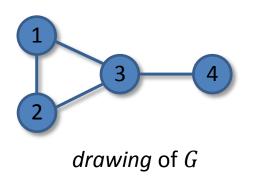
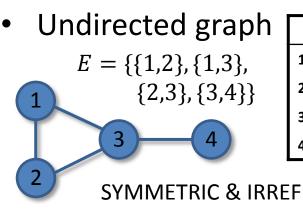
Graph

- graph is a pair (V, E) of two sets where
 - -V = set of elements called <u>vertices</u> (singl. vertex)
 - $-E = \text{set of pairs of vertices (elements of V) called <u>edges</u>$
- Example: G = (V, E) where $V = \{ 1, 2, 3, 4 \}$ $E = \{ \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\} \}$



- Notation:
 - we write G = (V, E) for a graph with vertex set V and edge set E
 - V(G) is the vertex set of G, and E(G) is the edge set of G

Types of graphs



	1	2	3	4
1		1	1	
2	1		1	
3	1	1		1
4			1	

SYMMETRIC & IRREFLEXIVE

 $E(G) = \text{set of } \underline{unordered}$ pairs

 Pseudograph (allows *loops*) $E = \{\{1,2\}, \{1,3\}, \{2,2\}, \}$ 1 2 3 4 $\{2,3\},\{3,3\},\$ 1 1 1 {3,4}} 1 1 1 2 3 3 1 1 1 1 0 4 1 **SYMMETRIC**

<u>loop</u> = edge between vertex and itself

Directed graph $E = \{(1,2), (2,3), \}$ (1,3), (3,1),(3,4)}

	1	2	3	4
1		1	1	
2			1	
3	1			1
4				

(IRREFLEXIVE) RELATION

 $E(G) = \text{set of } \underline{ordered}$ pairs

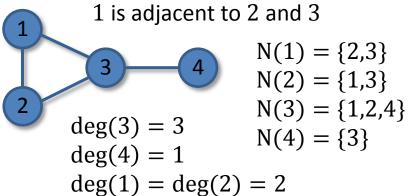
- Multigraph
 - $E = \{\{1,2\}, \{1,3\}, \{1,3\}, \{1,3\}, \{2,3\}, \{2,3\}, \{2,3\}, \{2,3\}, \{2,3\}, \{2,3\}, \{3$ $\{2,3\},\{3,4\},\{3,4\},\{3,4\},\{3,4\}\}$

E(G) is a <u>multiset</u>

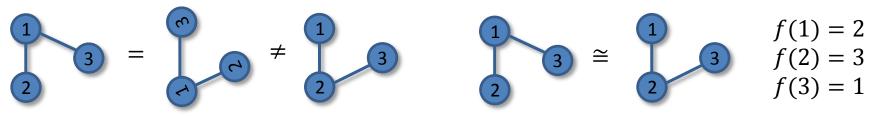
	1	2	3	4
1		1	3	
2	1		2	
3	3	2		4
4			4	

More graph terminology

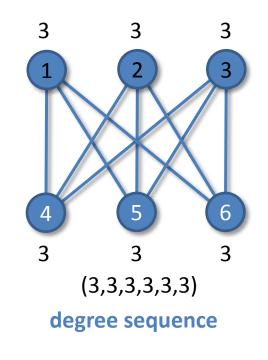
- simple graph (undirected, no loops, no parallel edges)
 for edge {u, v}∈E(G) we say:
- *u* and *v* are adjacent
- *u* and *v* are neighbours
- u and v are endpoints of $\{u, v\}$
- we write $uv \in E(G)$ for simplicity
- N(v) = set of **neighbours** of v in G



• deg(v) = degree of v is the number of its neighbours, ie. |N(v)|

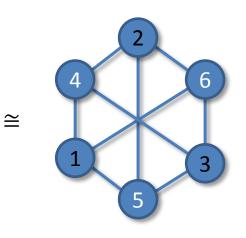


 $G_1 = (V_1, E_1)$ is **isomorphic** to $G_2 = (V_2, E_2)$ if there exists a bijective mapping $f: V_1 \to V_2$ such that $uv \in E(G_1)$ if and only if $f(u)f(v) \in E(G_2)$

