sequence of topological spaces X1, . . . , Xn the wedge sum (or one-point
union)

∨n
i=1 Xi is the space obtained from the disjoint union of the Xi’s by choosing a sequence

of distinguished points xi ∈ Xi and identifying them to a single point. If n = 0, we declare
the wedge sum of an empty family to be the space consisting of one point. For a simplicial
complex K, the suspension is Σ K = S0 ∗ K. These constructions are well-behaved with respect
to reduced homology: we have H̃k(

∨n
i=1 Xi) =

⊕n
i=1 H̃k(Xi) and H̃k(Σ K) = H̃k−1(K). In fact

these properties are usually taken as the axioms of a reduced homology theory.
We are going to use the following result of Engström [5].

Lemma 10. [5] If G is any graph and v is a simplicial vertex then there is a homotopy equivalence

I(G) ≃
∨

u∈N(v)

Σ I(G \ N[u]).

Theorem 11 (Theorem 2). For a chordal graph G and any k ≥ 0, we have that H̃k−1(I(G)) 6= 0 if
and only if G has an induced matching of size k containing a maximal independent set.
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Proof. The ‘if’ part follows from the discussion of cross-cycles in the previous section. To
prove the ‘only if’ part we use induction on the number of vertices in G.

If V(G) = ∅, then I(G) = S−1 and H̃−1(S
−1) = Z. In this case the empty matching of

size 0 satisfies all the requirements. If G has an isolated vertex, then I(G) is contractible and
H̃k−1(I(G)) = 0, so there is nothing to do. This completes the check of initial conditions.

Otherwise suppose that G is a chordal graph with no isolated vertices and H̃k−1(I(G)) 6= 0.
Let v be any simplicial vertex of G (which exists by [4]). By Lemma 10 there is a splitting

H̃k−1(I(G)) =
⊕

u∈N(v)

H̃k−2(I(G \ N[u])).

It follows that there exists a vertex u ∈ N(v) such that H̃k−2(I(G \ N[u])) 6= 0. The graph
G \ N[u] is chordal, so by induction it has an induced matching M′ of size k − 1 containing a
maximal independent set D′. Now define a new pair (M, D) of size k in G by setting

M = M′ ∪ {vu}, D = D′ ∪ {u}.

We easily see that M is an induced matching in G and D is an independent set which is
maximal in G. This completes the proof. �

Remark. A more careful analysis of this argument shows that, in fact, slightly more is true.
We leave the proof to the reader, as we do not need the full strength of the next result for our
algorithmic applications.

Proposition 12. If G is chordal and k ≥ 0 then the homology group H̃k−1(I(G)) is generated by the
classes [αM] as M runs through all induced matchings of size k containing maximal independent sets.

We close this section by proving Theorems 5 and 6.

Proof of Theorems 5 and 6. Since for a chordal graph G the space I(G) has the homotopy type
of a wedge sum of spheres [23], it is contractible if and only if all its homology groups vanish.
Therefore, the first part of Theorem 5 follows directly from Theorem 3 and 2. The second part
is a consequence of the fact that simply-connectedness of I(G) is equivalent to the vanishing of
H̃1(I(G)), which by Theorem 2 is equivalent to G not having an induced matching of size two
containing a maximal independent set. Clearly this condition can be checked in polynomial
time. Theorem 6 follows from Theorems 4 and 2. �

5 Algorithm for chordal graphs

In this section, we prove Theorem 3, that is, we present a polynomial time algorithm checking
if a chordal graph G has an induced matching M containing a maximal independent set D. For
simplicity, we call the pair (M, D) a solution to G.

Let G be a chordal graph. Recall that one can construct a tree model of G in linear time [24].
Thus, for the rest of this section, we shall assume that we have a fixed tree model of G and all
subsequent considerations are always with respect to this model.

Namely, let a tree T with a collection {Tu}u∈V(G) of subtrees of T be a tree model of G. We
consider T rooted at some node, and we direct all edges of T away from the root (Fig. 2). This
allows us to treat T as an upper semi-lattice. In particular, for X, Y ∈ V(T), we write X � Y if
there is in T a directed path from Y to X. Observe that � is a partial order. We write X ≺ Y if
X � Y and X 6= Y. If XY is an edge of T oriented from Y to X, we say that Y is the parent of X,
and X is a child of Y. If X ≺ Y, we say that Y is an ancestor of X, and X is a descendant of Y.

Notation. For u ∈ V(G), top(u) denotes the maximum element of V(Tu) with respect to �.

The following is a simple consequence of the definition of a tree model (proof in appendix).
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Figure 2: A sample chordal graph G and its rooted tree model.

Lemma 13. If uv ∈ E(G), then top(u) � top(v) ∈ V(Tu) or top(v) � top(u) ∈ V(Tv).

To decide whether a solution to G exists, it suffices to consider particular type of solutions.

Definition. A solution (M, D) to G is canonical if every edge uv in M is such that u ∈ D if
top(u) ≻ top(v), and v ∈ D if top(u) ≺ top(v).

The following is an important result which is ultimately a consequence of Lemma 10.
(The proof can be found in the appendix.)

Lemma 14. If there exists a solution to G, then there exist a canonical solution to G of the same size.

