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Abstract

Bichain graphs form a bipartite analog of split permutation graphs, also known as split graphs of Dilworth number
2. Unlike graphs of Dilworth number 1 that enjoy many nice properties, split permutation graphs are substantially
more complex. To better understand the global structure of split permutation graphs, in the present paper we study
their bipartite analog. We show that bichain graphs admit a simple geometric representation and have a universal
element of quadratic order, i.e. an n-universal bichain graph with n2 vertices. The latter result improves a recent
cubic construction of universal split permutation graphs.
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1. Introduction

In this paper, we introduce the class of bichain graphs, which is a generalization of chain graphs. The latter class
has appeared in the literature under various names, such as difference graphs [8] or bisplit graphs [6], and has been
extensively studied by many researchers, because graphs in this class enjoy many nice properties. In particular, chain
graphs admit a simple characterization in terms of forbidden induced subgraphs: these are precisely 2K2-free bipartite
graphs. Many algorithmic problems that are generally NP-hard admit polynomial-time solutions when restricted to the
class of chain graphs (see e.g. [9]), which is partially due to the fact that chain graphs have bounded clique-width [4].
Also, graphs in this class are well-quasi-ordered by the induced subgraph relation [16] and they have a small universal
element [12], i.e. a graph with 2n vertices containing all n-vertex graphs from the class as induced subgraphs. The
class of chain graphs also plays a critical role in the study of the speed of hereditary graph properties. In particular,
this is one the nine minimal hereditary classes whose speed (i.e. asymptotic growth) is factorial [2].

Another minimal class with factorial speed is the class of threshold graphs. This has also received considerable
attention in the literature (see e.g. [13]) and it has many attractive properties including bounded clique-width, well-
quasi-orderability by induced subgraphs and small universal graphs [7]. The similarity between these two classes is
no surprise, as they are closely related. To reveal this relationship, observe that every threshold graph is a split graph,
i.e. its vertices can be partitioned into a clique and an independent set. If we remove the edges from the clique part of
a threshold graph, then what is left is a chain graph. Conversely, inserting all the edges in one part of the bipartition
of a chain graph yields a threshold graph. So, in a sense, the class of chain graphs is the bipartite analog of threshold
graphs.

Both classes, chain graphs and threshold graphs, have many important generalizations. One of them is known as
bipartite permutation graphs (generalizes chains graphs) and one as split permutation graphs (generalizes threshold
graphs). The class of split permutation graphs contains all threshold graphs, because threshold graphs are graphs of
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Dilworth number 1, while split permutation graphs are split graphs of Dilworth number at most 2 [3]. This small
jump from 1 to 2 changes the situation dramatically. In particular, the clique-width of split permutation graphs is
unbounded and graphs in this class are not well-quasi-ordered by induced subgraphs, which was recently shown in
[10]. Moreover, in the same paper it was conjectured that split permutation graphs constitute a minimal hereditary
class of unbounded clique-width. This property is quite rare and to date only two classes possessing this property
are known: bipartite permutation graphs and unit interval graphs [11]. In both cases, the proof of minimality exploits
the idea of universal graphs, because universal graphs describe a typical structure of graphs in the class. It is known
that not every class admits a universal element. For the two minimal classes of unbounded clique-width, bipartite
permutation graphs and unit interval graphs, an n-universal graph exists and for both of them it has n2 vertices.
However, for split permutation graphs even the existence of a universal element was an open question until recently.
In [1], this question was answered affirmatively by constructing a split permutation graph with 4n3 vertices containing
all split permutation graphs with n vertices as induced subgraphs. However, this construction is complicated and tells
us very little about the typical structure of split permutation graphs.

To better understand the global structure of split permutation graphs, in the present paper we reduce the problem
to their bipartite analog. Let us repeat that a split graph is a graph partitionable into a clique and an independent set.
The edges inside the clique part of a split graph are irrelevant for the purposes of our study, because all complications
occur between the two parts. By removing the edges from the clique part of a split permutation graph we obtain a
bipartite graph which we call a bichain graph.

We formally introduce the class of bichain graphs and derive some useful properties of these graphs in Section 3.
Then in Section 4 we propose a geometric model to represent bichain graphs. Finally, in Section 5 we construct an n-
universal bichain graph with n2 vertices. By inserting the edges in one of its parts, we obtain an n-universal split graph
with n2 vertices, thus improving the construction proposed in [1] from cubic to quadratic. Section 6 concludes the
paper by discussing some open problems related to bichain and split permutation graphs. All preliminary information
related to the topic of the paper can be found in Section 2.

2. Preliminaries

A graph G = (V,E) has vertex set V (G) and edge set E(G). We write uv for an edge {u, v} ∈ E(G). We denote
by N(u) the set of neighbours of u in G, and write N [u] for the set N(u)∪ {u}. For a set S ⊆ V (G), we write N [S]
to denote the set

⋃

u∈S N [u], and write N(S) for the set N [S] \ S.
For disjoint sets X ⊆ V (G) and Y ⊆ V (G), we say that X is complete to Y if xy ∈ E(G) for all x ∈ X and

all y ∈ Y . We say that X is anticomplete to Y if xy 6∈ E(G) for all x ∈ X and all y ∈ Y . We denote by G[X ] the
subgraph of G induced by X , and we write G−X for the graph G[V (G) \X ].

By 2K2 we denote the disjoint union of two edges.

In a graph, an independent set is a subset of vertices no two of which are adjacent. A graph G is said to be
bipartite if V (G) can be partitioned into two independent sets A,B. We say that (A,B) is a bipartition of G and
write G = (A,B,E) to denote a bipartite graph with a bipartition (A,B) and edge set E.

A permutation graph is the intersection graph of line segments whose endpoints lie on two parallel lines.

We say that a set of vertices in a graph forms a chain if their neighbourhoods form a chain with respect to set
inclusion, i.e. if for any two vertices in the set, the neighbourhood of one of them includes (not necessarily properly)
the neighbourhood of the other.

2.1. Chain graphs and alternating sequences

A bipartite graph such that each part in its bipartition forms a chain is called a chain graph. It is well-known (and
not difficult to see) that a bipartite graph is a chain graph if and only if it is 2K2-free, i.e. it does not contain 2K2 as
an induced subgraph. From this it follows, in particular, that a chain in one part of a bipartite graph implies a chain
in the other part, i.e. a bipartite graph is a chain graph if and only if at least one of its parts forms a chain. Below we
provide an alternative characterization of chain graphs. To this end, we introduce the following definition.
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A sequence of vertices u1, u2, . . . , ut in a bipartite graph G = (A,B,E) is called an alternating sequence if
ui ∈ A and uiui+1 ∈ E for all odd i, and ui ∈ B and uiui+1 6∈ E for all even i. We say that an alternating sequence
u1, . . . , ut consists of edges uiui+1 for odd i, and non-edges ui+1ui for even i.

An alternating sequence u1, . . . , ut, ut+1 is closed if u1 = ut+1. This implies that t is even (since u1 ∈ A and so
ut+1 = u1 ∈ A), and thus t ≥ 4 (since u1u2 is an edge while ut+1ut is not).

For instance, for the graph in Figure 1, the sequence a1, b2, a4, b3, a1 is a closed alternating sequence, where
a1b2, a4b3 are the edges of this sequence, and a4b2, a1b3 are the non-edges of this sequence.

Lemma 1. A bipartite graph G is a chain graph if and only if G contains no closed alternating sequence.

Proof. (⇐) We prove the contrapositive. Let G is a bipartite graph with bipartition (A,B). Suppose that G is
not a chain graph. Then G contains an induced 2K2, i.e. G contains vertices u, z ∈ A and v, w ∈ B such that
uv, zw ∈ E(G) and uw, vz 6∈ E(G). We see that u, v, z, w, u is a closed alternating sequence of G.

(⇒) For contradiction, assume that G is a chain graph but contains a closed alternating sequence. Let
u1, . . . , ut, ut+1 be a shortest such sequence. Recall that u1 = ut+1 and ui ∈ A, uiui+1 ∈ E(G) if i is odd, while
ui ∈ B, uiui+1 6∈ E(G) if i is even. Moreover, t is even and t ≥ 4. If u1u4 6∈ E(G), then the vertices u1, u2, u3, u4

are all distinct and induce a 2K2 in G. Indeed, we have u1, u3 ∈ A, u2, u4 ∈ B, and u1u2, u3u4 ∈ E(G) while
u2u3, u1u4 6∈ E(G). This is impossible, since G is a chain graph. So we conclude u1u4 ∈ E(G). This implies that
t > 4, since u1ut = ut+1ut 6∈ E(G). Thus t ≥ 6, since t is even. But now u1, u4, u5, . . . , ut+1 is also a closed
alternating sequence of G, contradicting the minimality of u1, . . . , ut+1.

3. Bichain graphs

In this section, we introduce the main notion of the paper, bichain graphs, and derive a number of properties of
these graphs.