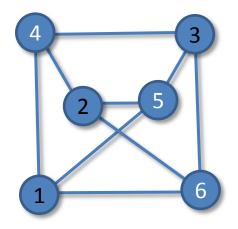


if f is an isomorphism $\Rightarrow \deg(u) = \deg(f(u))$

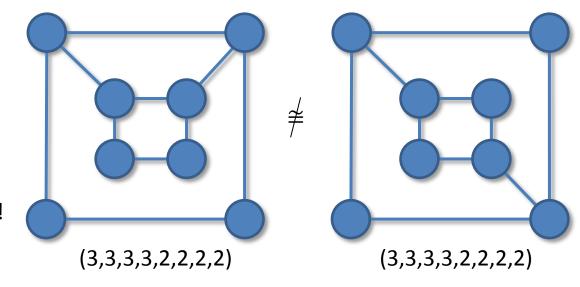
i.e., isomorphic graphs have same degree sequences only necessary not sufficient!!!



(3,3,3,3,3,3)

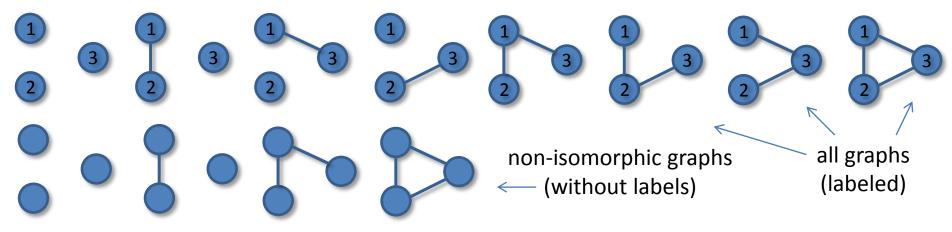


(3,3,3,3,3,3)



 \cong

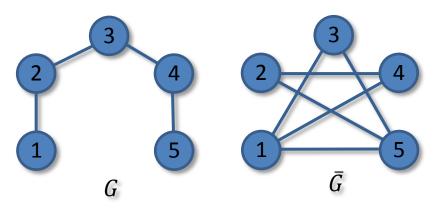
How many pairwise non-isomorphic graphs on *n* vertices are there?



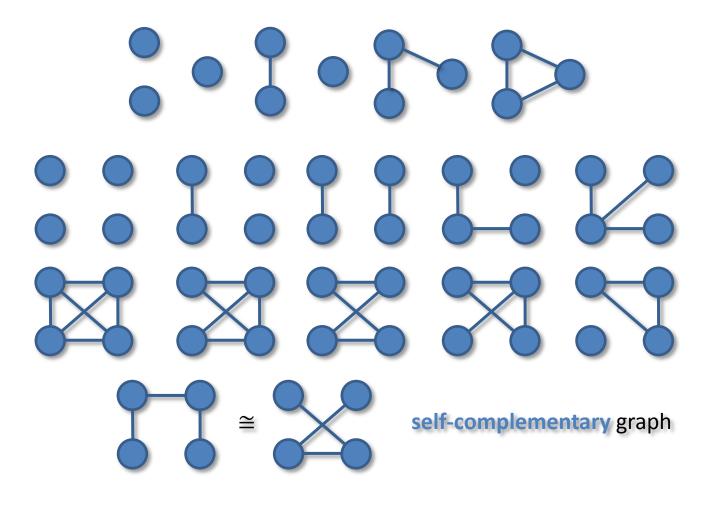
the **complement** of G = (V, E) is the graph $\overline{G} = (V, \overline{E})$ where

 $\overline{E} = \{ \{u, v\} \mid \{u, v\} \notin E \}$

 $E(G) = \{\{1,2\},\{2,3\},\{3,4\},\{4,5\}\}$ $E(\bar{G}) = \{\{1,3\},\{1,4\},\{1,5\},\{2,4\},\\\{2,5\},\{3,5\}\}$



How many pairwise non-isomorphic graphs on *n* vertices are there?



- Are there self complementary graphs on 5 vertices ? Yes, 2
- $1 \rightarrow 1, 2 \rightarrow 4, 3 \rightarrow 2$ $4 \rightarrow 5, 5 \rightarrow 3$
- ... 6 vertices ?

