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Abstract

The celebrated result of Robertson and Seymour states that in the family of minor-closed graph
classes the planar graphs constitute a unique minimal class of graphs of unbounded tree-width. When
we study tree-width, the restriction to minor-closed graph classes is justified by the fact that the tree-
width of a graph is never smaller than the tree-width of any of its minors. However, this is not the
case with respect to clique-width, i.e. the clique-width of a graph can be (much) smaller than the
clique-width of its minor. On the other hand, the clique-width of a graph is never smaller than the
clique-width of any of its induced subgraphs. Therefore, when we study clique-width we may restrict
ourselves to hereditary graph classes, i.e. those that are closed under taking induced subgraphs. The
first two minimal hereditary classes of unbounded clique-width have been recently identified in [12].
In the present paper, we restrict our attention to bipartite graphs and identify two more minimal
hereditary classes of graphs of unbounded clique-width.
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1 Introduction

In this paper, we study clique-width. This is one of the representatives of the world of graph width
parameters. This world is rich and includes both parameters studied in the literature for decades, such
as path-width [18] or tree-width [19], and those that have been introduced recently, such as Boolean-
width [5] or plane-width [10]. Graph width parameters find various applications in computer science and
combinatorics (see e.g. [9]). In particular, many difficult algorithmic problems become tractable when
restricted to graphs where one of these parameters is bounded by a constant.

The notion of clique-width belongs to the middle generation of graph width parameters. It generalizes
the notion of tree-width in the sense that graphs of bounded tree-width have bounded clique-width, but
not necessarily vice versa. The celebrated result of Robertson and Seymour states that in the family of
minor-closed graph classes the planar graphs constitute a unique minimal class of graphs of unbounded
tree-width [20]. This restriction to minor-closed graph classes is well justified when we study tree-width,
because the tree-width of a graph G is never smaller than the tree-width of a minor of G. However, this
is not the case with respect to clique-width, i.e. the clique-width of G can be (much) smaller than the
clique-width of its minor. On the other hand, the clique-width of a graph is never smaller than the clique-
width of any of its induced subgraphs. Therefore, when we study clique-width we may restrict ourselves
to hereditary graph classes, i.e. those that are closed under taking induced subgraphs.

The first two minimal hereditary classes of unbounded clique-width have been identified recently in
[12]. These are bipartite permutation graphs and unit interval graphs. More minimal classes can be ob-
tained from these two by various graph operations that do not change the clique-width “too much”, such
as complementation, bipartite complementation, or local complementation. Moreover, with some care
the first two minimal classes identified in [12] can also be related to each other by means of these oper-
ations. Taking into account these observations, in the present paper we restrict ourselves to hereditary
classes of bipartite graphs.
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The restriction to bipartite graphs can also be justified by the following arguments. It is known that
the clique-width of graphs in a class X is bounded if and only if the rank-width is bounded [16]. Rank-
width is a graph parameter defined on bipartitions of the input graph, and if the rank-width of a graph is
high, then there is a bipartition of its vertex set such that the bipartite graph formed by the edges of the
cut has a complex structure (measured by the rank of its adjacency matrix). Therefore, bipartite graphs
are of fundamental importance in the study of both parameters, clique- and rank-width.

In the present paper, we identify two new minimal hereditary classes of bipartite graphs of unbounded
clique-width. We call one of them bichain graphs and introduce it in Section 2, where we also report
some preliminary results related to the topic of the paper. In Section 3, we prove that bichain graphs
form a minimal hereditary class of graphs of unbounded clique-width. In Section 4, we prove a similar
result for one more class of bipartite graphs.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops and multiple edges. We denote by
V (G) and E(G) the vertex set and the edge set of a graph G, respectively. Given a vertex v ∈ V (G),
we denote by NG(v) the neighbourhood of v, i.e. the set of vertices adjacent to v. The degree of v is the
number of its neighbours.

Let G be a graph and U ⊆ V (G) a subset of its vertices. Two vertices of U will be called U -similar
if they have the same neighborhood outside of U . Clearly, U -similarity is an equivalence relation. The
number of equivalence classes of U will be denoted µG(U). Also, by G[U ] we will denote the subgraph
of G induced by U , i.e. the subgraph of G with vertex set U and two vertices being adjacent in G[U ] if
and only if they are adjacent in G. We say that a graph H is an induced subgraph of G, or G contains H
as an induced subgraph, if H is isomorphic to G[U ] for some U ⊆ V (G). If no subset of V (G) induces
H , we say that G is H-free.

In a graph, a clique is a subset of pairwise adjacent vertices and an independent set is a subset
of pairwise non-adjacent vertices. A graph G is a split graph if its vertices can be partitioned into
an independent set and a clique, and G is a bipartite graph if its vertices can be partitioned into two
independent sets (also called color classes or simply parts).

As usual, by Pn and Cn we denote a chordless path and a chordless cycle with n, respectively. To
simplify the notion, we drop the subscript G from NG(v) and µG(U) if no confusion arises.

2.1 Clique-width

The notion of clique-width of a graph was introduced in [6] and is defined as the minimum number of
labels needed to construct the graph by means of the four graph operations:

• creation of a new vertex v with label i (denoted i(v)),

• disjoint union of two labeled graphs G and H (denoted G⊕H),

• connecting vertices with specified labels i and j (denoted ηi,j) and

• renaming label i to label j (denoted ρi→j).

