Relations - review

- A binary relation on A is a subset of A×A (set of <u>ordered</u> pairs of elements from A)
- Example:
 - $A = \{a,b,c,d,e\} \\ R = \{(a,a),(a,b),(b,b),(b,c), \\ (c,e),(d,a),(d,c),(e,b)\}$

	а	b	С	d	е
а	1	1	0	0	0
b	0	1	1	0	0
С	0	0	0	0	1
d	1	0	1	0	0
е	0	1	0	0	0

 A binary relation between A and B is a subset of A×B (a set of pairs (a,b) where a∈A and b∈B)

- **reflexive** $(a,a) \in R$ for all $a \in A$
- symmetric if $(a,b) \in R$, then $(b,a) \in R$
- transitive if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$

- **reflexive** $(a,a) \in R$ for all $a \in A$
- symmetric if $(a,b) \in R$, then $(b,a) \in R$
- transitive if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$

- **reflexive** $(a,a) \in R$ for all $a \in A$
- symmetric if $(a,b) \in R$, then $(b,a) \in R$
- transitive if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$

- **reflexive** $(a,a) \in R$ for all $a \in A$
- symmetric if $(a,b) \in R$, then $(b,a) \in R$
- transitive if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$

• Number of _____ relations on a set of *n* elements ?

symmetric reflexive symmetric and reflexive symmetric and not reflexive irreflexive asymmetric antisymmetric

	а	b	С	d	е
а					
b					
с			2		
d			•		
е					

- **irreflexive** $(a,a) \notin R$ for all $a \in A$
- asymmetric if $(a,b) \in R$, then $(b,a) \notin R$
- **antisymmetric** if $(a,b) \in R$ and $(b,a) \in R$, then a=b

- equivalence relation = reflexive symmetric transitive "equivalence" of objects e.g., "X has the same age as Y"
- partial order = reflexive antisymmetric transitive
 "order" of objects e.g., "X is a subset of Y"
- strict partial order = ireflexive asymmetric transitive
 "strict order" of objects e.g., "X is older than Y"
- total (linear) order = p.o. + every pair comparable: $(a,b) \in R$ or $(b,a) \in R$ for all $a,b \in A$

e.g., "X is a subset of Y" is a partial but not a total order

- equivalence relation = reflexive symmetric transitive
- partial order = reflexive antisymmetric transitive
- **strict partial order = ireflexive asymmetric transitive**
- total (linear) order = p.o. + every pair comparable: $(a,b) \in R$ or $(b,a) \in R$ for all $a,b \in A$
- If *R* and *S* are _____ relations on the same set A:
 - is $R \cap S$ also a _____ relation ?
 - is $R \cup S$ also a _____ relation ?
 - is $P \subseteq R$ also a _____ relation ?
 - is $P \supseteq R$ also a _____ relation ?

reflexiveantisymmetricequivalence relationpartial ordersymmetricireflexivestrict partial ordertotal order

- prove Multinomial Theorem
 - by *induction* on k by *induction* on n
 - using Binomial Theorem
- simplify (1) $\sum_{m=0}^{n} \binom{m}{m-k}$ (2) $\sum_{k=0}^{n} \binom{n-k}{m-k}$ (3) $\sum_{k=0}^{n} k \binom{m-k-1}{m-n-1}$