- $1 \rightarrow 2, 2 \rightarrow 5, 3 \rightarrow 3$ $4 \rightarrow 1, 5 \rightarrow 4$
- No, because in a self-complementary graph G = (V, E) $|E| = |\overline{E}|$ and $|E| + |\overline{E}| = {|V| \choose 2}$ but ${6 \choose 2} = 15$ is odd • ... 7 vertices ? No, since ${7 \choose 2} = 21$
- ... 8 vertices ? Yes, there are 10 $1 \rightarrow 4, 2 \rightarrow 6, 3 \rightarrow 1, 4 \rightarrow 7$ $5 \rightarrow 2, 6 \rightarrow 8, 7 \rightarrow 3, 8 \rightarrow 5$

Handshake lemma

 $\sum \deg(v) = 2m$

deg(1) = 2

deg(2) = 2

deg(3) = 3

deg(4) = 1

m = 4

5

6

3

3

4

Lemma. Let G = (V, E) be a graph with m edges.

Proof. Every edge $\{u, v\}$ connects 2 vertices and contributes to exactly 1 to deg(u) and exactly 1 to deg(v). In other words, in $\sum_{v \in V} \deg(v)$ every edge is counted twice.

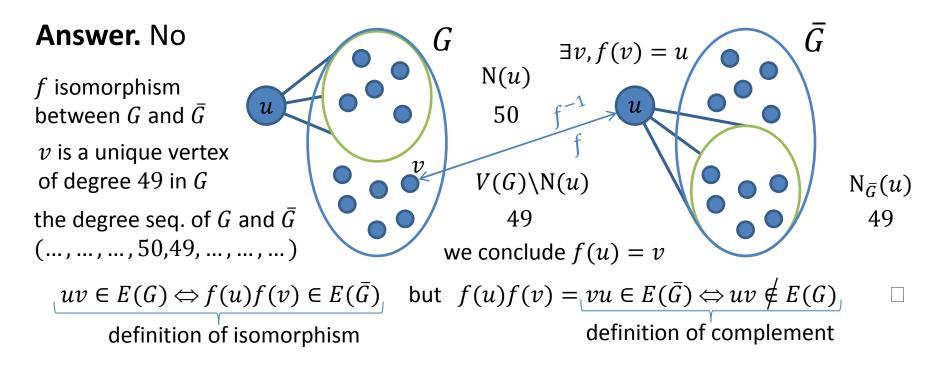
How many edges has a graph with degree sequence:

- (3,3,3,3,3,3)?
- (3,3,3,3,3)?
- (0,1,2,3)?

Corollary. In any graph, the number of vertices of odd degree is even. **Corollary 2.** Every graph with at least 2 vertices has 2 vertices of the same degree.

Handshake lemma

Is it possible for a self-complementary graph with 100 vertices to have exactly one vertex of degree 50?

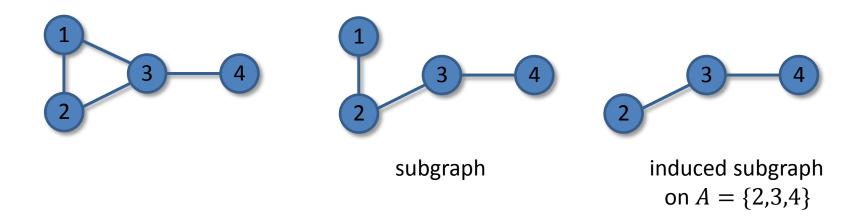


Subgraphs

Let G = (V, E) be a graph

- a subgraph of G is a graph G' = (V', E') where $V' \subseteq V$ and $E' \subseteq E$
- an induced subgraph (a subgraph induced on $A \subseteq V$) is a graph

$$G[A] = (A, E_A)$$
 where $E_A = E \cap A \times A$



Walks, Paths and Cycles

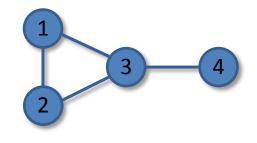
Let G = (V, E) be a graph

• a walk (of length k) in G is a sequence

 $v_1, e_1, v_2, e_{2,} \dots, v_{k-1}, e_{k-1}, v_k$

where $v_1, ..., v_k \in V$ and $e_i = \{v_i, v_{i+1}\} \in E$ for all $i \in \{1.., k-1\}$

- a path in G is a walk where v₁, ..., v_k are distinct (does not go through the same vertex twice)
- a closed walk in G is a walk with $v_1 = v_k$ (starts and ends in the same vertex)
- a cycle in G is a closed walk where $k \ge 3$ and v_1, \dots, v_{k-1} are distinct



1,{1,2},2,{2,1},1,{1,3},3 is a walk (not path)

```
1,{1,2},2,{2,3},3,{3,1},1
is a cycle
```