We say that a bipartite graph is a bichain graph if each part in its bipartition can be split into at most two chains.
In other words, G = (A,B,E) is a bichain graph if A can be partitioned into A1, A2 and B can be partitioned into
B1, B2 such that for each i ∈ {1, 2}, both G − Ai and G − Bi are chain graphs. We say that (A1, A2, B1, B2) is a
bichain partition of G. Figure 1 represents an example of a bichain graph with the bichain partition A1 = {a1, a2},
A2 = {a3, a4}, B1 = {b1, b2}, B2 = {b3, b4}.

From the definition it follows that the class of bichain graphs forms an extension of chain graphs. Moreover,
Figure 1 shows that this extension is proper.

•

•

•

•

••

• •

a1

b2

a3

b3

a4a2

b1 b4

a1

b2
a3

b3

a4

a2

b1

b4

Figure 1: Example of a bichain graph and its diagonal representation.

A bichain partition (A1, A2, B1, B2) of G is special if

(?) for all u ∈ A1, v ∈ A2 and all x ∈ N(u) \N(v) and y ∈ N(v) \N(u), we have x ∈ B1 and y ∈ B2.

(Note that this simply excludes the possibility that x ∈ B2 and y ∈ B1.)

Lemma 2. If G is a bichain graph, then there exists a special bichain partition of G.
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Proof. Suppose that G = (A,B,E) is a bichain graph, and let (A1, A2, B1, B2) be an arbitrary bichain partition of
G.

For vertices u ∈ A1, v ∈ A2, and x ∈ N(u) \N(v), y ∈ N(v) \N(u), we say (u, v, x, y) is a parallel 2K2 if
x ∈ B1 and y ∈ B2, and we say that (u, v, x, y) is a crossing 2K2 if x ∈ B2 and y ∈ B1.

For each i ∈ {1, 2}, let Ci denote the set of all vertices of Bi that belong to a crossing 2K2. Let Di denote the set
of all vertices of Bi that belong to a parallel 2K2. We have the following property.

Claim 2.1: Ci ∩Di = ∅ for each i ∈ {1, 2}.

By symmetry, it suffices to prove the claim for i = 1. Suppose that there exists x ∈ C1 ∩D1. This means that there
are vertices u, u′ ∈ A1, v, v′ ∈ A2, and y, x′ ∈ B2 (possibly u = u′ or v = v′ or y = x′) such that (u, v, x, y) is
a parallel 2K2 while (u′, v′, x′, x) is a crossing 2K2. Namely, we have x ∈ N(u) \ N(v) and x ∈ N(v′) \ N(u′)
while y ∈ N(v) \ N(u) and x′ ∈ N(u′) \ N(v′). Observe that u 6= u′ and v 6= v′, since x ∈ N(u) \ N(u′) and
x ∈ N(v′) \ N(v). If vx′ ∈ E(G), then the vertices v, v′, x, x′ induce a 2K2 in G − A1. To see this, note that
v 6= v′ and v′x ∈ E(G), while vx, v′x′ 6∈ E(G). This is impossible, so we conclude that vx′ 6∈ E(G). Similarly, if
ux′ 6∈ E(G), then the vertices u, u′, x, x′ induce a 2K2 in G−A2. Thus we conclude that ux′ ∈ E(G). This implies
that y 6= x′, since u ∈ N(x′) \N(y) and v ∈ N(y) \N(x′). But that also means that the vertices u, v, x′, y induce a
2K2 in G−B1, a contradiction. This proves Claim 2.1.

Now we define a new partition of V (G) as follows. Let B ′
1 = (B1 \C1) ∪C2, and let B′

2 = (B2 \C2) ∪ C1. We
show that (A1, A2, B

′
1, B

′
2) is a bichain partition of G and it satisfies (?). This will imply the lemma.

Recall that for each i ∈ {1, 2}, both G−Ai and G−Bi are chain graphs.
Claim 2.2: G− B′

i is a chain graph for each i ∈ {1, 2}.

By symmetry, it suffices to prove the claim for i = 1. Suppose that G − B ′
1 contains an induced 2K2 on vertices

u, v, x, y. Namely, we have u, v ∈ A and x, y ∈ B′
2 where x ∈ N(u) \N(v) and y ∈ N(v) \N(u). If x, y ∈ B1 or

x, y ∈ B2, then G−B2 or G−B1 is not a chain graph, impossible. Thus by symmetry, we may assume that x ∈ B1

and y ∈ B2. Since x, y 6∈ B′
1 = (B1 \ C1) ∪ C2, this means that x ∈ C1 and y ∈ B2 \ C2.

Now, if u, v ∈ A1 or u, v ∈ A2, then G−A2 or G−A1 is not a chain graph, impossible. If u ∈ A1 and v ∈ A2,
then (u, v, x, y) is a parallel 2K2. This means that x ∈ D1, but we assumed x ∈ C1 which contradicts Claim 2.1,
Therefore, u ∈ A2 and v ∈ A1, which means that (v, u, y, x) is a crossing 2K2. This implies that y ∈ C2, but we
assumed that y ∈ B2 \ C2, impossible. This proves Claim 2.2.

From Claim 2.2 we deduce that (A1, A2, B
′
1, B

′
2) is indeed a bichain partition of G. It remains to show that it

satisfies (?). Suppose not. Then there are vertices u ∈ A1, v ∈ A2, x ∈ N(u) \N(v), y ∈ N(v) \N(u) such that
x ∈ B′

2 and y ∈ B′
1. First, we show that x 6∈ C1. Suppose that x ∈ C1. If y ∈ B1, then G− B2 is not a chain graph

because of the 2K2 on vertices u, v, x, y. Thus y ∈ B2 which means that (u, v, x, y) is a parallel 2K2. This implies
x ∈ D1, but we assumed x ∈ C1, contradicting Claim 2.1. Therefore x 6∈ C1 and hence x ∈ B2 \ C2, since we
assumed x ∈ B′

2 = (B2 \ C2) ∪ C1. If also y ∈ B2, then G− B1 is not a chain graph. So y ∈ B1 which means that
(u, v, x, y) is a crossing 2K2. This implies x ∈ C2 but we assumed x ∈ B2 \C2, a contradiction. Therefore, no such
vertices u, v, x, y exist which proves that (A1, A2, B

′
1, B

′
2) indeed satisfies (?).

That concludes the proof.

3.1. Characterizing special bichain partitions

We say that an edge (non-edge) uv of G is a crossing edge (non-edge) with respect to a bichain partition
(A1, A2, B1, B2) of G if u ∈ A1 and v ∈ B2, or if u ∈ A2 and v ∈ B1.

We say that a closed alternating sequence of G is bad with respect to a bichain partition (A1, A2, B1, B2) if the
sequence contains at least as many crossing edges as crossing non-edges (with respect to this partition).

For instance, consider the graph in Figure 1 and the bichain partition A1 = {a1, a2}, A2 = {a3, a4}, B1 =
{b1, b2}, B2 = {b3, b4}. The sequence a1, b2, a4, b3, a1 contains 2 crossing non-edges with respect to this partition,
namely a4b2, a1b3, and has no crossing edges (both its edges a1b2, a4b3 are not crossing).

Lemma 3. Let G be bichain graph. A bichain partition of G is special if and only if no closed alternating sequence
of G is bad with respect to this partition.
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Proof. (⇐) We prove the contrapositive. Consider a bichain partition (A1, A2, B1, B2) of G and assume that it is not
special. This means that there exist u ∈ A1, v ∈ A2 and x ∈ N(u) \N(v), y ∈ N(v) \N(u) such that x 6∈ B1 or
y 6∈ B2. Note that x, y ∈ B1 ∪B2 and the vertices u, x, v, y are all distinct and induce a 2K2 in G. Thus if x, y ∈ B1,
then u, x, v, y induce a 2K2 in G − B2, and if x, y ∈ B2, then u, x, v, y induce a 2K2 in G − B1. Since neither is
possible (because (A1, A2, B1, B2) is a bichain partition) and since x 6∈ B1 or y 6∈ B2, we conclude that x ∈ B2 and
y ∈ B1. This implies that u, x, v, y, u is a closed alternating sequence of G that contains two crossing edges ux, vy
with respect to (A1, A2, B1, B2), while neither of its non-edges uy, vx is crossing. Therefore G contains a closed
alternating sequence that is bad with respect to (A1, A2, B1, B2).

(⇒) Consider a special bichain partition (A1, A2, B1, B2) of G. For a contradiction, we assume that G contains a
closed alternating sequence that is bad (with respect to this partition). Let u1, . . . , ut, ut+1 be a shortest such sequence.
Recall that u1 = ut+1 and ui ∈ A1 ∪ A2, uiui+1 ∈ E(G) if i is odd, while ui ∈ B1 ∪ B2, uiui+1 6∈ E(G) if i is
even. Moreover, t is even and t ≥ 4. Since u1, . . . , ut+1 is bad, it follows by Lemma 1 that the sequence contains at
least one vertex in each of the sets A1, A2, B1, B2. Thus at least one edge or non-edge of the sequence is crossing,
and hence, by the definition of a bad sequence, it contains at least one crossing edge. Without loss of generality (up
to cyclically renaming the vertices in the sequence), we may assume that the edge u1u2 is a crossing edge. We show
that the minimality of u1, . . . , ut+1 implies that actually every edge in this sequence is crossing.