Our algorithm is based on dynamic programming on T that tries to find canonical solutions
for subgraphs of G and then combines these solutions to obtain a solution to G if one exists.
In particular, we focus on subgraphs induced by vertices whose subtrees lie completely below
some node of T (see Fig. 2).

Notation. For X ∈ V(T), GX denotes the subgraph of G induced on vertices v with top(v) � X.

If X is the root of T, then GX = G. We distinguish the following special type of solutions to GX.

Definition. A solution (M, D) to GX is rooted if there exists u ∈ D such that top(u) = X.

Notation. S denotes the set of nodes X ∈ V(T) such that there exists a solution to GX and
R denotes the set of nodes X ∈ V(T) such that there exists a rooted canonical solution to GX.

Let us explain the notation and our strategy using the example in Fig. 2. We want to know
which nodes are in S (namely, whether the root of T is in S). To do so, we recursively find the
nodes that admit a rooted solution (the set R). For example, C ∈ R since the subgraph GC has
a solution ({(7, 9)}, {7}). On the other hand, B 6∈ R since for any choice of an edge (5, v) in
GB, the graph GB \ (N[5] ∪ N[v]) has an isolated vertex, and thus no solution. Still, GB has a
non-rooted solution combined from the rooted solutions of the disjoint subgraphs GC and GF.
Finally for G = GA, we try the edge (3, 8) and see that GA \ (N[3]∪ N[8]) = GC. We then check
that the rooted solution to GC together with the edge (3, 8) indeed form a solution to GA.

In the rest of this section, we present three technical lemmas that explain how we can
compute the sets R and S . Namely, Lemma 16 explains how to obtain a solution to GX (if one
exists) by combining rooted canonical solutions for descendants of X, and Lemma 17 provides
a way to determine whether a rooted solution exists to GX (for proofs see the appendix).

After the lemmas, we finally present our algorithm and analyze its complexity.
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Lemma 15. Let X ∈ V(T) and suppose that there exists a canonical solution (M, D) to GX. Then

(i) if Y = top(u) for some u ∈ D, then Y ∈ R, and

(ii) if Y � X and Y 6∈
⋃

u∈D V(Tu), then Y ∈ S .

Lemma 16. Let X ∈ V(T). Define RX = {Y | Y � X, Y ∈ R} and let R∗
X denote the set of maximal

elements of RX with respect to �. For each Y ∈ R∗
X, let (MY, DY) be a rooted canonical solution to GY,

and define
M∗ =

⋃

Y∈R∗
X

MY D∗ =
⋃

Y∈R∗
X

DY

Then, if there exists a solution to GX, then (M∗, D∗) is a canonical solution to GX.

Lemma 17. Let Z ∈ V(T), and let uv ∈ E(G) be an edge such that top(u) = Z and top(v) � Z.
Define Luv = {Y | Y � Z, Y 6∈ V(Tu) ∪ V(Tv)} and let L∗

uv be the set of maximal elements of Luv

with respect to �. For each X ∈ L∗
uv, define R∗

X just like in Lemma 16, and for each Y ∈ R∗
X , let

(MY, DY) be a rooted canonical solution to GY. Finally, define

M∗
uv = {uv} ∪

⋃

X∈L∗
uv

⋃

Y∈R∗
X

MY D∗
uv = {u} ∪

⋃

X∈L∗
uv

⋃

Y∈R∗
X

DY

Then, if there exists a (rooted) canonical solution (M, D) to GZ such that uv ∈ M and u ∈ D, then
(M∗

uv, D∗
uv) is a rooted canonical solution to GZ.

5.1 Proof of Theorem 3

The algorithm processes all nodes of T from leaves to the root as follows.
For each Z ∈ V(T) such that all descendants of Z have already been processed, we try to

decide whether there exists a rooted canonical solution to GZ. To do this, we apply Lemma 17.
Namely, we try every edge uv ∈ E(G) such that top(u) = Z and top(v) � Z. We construct
the sets M∗

uv and D∗
uv as described in Lemma 17. Note that we are able to construct these sets

because all descendants of Z have already been processed. Then we test if D∗
uv is a dominating

set of GZ. If so, we declare that there exists a rooted canonical solution to GZ. If we fail for
every possible choice of uv, then we declare that there is no rooted canonical solution to GZ.
The correctness of this procedure is guaranteed by Lemma 17.

After processing all nodes of T, we apply Lemma 16 for the root. Namely, we construct the
sets M∗ and D∗ as described in the lemma (for X = root of T) and test if D∗ is a dominating set
of G. If so, we declare that G has a solution and we return the pair (M∗, D∗). If not, we declare
that no solution for G exists. The correctness of this step is guaranteed by Lemma 16.

The algorithm can be implemented to run in time O(|E(G)|2) (details in the appendix.) �

6 Extensions and small cases

In this section, we briefly examine a modification of our algorithm from Section 5 which will
allow us to find exact-size solutions in restricted classes. This will imply Theorems 7 and 8.

We shall use the notation from Section 5. Again, we have a chordal graph G and a tree
model for G consisting of a tree T and subtrees {Tu}u∈V(G). Similarly, we define the partial
order � on V(T), and the subgraphs GX.

