Relations - review

- A binary relation on A is a subset of $A \times A$ (set of ordered pairs of elements from A)
- Example:

$$
\begin{aligned}
A= & \{a, b, c, d, e\} \\
R= & \{(a, a),(a, b),(b, b),(b, c), \\
& (c, e),(d, a),(d, c),(e, b)\}
\end{aligned}
$$

	a	b	c	d	e
a	1	1	0	0	0
b	0	1	1	0	0
c	0	0	0	0	1
d	1	0	1	0	0
e	0	1	0	0	0

- A binary relation between A and B is a subset of $A \times B$ (a set of pairs (a, b) where $a \in A$ and $b \in B$)

Types of relations

- reflexive $(a, a) \in R$ for all $a \in A$
- symmetric if $(a, b) \in R$, then $(b, a) \in R$
- transitive if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

> reflexive $\$$ symmetric??
> transitive ??

Types of relations

- reflexive $(a, a) \in R$ for all $a \in A$
- symmetric if $(a, b) \in R$, then $(b, a) \in R$
- transitive if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

> reflexive $\$ \$$
ymmetric $\$ \$ 3$
> transitive ??

Types of relations

- reflexive $(a, a) \in R$ for all $a \in A$
- symmetric if $(a, b) \in R$, then $(b, a) \in R$
- transitive if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

| reflexive $\$ ~$ |
| :---: | transitive ??

Types of relations

- reflexive $(a, a) \in R$ for all $a \in A$
- symmetric if $(a, b) \in R$, then $(b, a) \in R$
- transitive if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

Question \#1

- Number of \qquad relations on a set of n elements ? symmetric reflexive symmetric and reflexive symmetric and not reflexive irreflexive
asymmetric antisymmetric

- irreflexive $(a, a) \notin R$ for all $a \in A$
- asymmetric if $(a, b) \in R$, then $(b, a) \notin R$
- antisymmetric if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$

Question \#2

- equivalence relation = reflexive symmetric transitive "equivalence" of objects e.g., "X has the same age as Y" - partial order = reflexive antisymmetric transitive "order" of objects e.g., "X is a subset of Y"
- strict partial order = ireflexive asymmetric transitive "strict order" of objects e.g., "X is older than Y "
- total (linear) order = p.o. + every pair comparable:

$$
(a, b) \in R \text { or }(b, a) \in R \text { for all } a, b \in A
$$

e.g., " X is a subset of Y " is a partial but not a total order

Question \#2

- equivalence relation = reflexive symmetric transitive
- partial order = reflexive antisymmetric transitive
- strict partial order = ireflexive asymmetric transitive
- total (linear) order = p.o. + every pair comparable:

$$
(a, b) \in R \text { or }(b, a) \in R \text { for all } a, b \in A
$$

- If R and S are \qquad relations on the same set A:
- is $R \cap S$ also a \qquad relation ?
- is $R \cup S$ also a \qquad relation?
- is $P \subseteq R$ also a \qquad relation ?
- is $\mathrm{P} \supseteq \mathrm{R}$ also a \qquad relation?
reflexive antisymmetric equivalence relation symmetric ireflexive strict partial order

Question \#3

- prove Multinomial Theorem
- by induction on $k \quad$ - by induction on n
- using Binomial Theorem
- simplify
(1)

$$
\sum_{m=0}^{n}\binom{m}{m-k}
$$

(2)

$$
\sum_{k=0}^{n}\binom{n-k}{m-k}
$$

(3)

$$
\sum_{k=0}^{n} k\binom{m-k-1}{m-n-1}
$$