Claim 3.3: Every edge of the sequence u1, . . . , ut+1 is a crossing edge with respect to (A1, A2, B1, B2).

For a contradiction, let i be the smallest index such that uiui+1 is an edge that is not crossing. Thus i is odd and
i ≥ 3, since u1u2 is a crossing edge. Without loss of generality (by symmetry), we may assume that ui ∈ A1. Thus
ui+1 ∈ B1, since uiui+1 is not crossing. Note that i− 2 ≥ 1 and so the vertices ui−2 and ui−1 exist. Thus we have
that ui−2 ∈ A1 ∪A2 and ui−2ui−1 ∈ E(G) while ui−1 ∈ B1 ∪B2 and ui−1ui 6∈ E(G), since i− 2 is odd and i− 1
is even. This shows that ui−2, ui−1, ui, ui+1 are all distinct, and ui−2ui−1 is a crossing edge, by the minimality of i.

Suppose first that ui−2ui+1 is not an edge. Then the vertices ui−2, ui−1, ui, ui+1 induce a 2K2 in G. Thus if
ui−2 ∈ A1, then ui−2, ui−1, ui, ui+1 induce a 2K2 in G−A2, while if ui−2 ∈ A2, then ui−1 ∈ B1, since ui−2ui−1

is a crossing edge. But then ui−2, ui−1, ui, ui+1 induce a 2K2 in G − B2. Neither of these is possible, because
(A1, A2, B1, B2) is a bichain partition. Therefore, we conclude that ui−2ui+1 ∈ E(G).

This shows that u1, . . . , ui−2, ui+1, . . . , ut+1 is a closed alternating sequence of G. Recall that ui−2 ∈ A1 ∪ A2.
Suppose first that ui−2 ∈ A1. Since ui+1 ∈ B1, the edge ui−2ui+1 is non-crossing. On the other hand, ui−2ui−1

is a crossing edge, and thus ui−1 ∈ B2. This means that ui−1ui is a crossing non-edge, since ui ∈ A1. Finally,
recall that uiui+1 is a non-crossing edge. This shows that the sequence u1, . . . , ut+1 contains exactly one more
crossing edge and one more crossing non-edge than the sequence u1, . . . , ui−2, ui+1, . . . , ut+1. But then the sequence
u1, . . . , ui−2, ui+1, . . . , ut+1 is bad because u1, . . . , ut+1 is, which contradicts the minimality of u1, . . . , ut+1.

We may therefore assume that ui−2 ∈ A2. This implies that ui−2ui+1 is a crossing edge, and since ui−2ui−1

is also crossing, we deduce ui−1 ∈ B1. Thus ui−1ui is a non-crossing non-edge, since ui ∈ A1, and we recall that
uiui+1 is a non-crossing edge. Thus the sequence u1, . . . , ui−2, ui+1, . . . , ut+1 contains the same number of crossing
edges and non-edges as u1, . . . , ut+1, again contradicting the minimality of u1, . . . , ut+1.

This proves Claim 3.3.
Using this claim, we derive a contradiction. Recall that t is even, that u1 = ut+1, and that utut+1 6∈ E(G).

Thus u1ut 6∈ E(G) and we can let i be the smallest even index in {1, . . . , t} such that u1ui 6∈ E(G). Note that
ui ∈ B1 ∪ B2, since i is even. Without loss of generality (by symmetry), we may assume that ui ∈ B1.

Observe that i > 2, since u1u2 ∈ E(G). Thus i ≥ 4, since i is even. In particular, i − 2 ≥ 2 which implies that
the vertex ui−2 exists and it is distinct from u1. From the minimality of i, we further deduce that u1ui−2 ∈ E(G).
Also, we recall that ui−2 ∈ B1 ∪ B2 and ui−2ui−1 6∈ E(G), since i − 2 is even, while u1, ui−1 ∈ A1 ∪ A2 and
ui−1ui ∈ E(G), since 1 and i − 1 are odd. Thus the vertices u1, ui−2, ui−1, ui are all distinct and induce a 2K2 in
G. By Claim 3.3, the edge ui−1ui is a crossing edge. Thus ui−1 ∈ A2, since ui ∈ B1. Consequently, if u1 ∈ A2,
then u1, ui−2, ui−1, ui induce a 2K2 in G−A1, and if ui−2 ∈ B1, then u1, ui−2, ui−1, ui induce a 2K2 in G −B2.
Again, neither is possible, since (A1, A2, B1, B2) is a bichain partition of G. So we conclude that u1 ∈ A1 and
ui−2 ∈ B2. But now we contradict (?) for the vertices u1 ∈ A1, ui−1 ∈ A2, ui−2 ∈ N(u1) \ N(ui−1), and
ui ∈ N(ui−1) \N(u1). Therefore, the bichain partition (A1, A2, B1, B2) is not special, which is a contradiction.

That concludes the proof.
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α = 5 A1 = {a1, a2} A2 = {a3, a4} B1 = {b1, b2} B2 = {b3, b4}

za1
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≤ −1

zb2 − za2
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≤ −1
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≤ −1
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≤ −1
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za2
− zb4 ≤ 4
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− zb1 ≤ 4
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− zb1 ≤ 4
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b2
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Solution: za1
= 5 za2

= 9 za3
= 9 za4

= 5 zb1 = 6 zb2 = 2 zb3 = 3 zb4 = 7

Figure 2: The inequalities and directed graph H for the graph from Figure 1.

Next we present a technical lemma that will be useful in providing the geometric intersection model for bichain
graphs in Section 4.

Lemma 4. If (A1, A2, B1, B2) is a special bichain partition of G, then there exists an integer 0 ≤ α ≤ |V (G)| such
that the following system (4) of inequalities in variables {zu}u∈V (G) has a solution:

zb − za ≤ −1 for all a ∈ Ai and b ∈ Bi where i ∈ {1, 2} and ab ∈ E(G),
za − zb ≤ −1 for all a ∈ Ai and b ∈ Bi where i ∈ {1, 2} and ab 6∈ E(G),
zb − za ≤ −α− 1 for all a ∈ Ai and b ∈ Bj where i 6= j and ab ∈ E(G),
za − zb ≤ α− 1 for all a ∈ Ai and b ∈ Bj where i 6= j and ab 6∈ E(G).

(4)

In fact, there exists a solution zu = z∗u , u ∈ V (G), such that each z∗u is a positive integer and z∗u ≤ |V (G)| · (α+1).

Proof. Let (A1, A2, B1, B2) be a special bichain partition of G. We show that the system (4) has a solution for
α = |V (G)|. To this end, we construct the following directed graph H (see Figure 2 for illustration):

– the vertices of H are V (G), and
– there is a directed arc e of weight w(e) = β from u to v if the system (4) contains the inequality zv − zu ≤ β.

In order to find a solution to (4), we show that no directed cycle of H has negative total weight. For contradiction,
suppose that H contains a directed cycle C on vertices u1, . . . , ut where et = (ut, u1) and ei = (ui, ui+1) for
i ∈ {1, . . . , t− 1} are the arcs of C and where

∑t
i=1 w(ei) < 0. Define ut+1 = u1.

Observe that t ≤ |V (G)| = α, since all vertices on C are distinct. By examining the system of inequalities, note
that each ei is an arc either from a vertex of A1 ∪ A2 to a vertex of B1 ∪ B2, or from a vertex of B1 ∪B2 to a vertex
of A1 ∪ A2. In particular, if ei = (ui, ui+1) is an arc of H from A1 ∪ A2 to B1 ∪ B2, then uiui+1 ∈ E(G), while
if ei = (ui, ui+1) is an arc of H from B1 ∪ B2 to A1 ∪ A2, then uiui+1 6∈ E(G). Without loss of generality (by the
symmetry of the cycle C), we may assume that u1 ∈ A1 ∪A2.

From this it follows that u1, u2, . . . , ut, ut+1 is a closed alternating sequence of G. Moreover, observe that if
uiui+1 is an edge of G, and it is a crossing edge with respect to (A1, A2, B1, B2), then w(ei) = −α − 1, while if it
is a non-crossing edge, then w(ei) = −1. Similarly, if uiui+1 is a not an edge of G and it is a crossing non-edge with
respect to (A1, A2, B1, B2), then w(ei) = α− 1, while if it is non-crossing, then w(ei) = −1.