The following two technical lemmas are analogues of Lemmas 16 and 17 for deciding if
there exists a solution of size k. Their proofs are straightforward, and similar to the proofs of
Lemmas 16 and 17 so we omit the details. After the lemmas, we discuss their consequences.
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Notation. R(k) denotes the set of nodes X ∈ V(T) such that there exists a rooted canonical

solution to GX of size k, and R
(k)
X for X ∈ V(T) denotes the set {Y | Y � X, Y ∈ R(k)}.

Lemma 18. Let X ∈ V(T). Suppose that there is a solution to GX of size k. Then there exist positive

integers k1, k2, . . . , kt and nodes Y1, . . . , Yt where Yi ∈ R
(ki)
X for all i ∈ {1, . . . , t} such that

(i) k1 + k2 + · · ·+ kt = k,

(ii) Y1, Y2, . . . , Yt are pairwise incomparable with respect to �, and

(iii) if (MYi
, DYi

) is any rooted canonical solution to GYi
of size ki for each i ∈ {1, . . . , t}, and

M∗ =
t⋃

i=1

MYi
D∗ =

t⋃

i=1

DYi

then (M∗, D∗) is a canonical solution to GX of size k.

Notation. For uv ∈ E(G) with top(u) � top(v), we define R
(k)
uv = R

(k)
top(u)

\
(
V(Tu) ∪ V(Tv)

)
.

Lemma 19. Let X ∈ V(T), and let uv ∈ E(G) be an edge such that top(u) = X and top(v) � X.
Suppose that there is a canonical solution (M, D) to GX such that uv ∈ M and u ∈ D. Then there exist

positive integers k1, k2, . . . , kt and nodes Y1, . . . , Yt where Yi ∈ R
(ki)
uv for all i ∈ {1, . . . , t} such that

(i) k1 + k2 + · · ·+ kt = k − 1,

(ii) Y1, Y2, . . . , Yt are pairwise incomparable with respect to �, and

(iii) if (MYi
, DYi

) is any rooted canonical solution to GYi
of size ki for each i ∈ {1, . . . , t}, and

M∗ = {uv} ∪
t⋃

i=1

MYi
D∗ = {u} ∪

t⋃

i=1

DYi

then (M∗, D∗) is a rooted canonical solution to GX of size k.

We now look at how these lemmas can be applied in special subclasses of chordal graphs.
First, we look at interval graphs. These are defined as the intersection graphs of intervals

of the real line. Every interval graph G is chordal and, in particular, the intersection model of
intervals allows us to choose a tree model of G such that � is a total order. In particular, this
means that the largest set of pairwise incomparable nodes of T with respect to � is of size one.
It follows that we can compute the sets R(k) in polynomial time as it suffices to apply Lemmas
18 and 19 with t ∈ {0, 1}. This proves Theorem 7 (for complexity analysis see below).

More generally, we consider chordal graphs of bounded leafage. The leafage of a chordal
graph G is defined as the smallest integer ℓ such that G has a tree model with ℓ leaves. It was
first defined in [19] and it can be computed in polynomial time by the algorithm of [12]. The
same algorithm also constructs a tree model of G with minimum number of leaves.

Thus we may assume that T has exactly ℓ leaves. Similarly to the case of interval graphs,
this implies that the largest set of pairwise incomparable nodes of T with respect to � has size
ℓ. Thus to compute the sets R(k) it suffices to apply Lemmas 18 and 19 for all t ∈ {0, 1, . . . , ℓ}
which again yields a polynomial time algorithm. Namely, the complexity is O(kℓnℓ+2) which
is O(kn3) for the case of interval graphs (details in the appendix.) This proves Theorem 8.

7 Hardness

In this section, we sketch the constructions used in the proofs of hardness results. Namely, we
prove Theorems 1 and 4 as outlined in the introduction.
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7.1 Proof of Theorem 1 (sketch)

The problem is clearly in NP. To prove that it is also NP-hard we construct a reduction from
3SAT which is NP-hard [9]. Consider an instance I to 3SAT, namely clauses C1, . . . , Cm using
variables v1, . . . , vn. By standard arguments, we may assume that no variable appears twice
in the same clause (positively or negatively). We write vi for the negation of vi. From I we
construct a graph GI as follows. The vertex set of GI is {c1, . . . , cm, v1, . . . , vn, v1, . . . , vn}. It
contains edges v1v1, . . . , vnvn and there is an edge between vi (resp. vi) and cj if the literal vi

(resp. vi) appears in the clause Cj. Finally, the set {c1, . . . , cm} forms a clique.
We prove that I has a satisfying truth assignment if and only if GI has an induced matching

containing a maximal independent set. If ϕ : {v1, . . . , vn} → {true, false} is a satisfying truth
assignment, we define M = {v1v1, . . . , vnvn} and D = {vi | ϕ(vi) = true} ∪ {vi | ϕ(vi) = false}.
By construction, M is an induced matching containing D, and D is an independent set and is
maximal because every clause vertex cj is adjacent to a literal that evaluates to true. Conversely,
if GI has an induced matching M containing a maximal independent set D, we first observe
that D ∩ {c1, . . . , cm} = ∅ and exactly one of vi, vi belongs to D for each i. We assign true to all
literals that are in D, and then observe that this constitutes a satisfying truth assignment. �

7.2 Proof of Theorem 4

To prove Theorem 4, we first prove a somewhat stronger result concerning independent dom-
inating sets in chordal graphs. Note that independent dominating sets are precisely maximal
independent sets. Finding a smallest or largest such set is possible in polynomial time in
chordal graphs [8, 11]. If vertices have weights, then finding such a set of maximum weight is
still polynomial, but for minimum weight the problem is already NP-hard [2]. We prove that
finding such a set of exact cardinality is also NP-hard. This will imply Theorem 4.