Special graphs

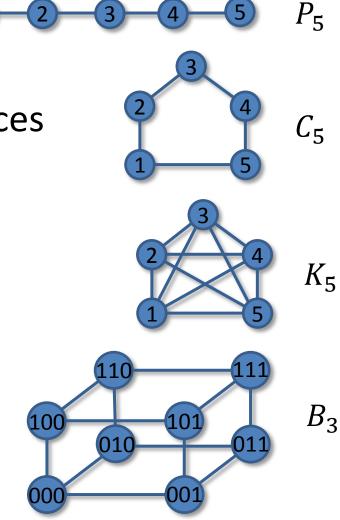
- P_n path on n vertices
- *C_n* cycle on *n* vertices
- K_n complete graph on n vertices
- B_n hypercube of dimension n

$$V(B_n) = \{0,1\}^n$$

 (a_1, \dots, a_n) adjacent to (b_1, \dots, b_n) if a_i 's and b_i 's differ in exactly once

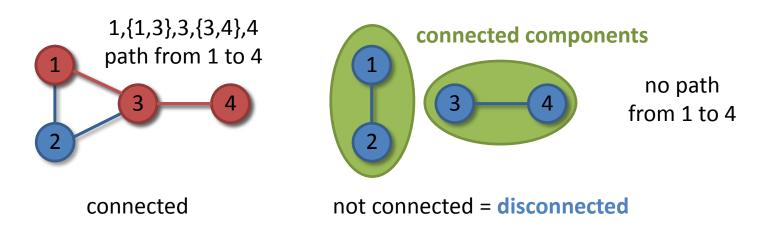
$$\sum_{i=1}^{n} |a_i - b_i| = 1$$

(0,1,0,0) adjacent to (0,1,0,1) not adjacent to (0,1,1,1)



Connectivity

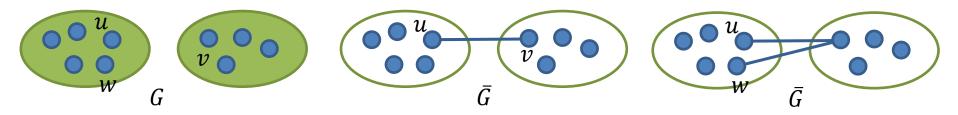
• a graph G is connected if for any two vertices u, v of G there exists a path (walk) in G starting in u and ending in v



• a **connected component** of *G* is a maximal connected subgraph of *G*

Connectivity

Show that the complement of a disconnected graph is connected !



• What is the maximum number of edges in a disconnected graph ?

• What is the minimum number of edges in a connected graph ?

path P_n on n vertices has n-1 edges

cannot be less, why ? keep removing edges so long as you keep the graph connected \Rightarrow a (spanning) tree which has n - 1 edges

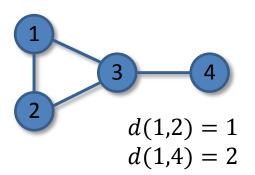
Distance, Diameter and Radius

recall walk (path) is a sequence of vertices and edges

 $v_1, e_1, v_2, e_{2,} \dots, v_{k-1}, e_{k-1}, v_k$

if edges are clear from context we write v_1, v_2, \dots, v_k

- length of a walk (path) is the number of edges
- distance d(u, v) from a vertex u to a vertex v is the length of a shortest path in G between u and v
- if no path exists define $d(u, v) = \infty$



matrix of distances in *G* **distance matrix**

d(u,v)	1	2	3	4
1	0	1	1	2
2	1	0	1	2
3	1	1	0	1
4	2	2	1	0

Distance, Diameter and Radius

- eccentricity of a vertex u is the largest distance between u and any other vertex of G; we write $ecc(u) = \max d(u, v)$
- **diameter** of G is the largest distance between two vertices $diam(G) = \max_{u,v} d(u,v) = \max_{v} ecc(v)$
- radius of G is the minimum eccentricity of a vertex of G

rad(G) = 1

called a **centre**)

$$rad(G) = 1$$
(as witnessed by 3
called a centre)
$$rad(G) = \min_{v} ecc(v)$$

$$ecc(1) = 2$$

$$ecc(2) = 2$$

$$ecc(3) = 1$$

$$ecc(4) = 2$$

Find radius and diameter of graphs P_n , C_n , K_n , B_n Prove that $rad(G) \leq diam(G) \leq 2 \cdot rad(G)$

Independent set and Clique

- **clique** = set of pairwise adjacent vertices
- **independent set** = set of pairwise non-adjacent vertices
- clique number $\omega(G)$ = size of largest clique in G
- **independence number** $\alpha(G)$ = size of largest independent set in *G* (1.2.2) is a clique