Since (A1, A2, B1, B2) is a special bichain partition of G, we conclude by Lemma 3 that u1, . . . , ut, ut+1 is not a
bad sequence with respect to (A1, A2, B1, B2). This means that the number γe of crossing edges of this sequence is
strictly smaller than the number γn of crossing non-edges of this sequence. Therefore we can calculate:

t∑

i=1

w(ei) =
∑

uiui+1∈E(G)
is crossing

w(ei) +
∑

uiui+1 6∈E(G)
is crossing

w(ei) +
∑

uiui+1

is not crossing

w(ei) =
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= γe(−α− 1) + γn(α − 1)− (t− γe − γn) = α(γn − γe)− t ≥ α− t ≥ 0

This shows that the total weight of the cycle C is non-negative, a contradiction. Thus no such a cycle C exists in
H , and so H indeed contains no directed cycle of negative total weight, as claimed.

Using this fact, we construct a solution to the inequalities (4). To this end, we add an new “source” vertex s to H
and add an arc of weight M (to be chosen later) from s to every other vertex. Then for each u ∈ V (G), the value z∗

u is
defined as the distance (the length of a shortest walk) from s to u in this augmented graph. Clearly, since H contains
no cycles of negative weight, the values z∗u are well-defined real numbers (each shortest walk is in fact a shortest path
– does not repeat vertices). Moreover, for every arc e = (u, v) of H , the triangle inequality for the distance (when we
travel to v by going to u and then taking the edge e) yields z∗v ≤ z∗u + w(e); in other words, z∗v − z∗u ≤ w(e). This
shows that the values z∗u constructed this way indeed form a solution zu = z∗u to (4).

Finally, by taking M = |V (G)| · (α+1), we make sure that 1 ≤ z∗u ≤ |V (G)| · (α+1) for each u ∈ V (G), since
no shortest walk in H repeats vertices and smallest negative weight of an arc in H is −(α + 1). Moreover, since the
weights of all arcs in H are integers, it follows that each z∗u is also an integer. This completes the proof.

4. Diagonal representations

In this section, we introduce a geometric intersection model for bichain graphs, which we call diagonal
representation.

A diagonal representation of G is an intersection representation that assigns to each vertex of G a segment
connecting two points on the boundary of a fixed axis-parallel rectangle R so that

(i) all segments are distinct,
(ii) every segment is parallel either to the line y = −x, or to the line y = x,

(iii) no segment connects points on opposite sides of the rectangle R, and
(iv) two vertices of G are adjacent if and only if the corresponding segments cross each other.

See Figure 1 for an illustration of this representation. We show that this representation characterizes bichain graphs.

Theorem 5. Let G be a graph. Then the following are equivalent.

(i) G is a bichain graph.
(ii) G admits a diagonal representation.

Proof. (ii)⇒(i): Suppose that G admits a diagonal representation in a rectangle R = [x1, x2] × [y1, y2] where
x1, x2, y1, y2 ∈ R. Let A denote those vertices whose segments are parallel to the line y = −x. Let B denote
the remaining vertices (those parallel to the line y = x). Split A into A1 and A2 where A1 are the vertices whose
segments connect the bottom side of R with the left side of R, and A2 are the vertices whose segments connect the
top side of R with the right side of R. Likewise, split B into B1 and B2 where B1 are the vertices whose segments
connect the top and the left side of R while B2 are the vertices whose segments connect the bottom and the right
side of R. For instance, for the graph in Figure 1, we have A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4}, where
A1 = {a1, a2}, A2 = {a3, a4}, B1 = {b1, b2}, and B2 = {b3, b4}.

We show that (A1, A2, B1, B2) is a bichain partition of G which will imply that G is a bichain graph. First, note
that A is an independent set. Indeed, the segments assigned to the vertices in A are all parallel to the line y = −x and
are all distinct. So they do not pairwise intersect. Similarly, we see that B is an independent set.

It remains to verify for each i ∈ {1, 2} that G −Ai and G− Bi are chain graphs. By symmetry (between A and
B and between A1 and A2, resp. B1 and B2), it suffices to check this for G−A1.

Suppose that G − A1 contains an induced 2K2 on vertices u, v, p, q with edges uv and pq where u, p ∈ A and
v, q ∈ B. Since u, p ∈ A, the segments representing u and v are parallel to the line y = −x. Thus there are δu, δp ∈ R

such that the segment representing u lies on the line y = −x + δu and the segment representing p lies on the line
y = −x+ δp. Similarly, the segments representing v, q ∈ B are parallel to the line y = x. So there exist δv, δq ∈ R

such that the segment representing v lies on the line y = x + δv and the segment representing q lies on the line
y = x+ δq . By symmetry, we may assume that δu ≥ δp. (If not, we exchange u with p, and v with q.) Further, since
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Figure 3: Illustration of the construction.

u, p ∈ A and G− A1 contains no vertices of A1, we conclude u, p ∈ A2. Therefore the segments representing u and
p intersect the top and right sides of the rectangle R. In other words, the lines y = −x+ δu and y = −x+ δp intersect
the sets [x1, x2]× {y2} and {x2} × [y1, y2]. This gives the following inequalities (recall that δp ≤ δu):

x1 + y2 ≤ δp ≤ δu ≤ x2 + y2 x2 + y1 ≤ δp ≤ δu ≤ x2 + y2

Since uv ∈ E(G), the segments representing u and v intersect. In other words, the intersection point of the lines
y = −x + δu and y = x + δv lies inside the rectangle R = [x1, x2] × [y1, y2]. Note that the point where these two
lines intersect has coordinates x = (δu − δv)/2 and y = (δu + δv)/2. This yields the following:

x1 ≤
δu − δv

2
≤ x2 y1 ≤

δu + δv
2

≤ y2

Similarly, note that the intersection point of the lines y = −x+δp and y = x+δv has coordinates x = (δp−δv)/2
and y = (δp + δv)/2. We can bound these coordinates using the above inequalities as follows:

x2 ≥
δu − δv

2
≥

δp − δv
2

≥
x1 + y2 − δv

2
≥

x1 +
δu+δv

2 − δv

2
≥

x1 +
δu−δv

2

2
≥

x1 + x1

2
= x1

y2 ≥
δu + δv

2
≥

δp + δv
2

≥
x2 + y1 + δv

2
≥

δu−δv
2 + y1 + δv

2
≥

δu+δv
2 + y1

2
≥

y1 + y1
2

= y1

This shows that the lines y = −x + δp and y = x + δv intersect inside the rectangle R. But this means that the
segments representing v and p intersect. However, we have vp 6∈ E(G), a contradiction.

So we conclude that no such vertices u, v, p, q exist and thus G −A1 is indeed a chain graph. By the same token
(by symmetry), also G− A2, G−B1, and G−B2 are chain graphs. Therefore, G is indeed a bichain graph.

This proves (ii)⇒(i).

(i)⇒(ii): Suppose that G is a bichain graph. Then by Lemma 2, there exists a special bichain partition of G. Let
us denote this partition as (A1, A2, B1, B2). Let A = A1 ∪A2 and B = B1 ∪ B2.

We apply Lemma 4 to the partition (A1, A2, B1, B2). This yields an integer α ≥ 0 for which the system (4) has
a solution zu = z∗u , u ∈ V (G) where each z∗u is a positive integer.

Let n = |V (G)|. We fix an ordering of V (G) and denote it u1, u2, . . . , un. We further define the following:

– N = 1 + n · max
u∈V (G)

z∗u,

– M = N + n · α,
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– for each k = 1, . . . , n, define z+uk
= n · z∗uk

+ k − n.

Note that 1 ≤ z+u ≤ N − 1 for all u ∈ V (G), which follows from the definition of N and the fact that 1 ≤ z∗u.
In fact, for distinct k, ` ∈ {1, . . . , n}, we have that z+uk

6= z+u`
, since z∗uk

, z∗u`
are positive integers and 1 ≤ k, ` ≤ n.

Moreover, we observe the following property.
Claim 5.1: Let uk ∈ Ai and u` ∈ Bj where i, j ∈ {1, 2}.

(a) If i = j, then uku` ∈ E(G) if and only if z+u`
≤ z+uk

.
(b) If i 6= j, then uku` ∈ E(G) if and only if z+u`

+ n · α ≤ z+uk
.

To prove this, consider uk ∈ Ai and u` ∈ Bj . Suppose first that i = j. Then, if uku` ∈ E(G), we have z∗u`
− z∗uk

≤
−1, since the values z∗u form a solution to (4). Thus since k, ` ∈ {1, . . . , n}, we deduce that z+u`

< z+uk
as follows:

z+u`
= n · z∗u`

+ `− n ≤ n · z∗u`
≤ n · (z∗uk

− 1) < n · z∗uk
+ k − n = z+uk

.
Similarly, if uku` 6∈ E(G), then z∗uk

− z∗u`
≤ −1 and we deduce that z+uk

< z+u`
. This shows that uku` ∈ E(G) if

and only if z+u`
≤ z+uk

, as claimed.
Now, assume that i 6= j. Then, if uku` ∈ E(G), we have z∗u`

− z∗uk
≤ −α−1, since the values z∗u form a solution

to the system (4). From this we deduce that z+u`
< z+uk

− n · α as follows:
z+u`

= n · z∗u`
+ `− n ≤ n · z∗u`

≤ n · (z∗uk
− α− 1) < n · z∗uk

+ k − n− n · α = z+uk
− n · α.