Lemma 20. It is NP-hard to decide, for a given chordal graph G and integer k, whether or not G has a
maximal independent set of size k.

Proof (sketch). The proof is by reduction from the exact cardinality dominating set problem in
general graphs which is NP-hard, since minimum size dominating set problem is NP-hard [9].

Namely, consider a graph G = (V, E) and an integer k. Construct the following graph G′.

V(G′) = V ∪ {v1, v2, v3, v4, v5, v6 | v ∈ V}
E(G′) = {uv1 | uv ∈ E} ∪ {u1v1 | u, v ∈ V} ∪ {vv1, vv2, vv4, vv5, vv6, v2v3 | v ∈ V}

Observe that G′ is a chordal graph. Further, G has a dominating set of size k if and only if G′

has an independent dominating set of size 4|V| − 2k. That concludes the proof. �

Now, we are ready to prove Theorem 4 by reduction from the above problem. Consider a
chordal graph G = (V, E) and an integer k. We construct a graph G′ from G by substituting a
clique of size two for every vertex of G. The graph G′ is defined as follows.

V(G′) = V ∪ {v1 | v ∈ V}
E(G′) = {vv1 | v ∈ V} ∪ {uv, uv1, u1v, u1v1 | uv ∈ E}

Observe that G′ is a chordal graph, since chordal graphs are closed under clique substitution.
Moreover, G has an independent dominating set of size k if and only if G′ has an induced
matching of size k containing a maximal independent set. That proves Theorem 4. �

Remark. Note that our hardness results do not address the problem of finding minimum or
maximum size cross-cycles in the case of chordal graphs. By Theorem 2 finding the minimum
size cross-cycle is equivalent to calculating the connectivity of I(G) for a chordal graph G. We
believe that these two problems are also hard, but we were not able to come up with a proof.
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A Appendix

Before proceeding with the omitted proofs, we mention an important observation regarding
simplicial vertices which we make use of later in the proofs.

Lemma 21. Let G be a graph and v be a simplicial vertex of G. Suppose that G has an induced matching
M containing a maximal independent set D.

(i) If v ∈ D, then uv ∈ M for some u ∈ N(v) and we define M′ = M and D′ = D \ {v} ∪ {u}.

(ii) If v 6∈ D, then u ∈ D and uw ∈ M for some u ∈ N(v) and w ∈ N(u) (possibly w = v), and we
define M′ = M \ {uw} ∪ {uv} and D′ = D.

Then M′ is an induced matching of G, D′ is a maximal independent set of G and M′ contains D′.

A.1 Omitted Proofs

Proof of Lemma 13. Since uv ∈ E(G), we conclude that V(Tu) ∩ V(Tv) is a non-empty set.
Let Y be any maximal element of V(Tu) ∩ V(Tv) with respect to �. Since top(u) is the unique
maximal element of V(Tu), we conclude Y � top(u). Similarly, Y � top(v).

Suppose that Y 6∈ {top(u), top(v)}. Then Y cannot be the root of T, and hence, it has a
parent Z in T. Recall that Tu is a connected subgraph of T. Thus, every node on the path from
Y to top(u) belongs to V(Tu). In particular, Z belongs to this path and thus belongs to V(Tu).
Similarly, Z belongs to V(Tv). So Z ∈ V(Tu) ∩ V(Tv) which contradicts the maximality of Y.

Hence, we conclude that Y = top(u) or Y = top(v). But now this exactly yields the claim.
(To see this recall that Y ∈ V(Tu) ∩ V(Tv) and that Y � top(u) and Y � top(v).) �

Proof of Lemma 14. The proof is by induction on G. Suppose that there exists a solution
(M, D) to G. Let v be a vertex of G such that top(v) is a minimal element of the set {top(u) | u ∈
V(G)} with respect to �. We claim that v is a simplicial vertex of G. Suppose otherwise,
namely that there are non-adjacent vertices u, w ∈ N(v). By Lemma 13 and the minimality
of v, we conclude that top(v) ∈ Tu and top(v) ∈ Tw. But then top(v) ∈ Tu ∩ Tv implying
uw ∈ E(G), a contradiction. Thus v is indeed a simplicial vertex of G.