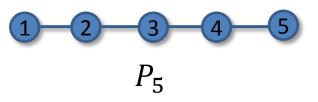
 $\{1,2,3\}$ is a $\{1,3\}$ is a

 $\{1,2,3\}$ is a clique

$\alpha(G)$	=	2
$\omega(G)$	=	3

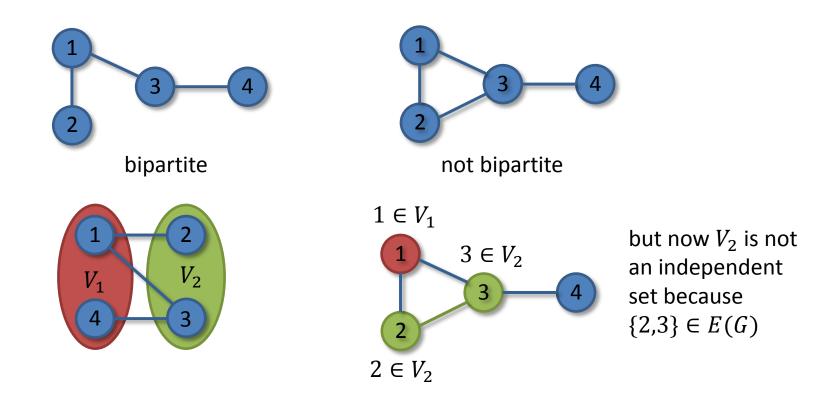
{1,4} is an independent set

Find $\alpha(P_n)$, $\alpha(C_n)$, $\alpha(K_n)$, $\alpha(B_n)$ $\omega(P_n)$, $\omega(C_n)$, $\omega(K_n)$, $\omega(B_n)$



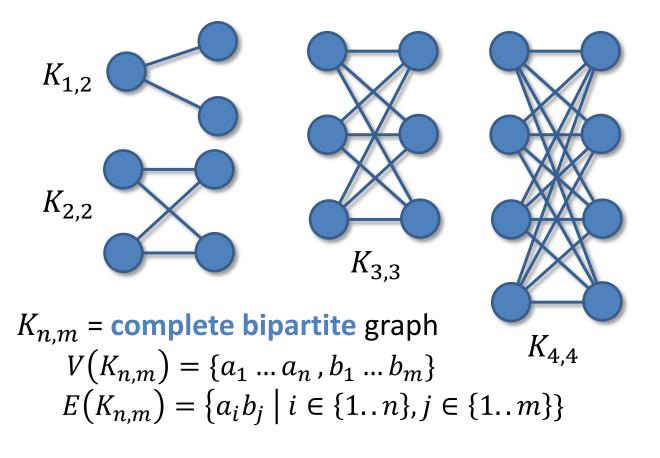
Bipartite graph

 a graph is bipartite if its vertex set V can be partitioned into two independent sets V₁, V₂; i.e., V₁ ∪ V₂ = V



Bipartite graph

 a graph is bipartite if its vertex set V can be partitioned into two independent sets V₁, V₂; i.e., V₁ ∪ V₂ = V



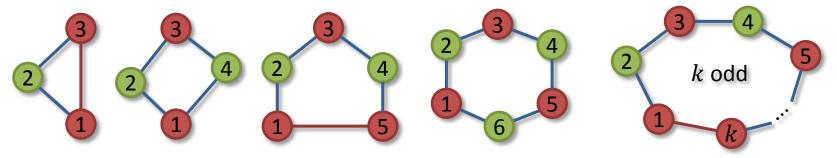
Which of these graphs are bipartite: P_n, C_n, K_n, B_n?

Bipartite graph

Theorem. A graph is bipartite \Leftrightarrow it has no cycle of odd length.

Proof. Let G = (V, E). We may assume that G is connected.

" \Rightarrow " any cycle in a bipartite graph is of even length



" \Leftarrow " Assume G has no odd-length cycle. Fix a vertex u and put it in V_1 . Then repeat as long as possible:

- take any vertex in V_1 and put its neighbours in V_2 , or

- take any vertex in V_2 and put its neighbours in V_1 . Afterwards $V_1 \cup V_2 = V$ because G is connected.

If one of V_1 or V_2 is not an independent set, then we find in G an odd-length closed walk \Rightarrow cycle, impossible. So, G is bipartite (as certified by the partition $V_1 \cup V_2 = V$)