Similarly, if uku` 6∈ E(G), then z∗uk
− z∗u`

≤ α − 1 in which case we deduce that z+uk
< z+u`

+ n · α. Together, we
conclude, as required, that uku` ∈ E(G) if and only if z+u`

+ n · α ≤ z+uk
. This proves Claim 5.1.

Now we are ready to describe the construction. We construct a diagonal representation of G as follows. The
underlying rectangle is chosen to have corner points (0, 0), (M, 0), (0, N), and (M,N). For a ∈ A1, we represent
a as the segment connecting the point Pa = (0, z+a ) to the point Qa = (z+a , 0). For a ∈ A2, we represent a as
the segment connecting the point Pa = (M,N − z+a ) to the point Qa = (M − z+a , N). For b ∈ B1, the segment
representing b goes from Pb = (0, z+b ) to Qb = (N − z+b , N), while for b ∈ B2, the segment for b goes from
Pb = (M,N − z+b ) to Qb = (z+b +M −N, 0). See Figure 3 for a detailed illustration of this construction.

We verify that the segments form a diagonal representation of G. Clearly, the segments connect points on
consecutive sides of the rectangle, where the segments for the vertices in A are all parallel to the line y = −x,
while the segments for the vertices in B are parallel to the line y = x. Further, note that the segments are all distinct.
Namely, the segments representing the vertices in A are all distinct, and the segment representing the vertices in B
are all distinct. In particular, for uk, u` ∈ A where k 6= `, the segments representing uk and u` are distinct, because
z+uk

6= z+u`
and z+u`

< N ≤ M . For uk, u` ∈ B where k 6= `, the two segments for uk and u` are distinct, because
again z+uk

6= z+u`
and 1 ≤ z+u`

. Thus all segments in the representation are indeed distinct. Consequently, the segments
representing the vertices in A are pairwise non-intersecting, since they are all parallel to the line y = −x. Likewise,
the segments representing the vertices in B are pairwise non-intersecting, since they are all parallel to y = x.

To conclude that the representation is indeed a diagonal representation of G, it remains to verify that for uk, u`

where uk ∈ A and u` ∈ B, the segments representing uk and u` intersect if and only if uku` ∈ E(G).
Suppose first that uk ∈ A1 and u` ∈ B1. Then it follows that the segment representing uk lies on the line

y = −x+z+uk
while the segment representing u` lies on the line y = x+z+u`

. The intersection point of the two lines is
(x∗, y∗) where x∗ = 1

2z
+
uk
− 1

2z
+
u`

and y∗ = 1
2z

+
uk
+ 1

2z
+
u`

. Therefore, the two segments representinguk and u` intersect
if and only if (x∗, y∗) lies in the rectangle. Note that x∗ < M and 0 < y∗ < N , since 0 < z+uk

, z+u`
< N ≤ M .

Thus (x∗, y∗) lies in the rectangle if and only if x∗ ≥ 0. In other words, if and only if z+u`
≤ z+uk

. By Claim 5.1a, this
happens if and only if uku` ∈ E(G), since uk ∈ A1 and u` ∈ B1. Put together, we conclude that the two segments
representing uk and u` intersect if and only if uku` ∈ E(G), as required.

We proceed similarly in all the other cases. If uk ∈ A2 and u` ∈ B2, then the point of (possible) intersection
of the segments is (x∗, y∗) where x∗ = M − 1

2z
+
uk

+ 1
2z

+
u`

and y∗ = N − 1
2z

+
uk

− 1
2z

+
u`

. Thus the point lies in the
rectangle if and only if x∗ ≤ M which is if and only if z+u`

≤ z+uk
which is if and only if uku` ∈ E(G) by Claim 5.1a.

If uk ∈ A1 and u` ∈ B2, then the (potential) intersection point of the segments is (x∗, y∗) where x∗ = 1
2z

+
uk

+
1
2z

+
u`

+ 1
2n · α and y∗ = 1

2z
+
uk

− 1
2z

+
u`

− 1
2n · α. This implies that the point lies in the rectangle if and only if y∗ ≥ 0

if and only if z+u`
+ n · α ≤ z+uk

if and only if uku` ∈ E(G) by Claim 5.1b. Finally, if uk ∈ A2 and u` ∈ B1, then
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Figure 4: The Z-grid Zn,m with n = 7 columns and m = 6 rows, where the edges of type (c) are shown on top of the figure.

we have x∗ = M − 1
2z

+
uk

− 1
2z

+
u`

− 1
2n · α and y∗ = N − 1

2z
+
uk

+ 1
2z

+
u`

+ 1
2n · α. Thus the point (x∗, y∗) lies in the

rectangle if and only if y∗ ≤ N if and only if z+u`
+ n · α ≤ z+uk

if and only if uku` ∈ E(G) by Claim 5.1b.
This completes all cases and so we can conclude that the segments indeed form a diagonal representation of G.

This proves (i)⇒(ii) and concludes the proof.

The reader can wonder how the class of bichain graphs compares to other classes admitting a geometric
intersection model, for instance, permutation graphs. We claim that the two classes are incomparable, i.e. none
of them contains the other. Moreover, the class of bichain graphs is incomparable even with bipartite permutation
graphs. For instance, the chordless path on 7 vertices is a bipartite permutation graph, but it is not a bichain graph,
which can be easily seen by definition. On the other hand, the graph in Figure 1 is not a permutation graph, while it is
a bichain graph as the figure shows.

On the other hand, both classes (bichain graphs and permutation graphs) are subclasses of k-polygon graphs (i.e.
the intersection graphs of straight-line chords inside a convex k-gon) for each k ≥ 4. Since k-polygon graphs form a
subclass of circle graphs (i.e. the intersection graphs of straight-line chords inside a circle) [5], we conclude that both
classes are subclasses of circle graphs. For permutation graphs, this is a well-known fact. For bichain graphs, this
conclusion follows from our geometric representation proposed in Theorem 5. We formally state this conclusion as a
corollary from the theorem.

Corollary 6. Evey bichain graph is a circle graph.

5. Universal bichain graphs

In this section, we construct a universal graph for bichain graphs. We start with the description of our construction,
which we call the Z-grid.

The Z-grid Zn,m is the graph defined as follows:

– vertex set is V (Zn,m) =
{

vij

∣
∣
∣ i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

}

– vertex vij is adjacent to vertex vi′j′ if and only if
(a) i is even, i′ = i+ 1 and j′ ≥ j,
(b) i is odd, i′ = i+ 1 and j′ < j,
(c) i is even and i′ ≥ i+ 3 is odd.
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An example of the Z-grid is represented in Figure 4. Following the depiction therein, we shall speak of rows and
columns of a Z-grid. Namely, the set of vertices {vij | j ∈ {1, . . . ,m}} is the i-th column of Zn,m, while the vertices
{vij | i ∈ {1, . . . , n}} form the j-th row of Zn,m.

The main goal of this section is to prove that the Z-grid Zn,n is an n-universal bichain graph, i.e. it is a bichain
graph containing every bichain graph with n vertices as an induced subgraph. We start by showing that the Z-grid
itself is a bichain graph.

Lemma 7. For any positive integers n,m, the Z-grid Zn,m is a bichain graph.

Proof. We define a partition of the vertices of Zn,m and show that it is a bichain partition. This will imply that Zn,m

is a bichain graph. We define the sets as follows:

A1 = {vij | i ≡ 1 (mod 4) and j ∈ {1, . . . ,m}} B1 = {vij | i ≡ 2 (mod 4) and j ∈ {1, . . . ,m}}

A2 = {vij | i ≡ 3 (mod 4) and j ∈ {1, . . . ,m}} B2 = {vij | i ≡ 0 (mod 4) and j ∈ {1, . . . ,m}}

We show that (A1, A2, B1, B2) is a bichain partition of Zn,m. Note that by definition, if the vertex vij is adjacent
to vi′j′ , then i is odd and i′ even, or i is even and i′ odd. This implies that A = A1 ∪ A2 and B = B1 ∪ B2 are
independent sets. It remains to show that Zn,m − Ai and Zn,m − Bi are chain graph for i = 1, 2. By symmetry, it
suffices to check that Zn,m −A1 is a chain graph.