Therefore, by Lemma 21, we may assume that uv ∈ M and u ∈ D for some vertex u ∈ N(v).
Consider the graph G′ = G− N[u], and define M′ = M \ {uv} and D′ = D \ {u}. We show that
(M′, D′) is a solution to G′. To see this note first that N[v] ⊆ N[u] and that no neighbour of u or
v is an endpoint of an edge in M′, because M is an induced matching and uv ∈ M. This proves
that M′ is an induced matching of G′. Similarly, note that no neighbour of u belongs to D′, since
D is an independent set and u ∈ D. Therefore, D′ is an independent set of G′, and clearly, M′

contains D′. It remains to show that D′ is a maximal independent set of G′. If not, there exists
w ∈ V(G′) such that D′ ∪ {w} is an independent set of G′. But then D′ ∪ {u, w} = D ∪ {w} is
an independent set of G, since (D′ ∪ {w}) ∩ N[u] ⊆ V(G′) ∩ N[u] = ∅. This contradicts the
maximality of D, and so we conclude that (M′, D′) is indeed a solution to G′.

Now, we construct a tree model of G′ by taking T as the host tree and the collection
{Tx}x∈V(G)\N[u] as subtrees of T corresponding to the vertices of G′. By induction, there ex-
ists a canonical solution (M′′, D′′) to G′ with respect to this tree model where |M′′| = |M′|. In
particular, every xy ∈ M′′ satisfies x ∈ D′′ if top(x) ≻ top(y), and y ∈ D′′ if top(x) ≺ top(y).

Define M∗ = M′′ ∪ {uv} and D∗ = D′′ ∪ {u}. It follows that (M∗, D∗) is a solution to G,
since G′ contains no neighbour of u and N[v] ⊆ N[u]. By Lemma 13 and the minimality of v,
we also conclude top(v) � top(u). Thus (M∗, D∗) is actually a canonical solution to G, and
|M∗| = |M′′|+ 1 = |M′|+ 1 = |M| as required.

That concludes the proof. �
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Proof of Lemma 15. Consider a node Y � X satisfing either the assumption of (i) or the
assumption of (ii). Define M′ = M ∩ E(GY) and D′ = D ∩ V(GY). We show that (M′, D′) is a
canonical solution to GY which will imply that Y ∈ S and the claim will follow.

Since (M, D) is a solution to GX, it follows that M′ is an induced matching of GY, and D′ is
an independent set of GY. We show that M′ contains D′. Suppose otherwise, namely that there
exists u ∈ D′ that is not an endpoint of any edge in M′. Since u ∈ D, there exists v such that
uv ∈ M. Thus v 6∈ V(GY) by our assumption about u. Hence, from the definition of GY, we
obtain top(u) � Y and top(v) 6� Y. This together with Lemma 13 implies that top(v) ≻ top(u).
But then (M, D) is not a canonical solution to GX, a contradiction.

It remains to show that D′ is a maximal independent set of GY. Suppose otherwise, namely
that there exists a vertex v ∈ V(GY) non-adjacent to every vertex in D′. Observe that v 6∈ D
by the definition of D′. Recall that (M, D) is a solution to GX, and hence, D is a maximal
independent set of GX. Thus, there exists w ∈ D such that vw ∈ E(G). This implies w 6∈ D′,
and so w 6∈ V(GY). Thus, the definition of GY yields top(v) � Y and top(w) 6� Y. Therefore, by
Lemma 13, we conclude that top(w) ≻ top(v) ∈ V(Tw). This shows that top(w) � Y � top(v)
which implies Y ∈ V(Tw), since Tw is a connected subgraph of T and top(v) ∈ V(Tw).

We now conclude that Y does not satisfy the assumption of (ii), since Y ∈ V(Tw) and w ∈ D.
So, Y must satisfy the assumption of (i), namely that there exist u ∈ D with top(u) = Y. We
conclude that u 6= w, since top(w) ≻ Y. Therefore, uw ∈ E(G), since top(u) = Y ∈ V(Tw). But
this is impossible, since D is an independent set of GX and u, w ∈ D, a contradiction.

This proves that Y ∈ S . Finally, we observe that if Y satisfies the assumption of (i), then the
vertex u such that Y = top(u) also belongs to D′ which shows that Y ∈ R.

That concludes the proof. �

Proof of Lemma 16. Suppose that there exists a solution (M, D) to GX. By Lemma 14, we may
assume that (M, D) is a canonical solution to GX. We prove that (M∗, D∗) is also a canonical
solution to GX.

First, observe that for all distinct Y, Y′ ∈ R∗
X , there is no edge in G with one endpoint in

GY and another endpoint in GY′ . Indeed, any such edge uv where u ∈ V(GY) and v ∈ V(GY′)
must satisfy top(u) � Y and top(v) � Y′. But that contradicts Lemma 13, since Y and Y′ are
incomparable by �.

This observation shows that M∗ is indeed an induced matching, and D∗ is an independent
set of GX. Also, if (M∗, D∗) is a solution to GX, then it is a canonical solution, since (MY, DY)
is a canonical solution to GY for all Y ∈ R∗

X .
Thus, it remains to show that D∗ is a maximal independent set of GX. Suppose otherwise,

namely that there exists a vertex v ∈ V(GX) non-adjacent to every vertex in D∗.
Consider a node Y ∈ R∗

X . Observe that v 6∈ V(GY). Indeed, if v is in GY, then (MY, DY)
is not a solution to GY, since we assume that v is non-adjacent to every vertex of D∗ ⊇ DY.
Next, recall that (MY, DY) is a rooted canonical solution of GY. Thus, there exists w ∈ DY

with top(w) = Y. Suppose that v is adjacent to some u ∈ V(GY). We conclude top(u) � Y
and top(v) 6� Y by the definition of GY. Hence, by Lemma 13, top(v) ≻ top(u) ∈ V(Tv)
which implies top(v) � top(w) � top(u). So top(w) ∈ V(Tv), since Tv is connected. But now
vw ∈ E(G) and w ∈ D∗ contradicting our assumption that v is not adjacent to any vertex of D∗.

This proves that for every Y ∈ R∗
X, the vertex v is neither in GY nor is adjacent to some

vertex in GY. Suppose that v ∈ D and recall that (M, D) is a canonical solution to GX. This
implies by Lemma 15 that top(v) ∈ RX . Thus, since R∗

X is the set of maximal elements of
RX with respect to �, there must exist Y ∈ R∗

X such that Y � top(v). Thus v ∈ V(GY) by
the definition of GY, which is a contradiction to the above. So we conclude that v 6∈ D and we
recall that D is a maximal independent set of GX. Thus, there exists u ∈ D such that uv ∈ E(G).
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Similarly as before, we conclude that top(u) ∈ RX by Lemma 15. Thus, there exists Y ∈ R∗
X

such that Y � top(u). Consequently, u ∈ V(GY) by the definition of GY. But again this is
impossible, since uv ∈ E(G) and v is not adjacent to any vertex in GY as shown above.

This shows that D∗ is indeed a maximal independent set of GX and concludes the proof. �

Proof of Lemma 17. First, note similarly as in the proof of Lemma 16 that M∗
uv is an induced

matching and D∗
uv is an independent set of G. This follows from the fact that the elements

of L∗
uv are pairwise incomparable by �, and hence, the elements in

⋃
X∈L∗

uv
R∗

X are pairwise
incomparable by �.

Now, let (M, D) be a canonical solution to GZ with uv ∈ M and u ∈ D. For contradiction,
suppose that (M∗

uv, D∗
uv) is not a solution to GZ. Namely, suppose that there exists a vertex

w ∈ V(GZ) that is not adjacent to any vertex in D∗
uv.

Consider X ∈ L∗
uv, and define M∗

X =
⋃

Y∈R∗
X

MY and D∗
X =

⋃
Y∈R∗

X
DY. Note, by the

definition of L∗
uv, that the parent of X belongs to V(Tu) ∪ V(Tv). Also, recall that (M, D) is a

canonical solution to GZ with uv ∈ M. Thus X necessarily satisfies one of the assumptions in
Lemma 15 which allows us to conclude that X ∈ S . In other words, there exists a solution to
GX. Thus, by Lemma 16, we conclude that (M∗

X, D∗
X) is also a solution to GX. In particular, D∗

X

is a maximal independent set of GX. This shows that w is not a vertex of GX, since D∗
uv ⊇ D∗

X

and we assume that D∗
uv ∪ {w} is an independent set of G.

We conclude that top(w) 6� X for all X ∈ L∗
uv. This implies that top(w) 6∈ Luv. Recall that

w ∈ V(GZ) which means top(w) � Z. So top(w) ∈ V(Tu) ∪ V(Tv) by the definition of Luv.
Now, recall that (M, D) is a solution to GZ and so D is a maximal independent set of GZ.

Thus there exist x ∈ D such that xw ∈ E(G). Since u ∈ D but also u ∈ D∗
uv, we conclude that

x 6= u. This implies that top(x) ∈ Luv. Hence, there exists X ∈ L∗
uv such that top(x) � X,

and so, by Lemma 15, we conclude that top(x) ∈ RX . Thus there exists Y ∈ R∗
X such that

top(x) � Y. Recall that (MY, DY) is a rooted canonical solution to GY. Thus, there exists y ∈ DY

such that top(y) = Y. Recall that top(w) 6� X by the above, and so top(w) 6� Y. This implies,
by Lemma 13, that top(x) � top(y) � top(w) and top(x) ∈ V(Tw). Thus top(y) ∈ V(Tw)
since Tw is connected, which implies that y is adjacent to w. But then y cannot be in DY, since
y ∈ DY ⊆ D∗

uv and we assume that D∗
uv ∪ {w} is an independent set of GZ, a contradiction.

Thus no such w exists which proves that D∗
uv is indeed a maximal indepedent set of GZ.

That concludes the proof. �

Proof of Theorem 3; running time analysis. Let us now analyze the complexity of the algo-
rithm described in the proof of Theorem 3. Let n = |V(G)| and m = |E(G)|. We may assume
that every connected component of G contains at least one edge, otherwise there is no solution
to G. This allows us to assume that n = O(m).