Suppose otherwise, and let x, y, z, w denote vertices in Zn,m that induce a 2K2 with edges xy, zw such that
x, y, z, w 6∈ A1. Thus x, y, z, w ∈ A2 ∪B1∪B2. In particular, since B1∪B2 is an independent set and xy is an edge,
it follows that one of x, y belongs to A2. By the same token, one of z, w belongs to A2. By symmetry, we may assume
that x, z ∈ A2. Thus y, w ∈ B1 ∪ B2. Since x, y, z, w denote vertices in Zn,m, we have that x = vi1j1 , y = vi2j2 ,
z = vi3j3 , and w = vi4j4 for some indices i1, . . . , i4, j1, . . . , j4. In particular, since x, z ∈ A2 and y, w ∈ B, we
deduce that i1 and i3 are odd, while i2, i4 are even. Since xy, zw are edges while xw, yz are non-edges, we deduce:

i2 ≤ i1 + 1 i4 ≤ i3 + 1 i1 ≤ i4 + 1 i3 ≤ i2 + 1.
From this we deduce that |i1 − i3| ≤ 2, since −2 ≤ i2 − i3 − 1 ≤ i1 − i3 ≤ i4 − i3 + 1 ≤ 2. This allows us to

conclude that i1 = i3, since (i1− i3) ≡ 0 (mod 4) because x, z ∈ A2. Therefore i2, i4 ∈ {i1− 1, i1+1}, since i2, i4
are even and i1 = i3 while i3 − 1 ≤ i2 ≤ i1 + 1 and i1 − 1 ≤ i4 ≤ i3 + 1. This implies, by the definition of Zn,m,
that j2 ≤ j1 and j4 ≤ j3, because xy, zw are edges, while it also implies that j1 ≤ j4 and j3 ≤ j2 because xw, yz
are non-edges. Put together, we have j1 ≤ j4 ≤ j3 ≤ j2 ≤ j1. Therefore j1 = j3 but since also i1 = i3, we deduce
that x = z, impossible. We conclude that no such vertices x, y, z, w exist, which yields the claim.

In order to prove the main result of this section, we need a particular decomposition of bichain graphs. The starting
point of the decomposition is described in the following lemma.

Lemma 8. If G is a bichain graph, then there is a special bichain partition (A1, A2, B1, B2) of G such that

(??) there exists a non-empty set X ⊆ A1 such that N(X) ⊆ B1.

Proof. By Lemma 2, let (A1, A2, B1, B2) be a special bichain partition of G, i.e. a partition satisfying (?). Let W
denote the set of all vertices y ∈ B2 such that N(y) ⊇ A1 (possibly W = ∅).

We construct a new partition of V (G) as follows. Let B ′
1 = B1 ∪ W . Let B′

2 = B2 \ W . We claim that
(A1, A2, B

′
1, B

′
2) is a bichain partition of G and it satisfies (?). Recall that (A1, A2, B1, B2) is a bichain partition of

G satisfying (?). Namely for each i ∈ {1, 2}, both G−Ai and G−Bi are chain graphs.
Claim 8.1: G− B′

i is a chain graph for each i ∈ {1, 2}.

Clearly, G − B′
1 is a chain graph, since it is an induced subgraph of G − B1 which itself is a chain graph. Suppose

that G− B′
2 contains an induced 2K2. Namely, suppose that there are vertices u, v ∈ A and x, y ∈ B \B ′

2 such that
x ∈ N(u) \N(v) and y ∈ N(v) \N(u). If u, v ∈ A1 or u, v ∈ A2, then G − A2 or G − A1 is not a chain graph,
impossible. Thus, by symmetry, we may assume that u ∈ A1 and v ∈ A2. Therefore, since (A1, A2, B1, B2) satisfies
(?), we conclude that x ∈ B1 and y ∈ B2. Now, recall that y 6∈ B′

2 = B2 \W . Thus y ∈ W , since y ∈ B2. This
means that N(y) ⊇ A1. However, u ∈ A1 and uy 6∈ E(G), a contradiction. This proves Claim 8.1.
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Claim 8.2: (A1, A2, B
′
1, B

′
2) satisfies (?).

Suppose that there exist u ∈ A1, v ∈ A2, and vertices x ∈ N(u) \ N(v) and y ∈ N(v) \ N(u) such that x /∈ B ′
1

or y /∈ B′
2. If x, y ∈ B′

1 or x, y ∈ B′
2, then G − B′

1 or G − B′
2 is not a chain graph, contradicting Claim 8.1. Thus

we conclude that x ∈ B′
2 and y ∈ B′

1. Recall that B′
2 = B2 \ W . Since (A1, A2, B1, B2) satisfies (?), we deduce

x ∈ B1 and y ∈ B2. Thus y ∈ B2 ∩ B′
1 = W . This means that N(y) ⊇ A1. However, u ∈ A1 and uy 6∈ E(G), a

contradiction. Therefore, no such vertices u, v, x, y exist. This proves Claim 8.2.
From Claims 8.1 and 8.2, we deduce that (A1, A2, B

′
1, B

′
2) is indeed a bichain partition of G and it indeed

satisfies (?). We now show that it also satisfies (??) which will imply the lemma. Let X be the set of all vertices
u ∈ A1 such that N(u) ⊆ B′

1. Suppose that X = ∅. Since G − B′
1 is a chain graph by Claim 8.1, there exist

y ∈ B′
2 such that N(y) ⊇ N(b) for all b ∈ B′

2. Since y ∈ B′
2 and B′

2 = B2 \W , we conclude that y 6∈ W , namely
N(y) 6⊇ A1. Thus there exists u ∈ A1 such that u 6∈ N(y). If N(u) ⊆ B′

1, then u ∈ X and hence X 6= ∅. But
we assumed X = ∅. So there exists b ∈ N(u) ∩ B′

2. By the choice of y, we have N(y) ⊇ N(b). However, this is
impossible, since u ∈ N(b) \ N(y). We therefore conclude X 6= ∅. Thus X is a non-empty subset of A1, and we
have N(X) ⊆ B′

1, since N(u) ⊆ B′
1 for all u ∈ X . This shows that (A1, A2, B

′
1, B

′
2) indeed satisfies (??).

That concludes the proof.

Now we are in a position to prove the main result of the section stating that every bichain graph G with n vertices
is contained in the grid Zn,n as an induced subgraph. Moreover, we will prove a stronger result stating that Zn,n

contains an induced copy of G such that every row contains exactly one vertex of G. We call such a copy row-sparse.

Theorem 9. Let G be an n-vertex bichain graph. Then G is isomorphic to a row-sparse induced subgraph of Zn,n.

Proof. Consider an n-vertex bichain graph G. We show how to find a row-sparse copy of G in Zn,n. Let
(A1, A2, B1, B2) be a bichain partition of G satisfying both (?) and (??). Such a partition is guaranteed by Lemma 8.

We iteratively define the following sets: for each i = 0, 1, 2, . . . in turn, having defined W1,W2, . . . ,W4i, we
define the sets W4i+1,W4i+2,W4i+3,W4i+4 as follows:

– W4i+1 is the set of all u ∈ A1 \ (W1 ∪W5 ∪ · · · ∪W4i−3) such that N(u) ⊆ B1 ∪ (W4 ∪W8 ∪ · · · ∪W4i)

– W4i+2 is the set of all u ∈ B1 \ (W2 ∪W6 ∪ · · · ∪W4i−2) such that N(u) ⊇ A1 \ (W1 ∪W5 ∪ · · · ∪W4i+1)

– W4i+3 is the set of all u ∈ A2 \ (W3 ∪W7 ∪ · · · ∪W4i−1) such that N(u) ⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W4i+2)

– W4i+4 is the set of all u ∈ B2 \ (W4 ∪W8 ∪ · · · ∪W4i) such that N(u) ⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W4i+3)

Recall that the condition (??) holds for (A1, A2, B1, B2). This gives us W1 6= ∅. Also, observe that W4i+1 ⊆ A1

and W4i+2 ⊆ B1 while W4i+3 ⊆ A2 and W4i+4 ⊆ B2, for all i ≥ 0. Thus, by construction, all these sets are pairwise
disjoint. In the following claim, we show that they completely cover (and thus partition) G.

Claim 9.3: V (G) =
⋃∞

i=1 Wi

Define the following sets:

C1 = A1 \
(
⋃∞

i=0 W4i+1

)

D1 = B1 \
(
⋃∞

i=0 W4i+2

)

C2 = A2 \
(
⋃∞

i=0 W4i+3

)

D2 = B2 \
(
⋃∞

i=0 W4i+4

)

First, suppose that C1 6= ∅. Since G − A2 is a chain graph, so is G′ = G − A2 − (A1 \ C1). Thus there
exists u ∈ C1 such that NG′(u) ⊆ NG′(a) for all a ∈ C1. In fact, NG(u) ⊆ NG(a) for all a ∈ C1, since
NG(u) ⊆ B1 ∪ B2 ⊆ V (G′). Since u ∈ C1 = A1 \ (

⋃∞
i=0 W4i+1), we have u 6∈ W4i+1 for all i ≥ 0. This implies

that u has a neighbour in B2 \ (W4 ∪ W8 ∪ · · · ∪ W4i) for all i ≥ 0, for otherwise we would have included it in
W4i+1 for some i. Thus u has a neighbour in B2 \ (

⋃∞
i=0 W4i+4) = D2. Let x ∈ D2 be any such neighbour. Since

x ∈ D2, note that x 6∈ W4i+4 for all i ≥ 0. So x has a non-neighbour in A2 \ (W3 ∪W7 ∪ · · · ∪W4i+3) for all i ≥ 0,
otherwise we would have included it in W4i+4 for some i. Thus x has a non-neighbour in A2 \ (

⋃∞
i=0 W4i+3) = C2.