Each time we process a node Z, we test a subset of edges of GZ. Note that each edge of
G is tested this way exactly once during the whole run of the algorithm. To test an edge uv,
we construct the sets M∗

uv and D∗
uv by combining solutions for descendants of Z. To do this

efficiently, we augment the algorithm to store a rooted canonical solution to GY when it finds
one when processing the node Y. Based on this, to construct M∗

uv and D∗
uv it suffices to search

through the descendants of Z in T. This clearly takes at most O(n) time, since both the sets
M∗

uv and D∗
uv have no more than n elements and also T contains at most n nodes. Afterwards,

we test if D∗
uv is a dominating set of GZ. This can be done directly in time O(m) by exploring

the neighbourhood of every vertex in V(GZ) \ D∗
uv. The same applies to the construction and

testing of M∗ and D∗ after processing all nodes.
Thus, altogether, the total complexity if O(m2) and that concludes the proof. �
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Proof of Theorems 7, 8; running time analysis. Let n = |V(G)|. To find a solution of size k,
we compute k sets R(1),. . . ,R(k) each of which has at most n elements.

For j ∈ {1 . . . k}, to find out if Z ∈ R(j), we apply Lemma 19. This involves choosing
integers k1, . . . , kt and a set of t nodes, constructing the sets M∗ and D∗, and testing if this

constitutes a solution to GZ. There are ( j−t
t−1) = O(jt) choices for the integers and O(nt) choices

for the nodes. The construction and testing of (M∗, D∗) takes O(n2) time (assuming we are
storing partial solutions just like in the algorithm in Section 5).

Altogether, for all j and all t, the complexity is ∑
k
j=0 ∑

ℓ
t=0 O(jtnt+2) = O(kℓnℓ+2) to compute

the sets R(1),. . . ,R(k). Similar argument yields that the complexity of Lemma 18 applied to the
root is O(kℓnℓ+2) once we have the sets R(1),. . . ,R(k).

That completes the proof of Theorem 8. Note that for interval graphs this analysis yields
complexity O(kn3). �

Proof of Theorem 1. The problem is clearly in NP. To prove that it is also NP-hard we construct
a reduction from 3SAT which is NP-hard [9]. Consider an instance I to 3SAT, namely clauses
C1, . . . , Cm using variables v1, . . . , vn. By standard arguments, we may assume that no variable
appears twice in the same clause (positively or negatively). We write vi for the negation of vi.

From the instance, we construct a graph GI as follows. The vertex set of GI is {c1, . . . , cm,
v1, . . . , vn, v1, . . . , vn}. It contains edges v1v1, . . . , vnvn and there is an edge between vi and cj

if the literal vi appears in the clause Cj while there is an edge between vi and cj if vi appears
in Cj. Finally, the set {c1, . . . , cm} forms a clique.

We now prove that I has a satisfying truth assignment if and only if GI has an induced
matching containing a maximal independent set.

Suppose that I has a satisfying truth assignment ϕ : {v1, . . . , vn} → {true, false}. Define
M = {v1v1, . . . , vnvn} and D = {vi | ϕ(vi) = true} ∪ {vi | ϕ(vi) = false}. By construction, M
is an induced matching containing D, and D is an independent set. It remains to show that D
is a maximal independent set of GI . If not, there exist j ∈ {1 . . . m} such that D ∪ {cj} is an
independent set of GI . This implies that the literals that appear in Cj are not in D, since they
are adjacent to cj. But then they all evaluate to false which means that Cj is not satisfied by the
assignment ϕ, a contradiction.

Conversely, suppose that GI contains an induces matching M containing an independent
set D. Suppose that D contains cj for some j ∈ {1 . . . m}. Suppose that the literal vi appears
in Cj. Recall that we assume that no variable appears both positively and negatively in any
clause. Thus cj is not adjacent to vi. Also, since D is a maximal independent set of GI , either
vi or some neighbour of vi belongs to D. Clearly, vi 6∈ D, since vi is adjacent to cj. Also, no
neighbour of vi among c1, . . . , cm can be in D, since cj ∈ D and D is an independent set while
{c1, . . . , cm} is a clique of GI . This yields that vi ∈ D. In particular, M contains an edge whose
one endpoint is cj and another edge whose one endpoint is vi. But then M cannot be an induced
matching, since N(vi) ⊆ N(cj), a contradiction. We reach a similar contradiction if vi appear
in Cj. This proves that D ∩ {c1, . . . , cm} = ∅ which also shows that for each i ∈ {1 . . . n}, either
vi or vi belongs to D but not both. This allows us to define a truth assignment ϕ as follows. We
set ϕ(vi) to true if vi ∈ D, and to false otherwise.

We claim that ϕ is a satisfying truth assignment. Consider a clause Cj. Recall that D ∩
{c1, . . . , cm} = ∅. So cj 6∈ D which means that there is a neighbour of cj that belongs to D,
because D is a maximal independent set. This neighbour can be only one of the literals that
appear in Cj, since D ∩ {c1, . . . , cm} = ∅. Thus ϕ evaluates this literal to true showing that Cj

is satisfied by ϕ. That completes the proof. �
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Proof of Lemma 20. The proof is by reduction from the exact cardinality dominating set
problem in general graphs which is NP-hard, since minimum size dominating set problem is
NP-hard[9].

Namely, consider a graph G = (V, E) and an integer k. Construct the following graph G′.

V(G′) = V ∪ {v1, v2, v3, v4, v5, v6 | v ∈ V}
E(G′) = {uv1 | uv ∈ E} ∪ {u1v1 | u, v ∈ V} ∪ {vv1, vv2, vv4, vv5, vv6, v2v3 | v ∈ V}

For simplicity, we define Vi = {vi | v ∈ V} for i ∈ {1, 2, 3, 4, 5, 6}.
We start by proving that G′ is a chordal graph. We construct an elimination ordering π

of G′ as follows. We first eliminate the elements of V6 ∪ V5 ∪ V4 ∪ V3 (in any order), then the
elements of V2, after that the elements of V, and finally the elements of V1. We claim that π
is a perfect elimination of G′. First, we note that V3 ∪ V4 ∪ V5 ∪ V6 is an independent set, each
element of which has exactly one neighbour in G′. Further, V2 is also an independent set, each
element of which has two neighbours, one in V3 and one in V. Finally, note that V1 is a clique,
and V is an independent set. This proves that π is indeed a perfect elimination ordering of G′.

Now, we prove that G has a dominating set of size k if and only if G′ has an independent
dominating set of size 4|V| − 2k.

Suppose that G has a dominating set D of size k. Define D′ = D ∪ V3 ∪ {v4, v5, v6 | v ∈
V \ D}. We claim that D′ is an independent dominating set of G′ of size 4|V| − 2k. First, by
the definition, the size of D′ is k + |V|+ 3(|V| − k) = 4|V| − 2k. Further, D′ is an independent
set. To see this recall that V ∪ V3 and V3 ∪ V4 ∪ V5 ∪ V6 are independent set of G′, and note that
for each v ∈ V, either v ∈ D′ or v4, v5, v6 ∈ D′ but never both. It remains to prove that D′ is
a dominating set. First, for each v ∈ V, the vertex v2 is adjacent to v3 ∈ D′. Further, if v ∈ D,
then the vertices v4, v5, v6 are adjacent to v ∈ D′. If v 6∈ D, then v is adjacent to v4, v5, v6 ∈ D′.
Finally, for each u ∈ V, there is v ∈ D with uv ∈ E, since D is a dominating set of G. Thus, u1

is adjacent to v in G′. This exhausts all vertices of G′ thus proving that D′ is an independent
dominating set of G′.

Conversely, suppose that G′ contains an independent dominating set D′ of size 4|V| − 2k.
Let D = D′ ∩ V. We prove that D is a dominating set of G of size k. First, observe that if v ∈ D,
then V ′ necessarily contains the vertex v3 and none of v2, v4, v5, v6, because D′ is a maximal
independent set. Similarly, if v 6∈ D, then D′ must contain the vertices v4, v5, v6 and exactly
one of v2, v3. This allows us to conclude that D′ \ V1 contains exactly 4|V| − 2|D| vertices.

In fact, this also proves that D′ ∩ V1 = ∅. Indeed, if for some u ∈ V, the vertex u1 belongs
to D′, then no other vertex of V1 belongs to D′ as V1 is a clique. This implies that the size of
D′ is 4|V| − 2|D| + 1. But this is an odd number, while by our assumption, D′ has 4|V| − 2k
vertices, for some k, which is an even number, a contradiction. Thus D′ ∩ V1 = ∅ as claimed.

So, we have that D′ is of size exactly 4|V| − 2|D| which is 4|V| − 2k by our assumption.
Thus we conclude that D is exactly of size k. It remains to prove that D is a dominating set of
G. Let u ∈ V. If u 6∈ D, then there exists a vertex in D′ adjacent to u1, since D′ is a dominating
set in G′. As the vertices in V1 are only adjacent to the vertices in V ∪ V1 and D′ ∩ V1 = ∅, we
conclude that some v ∈ V is adjacent to u1 in G′. So, by the construction of G′, we have that
uv ∈ E. Thus D is indeed a dominating set of G.

That concludes the proof. �

Proof of Theorem 4. We prove Theorem 4 by reduction from the exact cardinality dominating
set problem in chordal graphs (Lemma 20). Consider a chordal graph G = (V, E) and an
integer k. We construct a graph G′ from G by substituting a clique of size two for every vertex
of G. Namely, G′ is defined as follows.

V(G′) = V ∪ {v1 | v ∈ V}
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E(G′) = {vv1 | v ∈ V} ∪ {uv, uv1, u1v, u1v1 | uv ∈ E}

G′ is a chordal graph, since chordal graphs are closed under clique substitution.
Next we verify that G has an independent dominating set of size k if and only if G′ has an

induced matching of size k containing a maximal independent set.
Suppose that G has an independent dominating set D. Define M = {vv1 | v ∈ D}. Clearly,

M is an induced matching of G′, since D is an independent set of G. Also, D is contained in M.
Further, D is a maximal independent set of G′, because it is an independent dominating set of
G. Thus G′ contains an induced matching M of size k containing a maximal independent set.

Conversely, suppose that G′ contains an induced matching M of size k containing a maxi-
mal independent set D. Note that up to renaming the vertices (u1 to u and u to u1 for u ∈ V)
if necessary, we may assume that D ⊆ V. We show that D is an independent dominating set
of G of size k. Clearly, D is an independent set, by definition, and |D| = k, since |M| = k. If D
is not a dominating set of G, then there is v ∈ V such that D ∪ {v} is an independent set of G.
But then D ∪ {v} is also an independent set of G′ contradicting the maximality of D in G′.

That ends the proof. �
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