Let v ∈ C2 be any such non-neighbour. Since v ∈ C2, we have that v 6∈ W4i+3 for all i ≥ 0. So v has a neighbour
in B1 \ (W2 ∪W6 ∪ · · · ∪ · · ·W4i+2) for all i ≥ 0, otherwise we would have included it in W4i+3 for some i. Thus
v has a neighbour in B1 \ (

⋃∞
i=0 W4i+2) = D1. Let y ∈ D1 be any such neighbour. Since y ∈ D1, we have that

y 6∈ W4i+2 for all i ≥ 0. So y has a non-neighbour in A1 \ (W1 ∪ W5 ∪ · · · ∪ W4i+1) for all i ≥ 0, otherwise we
would have included it in W4i+2 for some i. Thus y has a non-neighbour in A1 \ (

⋃∞
i=0 W4i+1) = C1. Let a ∈ C1
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be any such non-neighbour. Recall that also u ∈ C1, and by the choice of u, we have N(u) ⊆ N(a). Therefore also
u is a non-neighbour of y.

Altogether, we have u ∈ A1, v ∈ A2, x ∈ B2 and y ∈ B1 where x ∈ N(u) \N(v) and y ∈ N(v) \N(u). This
means that (?) fails for (A1, A2, B1, B2). But we assume that (?) holds for (A1, A2, B1, B2).

Therefore, we conclude that C1 = ∅. We show that this implies that also each of C2, D1, D2 is empty. Indeed, if
there exists y ∈ D1, then (repeating the argument from the above paragraph) we conclude that y has a non-neighbour
in C1. However, C1 is empty. Thus we deduce that also D1 is empty. Next, if there exists v ∈ C2, we conclude that v
has a neighbour in D1. But D1 is empty, so also C2 must be. Finally, if there is x ∈ D2, then x has a non-neighbour
in C2, but C2 is empty. Thus D2 is empty. This proves that each of the sets C1, C2, D1, D2 is empty, and hence
V (G) =

⋃∞
i=1 Wi as promised.

This proves Claim 9.3.
We further notice that the way the vertices are assigned to earliest possible sets Wi, the construction guarantees

the following useful properties. See Figure 5 for a depiction of these properties.
Claim 9.4: For all k ∈ {1, 2, . . .}:

(a) each x ∈ W2k+1 has a neighbour in W2k,
(b) each y ∈ W2k has a non-neighbour in W2k−1,

(c) W2k+1 is complete to W2 ∪W4 ∪ · · · ∪W2k−2,
(d) W2k is anticomplete to W1 ∪W3 ∪ · · · ∪W2k−3.

To prove (a), consider x ∈ W2k+1 where k ≥ 1.
Suppose first that k is even, i.e. k = 2i for some i ≥ 1. In other words, x ∈ W4i+1 and the definition of W4i+1

gives us that x ∈ A1 \ (W1 ∪W5 ∪ · · · ∪W4i−3) and N(x) ⊆ B1 ∪ (W4 ∪W8 ∪ · · · ∪W4i). Since x was not put in
any of the sets W1,W5, . . . ,W4i−3, it follows that N(x) 6⊆ B1 ∪ (W4 ∪W8 ∪ · · · ∪W4i′ ) for all i′ < i. From this we
conclude that x has a neighbour in W4i. So x has a neighbour in W2k , since k = 2i.

A similar argument works if k is odd, i.e. if k = 2i + 1 for some i ≥ 0. Here x ∈ W4i+3 which implies that
x ∈ A2 \ (W3 ∪W7 ∪ · · · ∪W4i−1) and N(x) ⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W4i+2). Since x was not put in any of the
sets W3,W7, . . . ,W4i−1, we conclude that N(x) 6⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W4i′+2) for all i′ < i. We conclude that
x has a neighbour in W4i+2. So, as required, x has a neighbour in is W2k, since k = 2i+ 1. This proves (a).

The proof of (b) is analogous. Consider y ∈ W2k where k ≥ 1. If k = 2i+1 for some i ≥ 0, then y ∈ W4i+2 and
so y ∈ B1 \ (W2 ∪W6 ∪ · · · ∪W4i−2) and N(y) ⊇ A1 \ (W1 ∪W5 ∪ · · · ∪W4i+1). Since y is not in any of the sets
W2,W6, . . . ,W4i−2, we conclude that N(y) 6⊇ A1 \(W1∪W5∪· · ·∪W4i′+1) for all i′ < i. Thus y must have a non-
neighbour in W4i+1 = W2k−1, as required. Similarly, if k = 2i+2 for i ≥ 0, then y ∈ B2 \ (W4 ∪W8 ∪ · · · ∪W4i)
and N(y) ⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W4i+3). Thus N(y) 6⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W4i′+3) for all i′ < i, and so y
must have a non-neighbour in W4i+3 = W2k−1, as required. This proves (b).

To prove (c), consider smallest index k for which W2k+1 is not complete to W2 ∪W4 ∪ · · · ∪W2k−2. Then there
exists u ∈ W2k+1 and v ∈ W2j where j ≤ k − 1 such that uv 6∈ E(G). Clearly, k ≥ 2. By (a) and since k ≥ 1, we
deduce that u has a neighbour w in W2k . Similarly, by (b), w has a non-neighbour z in W2k−1. Recall that v ∈ W2j .

Suppose first that j is odd. Then v ∈ B1 and N(v) ⊇ A1 \ (W1 ∪W5 ∪ · · · ∪W2j−1) by the definition of W2j .
Since u 6∈ N(v) and u ∈ W2k+1 where k ≥ j + 1, we deduce that u ∈ A2. This implies that k is odd. So w ∈ B1

and z ∈ A1, since w ∈ W2k and z ∈ W2k−1. Now, since both j and k are odd while j ≤ k − 1, we deduce that
j ≤ k − 2. Thus the minimality of k implies that W2k−1 is complete to W2j . In particular, we have that z is adjacent
to v. However, then we have v, w ∈ B1, z ∈ A1, u ∈ A2 where uw, vz ∈ E(G) while uv, zw 6∈ E(G). In addition,
uz, vw 6∈ E(G), since A1 ∪ A2 and B1 are independent sets. This shows that the vertices u, v, z, w induce a copy of
2K2 in G−B2 which is therefore not a chain graph. But then (A1, A2, B1, B2) is not a bichain partition.

Similarly, if j is even, then v ∈ B2 and N(v) ⊇ A2 \ (W3 ∪W7 ∪ · · · ∪W2j−1). Thus u ∈ A1, since u 6∈ N(v)
and u ∈ W2k+1 where k ≥ j + 1. This implies that k is even and so w ∈ B2 and z ∈ A2, since w ∈ W2k and
z ∈ W2k−1. In addition, we deduce j ≤ k − 2, since both j and k are even. Thus zv ∈ E(G) by the minimality of k.
We conclude that v, w ∈ B2, u ∈ A1, z ∈ A2, and so u, v, z, w induce a copy of 2K2 in G−B1, a contradiction.

This proves (c).

The proof of (d) is analogous. Consider smallest k for which W2k is not anticomplete to W1 ∪W3 ∪ · · · ∪W2k−3.
Then there exists v ∈ W2k adjacent to some u ∈ W2j−1 where j ≤ k−1. Clearly, k ≥ 2. By (b), v is non-adjacent to
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Figure 5: Decomposition of a bichain graph (two ways of drawing it).

some w ∈ W2k−1, and by (a), w is adjacent to some z ∈ W2k−2. Recall that u ∈ W2j−1. Suppose first that j is even.
Then u ∈ A2 and N(u) ⊆ B2 ∪ (W2 ∪W6 ∪ · · · ∪W2j−2). This yields that v ∈ B2, since v ∈ N(u) and v ∈ W2k

where k ≥ j+1. Therefore, k is even, and hence, w ∈ A2 and z ∈ B1, since w ∈ W2k−1 and z ∈ W2k−2. Moreover,
j ≤ k − 2, since both j and k are even. Thus uz 6∈ E(G) by the minimality of k. Together, we have u,w ∈ A2,
z ∈ B1, v ∈ B2, and u, v, w, z induce a 2K2 in G − A1, a contradiction. Similarly if j is odd. In that case, u ∈ A1

and N(u) ⊆ B1∪ (W4∪W8∪· · ·∪W2j−2). Thus v ∈ B1, since v ∈ N(u) and v ∈ W2k where k ≥ j+1. It follows
that k is odd. So w ∈ A1, z ∈ B2, and j ≤ k − 2, since also j is odd. Therefore, uz 6∈ E(G) by the minimality of k.
Together, u,w ∈ A1, v ∈ B1, z ∈ B2, and u, v, z, w induce a 2K2 in G−A2, a contradiction.

This proves Claim 9.4.
Claim 9.5: V (G) = W1 ∪W2 ∪ · · · ∪Wn

To see this, note first that, by Claim 9.3, we have V (G) =
⋃∞

i=1 Wi ⊇ W1 ∪W2 ∪ · · · ∪Wn. Thus, for contradiction,
suppose that

⋃n
i=1 Wi is a proper subset of V (G). In other words, assume that n > |

⋃n
i=1 Wi| =

∑n
i=1 |Wi|. This

implies that there exists k ∈ {1, . . . , n} such that Wk is empty. We claim that Wj for each j ≥ k + 1 is also empty.
For contradiction, consider smallest j ≥ k + 1 such that Wj is non-empty, i.e. Wj contains some vertex x. Note

that j ≥ 2, since k ≥ 1. Thus if j is odd, then we deduce, by Claim 9.4(a), that x has a neighbour in Wj−1. In
particular, Wj−1 is non-empty. Similarly, if j is even, then x has a non-neighbour in Wj−1 by Claim 9.4(b), and so
Wj−1 is non-empty. Thus we conclude that j− 1 6= k, since Wk is empty. This implies that j − 1 ≥ k+1 and Wj−1

is non-empty, which contradicts the minimality of j.
So we conclude that no such index j exists, and hence, V (G) is equal to

⋃k
i=1 Wi which is a subset of

⋃n
i=1 Wi,

since k ∈ {1, . . . n}. But we assume that
⋃n

i=1 Wi is a proper subset of V (G), a contradiction.
This proves Claim 9.5.
We are ready to describe how to define an isomorphism of G to Zn,n. To this end, we consider the partition

W1, . . . ,Wn of G as described above. Recall that (A1, A2, B1, B2) is a special bichain partition. Thus by Lemma 4,
there exists 0 ≤ α ≤ n such that the system (4) has a solution zu = z∗u , u ∈ V (G).

In order to show that G is isomorphic to an induced subgraph of Zn,n, we map, for each i, the vertices of Wi to
the i-th column of Zn,n. The position inside the columns will be dictated by the values z∗u.

For each i ∈ {1, . . . , n} and each u ∈ Wi, we define the height hu of u as follows:

hu = z∗u + (n− di/2e) · α.
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We order the vertices of V (G) based on their height hu (ties broken arbitrarily). In other words, we fix an ordering
u1, u2, . . . , un of V (G) in which huj

≤ huj′
whenever j ≤ j′. Using this ordering, we define a mapping f of V (G)

into V (Zn,n) as follows: for each i ∈ {1, . . . , n}, we consider each uj ∈ Wi and define f(uj) = vij .
Clearly, the mapping f is a well-defined mapping into V (Zn,n), since i, j ∈ {1, . . . , n}. Moreover, f is an

injective mapping, since each vertex uj is mapped to the j-th row of Zn,n. In particular, the image of f induces in
Zn,n a row-sparse subgraph of Zn,n. Thus to finish the proof, it remains to show that f is an isomorphism. In other
words, it remains to show that for distinct j, j ′, we have ujuj′ ∈ E(G) if and only if f(uj)f(uj′) ∈ E(Zn,n).

Consider j, j′ ∈ {1, . . . , n} where j 6= j ′. Let i, i′ be indices such that uj ∈ Wi and uj′ ∈ Wi′ . Then we have
f(uj) = vij and f(uj′) = vi′j′ . Thus we need to that ujuj′ ∈ E(G) if and only if vijvi′j′ ∈ E(Zn,n).

Suppose first that i, i′ are both odd or both even. Then uj , uj′ ∈ A1 ∪ A2 or uj , uj′ ∈ B1 ∪ B2, and vij , vi′j′

are either in the same column, or in two odd-numbered columns, or in two even-numbered columns of Zn,n. By the
definition of Zn,n, there are no edges in and between such columns. Therefore, we conclude that vijvi′j′ 6∈ E(Zn,n).
Moreover, both A1 ∪ A2 and B1 ∪ B2 are independent sets. Thus we have that ujuj′ 6∈ E(G), as required.

Therefore, by symmetry, we may assume that i is odd and i′ is even. If i′ ≤ i − 3, then ujuj′ ∈ E(G) by
Claim 9.4(c), since i is odd while i′ is even. For this reason, also vijvi′j′ ∈ E(Zn,n) by the definition of Zn,n.
Similarly, if i′ ≥ i+ 3, then ujuj′ 6∈ E(G) by Claim 9.4(d), and vijvi′j′ 6∈ E(Zn,n) by the definition of Zn,n.

Thus we may assume that i′ = i± 1. First suppose that i′ = i+ 1. This implies that uj ∈ Ar and uj′ ∈ Br for
some r ∈ {1, 2}. Moreover, since i′ is even and i is odd, we have i′/2 = di/2e. Suppose that ujuj′ ∈ E(G). Then
z∗uj′

− z∗uj
≤ −1, because the values z∗u are a solution to (4). So z∗uj′

< z∗uj
which implies that huj′

< huj
, since

di′/2e = i′/2 = di/2e. Therefore, from the definition of the ordering u1, . . . , un, we deduce that j ′ < j. Therefore,
vijvi′j′ ∈ E(Zn,n) by the definition of Zn,n, since i′ = i+ 1 and i is odd while i′ is even.

Conversely, suppose that ujuj′ 6∈ E(G). Then z∗uj
− z∗uj′

≤ −1, because the values z∗u are a solution to (4). So
z∗uj

< z∗uj′
which implies huj

< huj′
. Thus j < j′ and so vijvi′j′ 6∈ E(Zn,n), as required.

It remains to consider i′ = i − 1. Since i is odd while i′ is even, this implies that uj ∈ Ar and uj′ ∈ Bs

for r, s ∈ {1, 2} where r 6= s. Moreover, we have i′/2 = di/2e − 1. Suppose first that ujuj′ ∈ E(G). Then
z∗uj′

− z∗uj
≤ −α− 1, since the values z∗u are a solution to (4). Thus z∗uj′

< z∗uj
− α and so huj′

< huj
as follows:

huj′
= z∗uj′

+ (n− i′/2) · α < z∗uj
+ (n− i′/2− 1) · α = z∗uj

+ (n− di/2e) · α = huj

Thus j′ < j and we conclude that vijvi′j′ ∈ E(Zn,n) by the definition of Zn,n.
Conversely, suppose that ujuj′ 6∈ E(G). Then z∗uj

− z∗uj′
≤ α − 1, since the values z∗u satisfy (4). Thus

z∗uj
< z∗uj′

+ α and so huj
< huj′

, since huj
= z∗uj

+ (n − di/2e) · α < z∗uj′
+ (n − di/2e + 1) · α = huj′

.
We conclude that j < j ′ and hence vijvi′j′ 6∈ E(Zn,n), as required.

This completes the proof of Theorem 9.

6. Concluding remarks

In the present paper, we proved a number of results about bichain graphs, the bipartite analog of split permutation
graphs. In particular, we developed a geometric representation for bichain graphs and constructed a quadratic n-
universal graph for this class. Among various open problems related to bichain and split permutation graphs, let us
mention the conjecture from [10] asking whether split permutation (and hence bichain) graphs constitute a minimal
hereditary class of graphs of unbounded clique-width. The results obtained in this paper suggest the following
approach to the above question.

In [15], it was shown that graphs in a hereditary class have bounded clique-width if and only if they have
bounded rank-width. Also, in [14] it was shown that bipartite graphs of large rank-width contain a large universal
bipartite permutation graph as a vertex minor. Vertex minors are defined in terms of vertex deletions and local
complementations. Local complementation is the operation of complementing the edges in the neighbourhood of a
vertex. The importance of this operation is due to the fact that it does not change the rank-width of a graph. Therefore,
a possible approach to proving minimality of bichain graphs could be to transform a universal bichain graph into a
universal bipartite permutation graph via a sequence of local complementations. While bipartite graphs are not closed
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under local complementation, circle graphs are. Both bichain graphs are circle graphs (by Corollary 6) and it is well-
known that permutation graphs are circle graphs, so the sequence of local complementations from a universal bichain
graph to a universal bipartite permutation will all happen within the class of circle graphs. Moreover, for circle graphs
the operation of local complementation has a nice geometric interpretation: the local complementation applied at a
vertex x of a circle graph corresponds to cutting the circle along the chord representing x and turning over one of the
semicircles along this chord. This may suggest a geometric approach to transforming bichain graphs into bipartite
permutation graphs and vice versa. A more challenging task is to show that this transformation is possible within
4-polygon graphs, as both bichain graphs and bipartite permutation graphs are subclasses of this class. We leave this
challenging task for future research.
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