The clique-width of a graph G will be denoted cwd(G).
Every graph can be defined by an algebraic expression using the four operations above. This expres-

sion is called a k-expression if it uses k different labels. For instance, the cycle C5 on vertices a, b, c, d, e
(listed along the cycle) can be defined by the following 4-expression:

η4,1(η4,3(4(e) ⊕ ρ4→3(ρ3→2(η4,3(4(d) ⊕ η3,2(3(c) ⊕ η2,1(2(b) ⊕ 1(a)))))))).
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Alternatively, any algebraic expression defining G can be represented as a rooted tree, whose leaves
correspond to the operations of vertex creation, the internal nodes correspond to the ⊕-operations, and
the root is associated with G. The operations η and ρ are assigned to the respective edges of the tree.
Figure 1 shows the tree representing the above expression defining a C5.
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Figure 1: The tree representing the expression defining a C5

In the course of our study we will need the following technical lemma proved in [12].

Lemma 1. [12] Let k ≥ 2 and ` be positive integers. Suppose that the vertex set of G can be partitioned
into sets V1, V2, . . . where for each i,

(1) cwd(G[Vi]) ≤ k,

(2) µ(Vi) ≤ ` and µ(V1 ∪ · · · ∪ Vi) ≤ `.

Then cwd(G) ≤ k · `.

This lemma implies, in particular, that for any n, the clique-width of Pn is at most 4. This conclusion
can be obtained by defining Vi = {vi}, where vi is the i-th vertex of the path Pn, in which case k = 2
and ` = 2. This bound can be easily improved to 3 and we mention this example merely as an illustration
of the lemma. In the proof or our main results, the reader will find more powerful applications of this
lemma.

2.2 Bichain graphs

We will say that a set of vertices form a chain if their neighbourhoods form a chain with respect to the
inclusion relationship, i.e. if they can be linearly ordered under this relation.

A bipartite graph will be called a k-chain graph if the vertices in each part of its bipartition can be
split into at most k-chains.

Example.

1-chain graphs are known simply as chain graphs. A typical example of a chain graph is repre-
sented in Figure 2. The importance of this example is due to the fact that the represented graph
contains all chain graphs with at most 5 vertices as induced subgraphs, i.e. it is 5-universal. More-
over, this example can be easily extended to a general construction of an n-universal chain graph.
Such a graph has n vertices in each part of its bipartition and contains all chain graphs with at most
n vertices as induced subgraphs, which can be easily proved by induction on n.
An important observation about chain graphs is that

(*) a bipartite graph is a chain graph if the vertices in at least one part of its bipartition form a
chain. In other words, if the vertices in one part of a bipartite graph form a chain, then the
vertices of the other part form a chain too.
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Figure 2: 5-universal chain graph

The simple structure of chains graphs implies many nice properties. In particular, the clique-
width of chain graphs is at most three [8] and they are well-quasi-ordered by the induced subgraph
relation (i.e. the class of chain graphs does not contain infinite antichains with respect to this
relation) [17].
The boundedness of clique-width can also be derived from Lemma 1 by showing that the universal
chain graph has bounded clique-width. This can be done by defining Vi to be the 2-element set
containing the endpoints of the i-th vertical edge of the universal chain graph, in which case k = 2
and ` = 2.

The class of 2-chain graphs, also called bichain graphs, is much richer and this is one of the two
classes of our interest in this paper. The clique-width of bichain graphs is unbounded and this class is not
well-quasi-ordered by induced subgraphs. Both conclusions follow readily from a relationship between
bichain graphs and split permutation graphs. This relationship is described in Claim 1 below, where we
also reveal a similar relationship between chain graphs and an important subclass of spit permutation
graphs, known as threshold graphs.

Claim 1. Let G be a split graph given together with a partition of its vertex set into a clique C and an
independent set I , and let G∗ be the bipartite graph obtained from G by deleting the edges of C . Then

• G is a threshold graph if and only if G∗ is a chain graph,

• G is a split permutation graph if and only if G∗ is a bichain graph.

This claim follows from the definition of chain and bichain graphs and the fact that threshold graphs
are graphs of Dilworth number 1, while split permutation graphs are split graphs of Dilworth number at
most two [3].

In [11], it was shown that split permutation graphs have unbounded clique-width and they are not
well-quasi-ordered by the induced subgraph relation. Together with Claim 1 this implies the same con-
clusions for bichain graphs. One of the main results of the present paper is that bichain (and therefore
split permutation) graphs form a minimal hereditary class of unbounded clique-width. Our proof of min-
imality is based on a universal construction for bichain graphs. Before we describe this construction, we
recall a few facts about bipartite permutation graphs.

2.3 Bipartite permutation graphs

A permutation graph G can be defined as the intersection graph of line segments whose endpoints are
located on two parallel lines. Such a diagram is called an intersection model of G. For an illustration,
see Figure 3 which represents a permutation graph (on the left) and its intersection model (on the right).

We emphasize that the graph represented in Figure 3 is not only a permutation graph, but also bipar-
tite, and the vertices (line segments) in different parts of its bipartition are colored differently (black and
white). This example is also typical in the sense that it suggests an idea of a universal construction for
bipartite permutation graphs. Intuitively, this idea can be described in terms of the intersection model
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Figure 3: The graph on the left is the intersection graph of the diagram on the right

as follows: to be universal the intersection model must have “many” segments of both colors and each
segment must intersect “many” segments of the opposite color.

The nature of permutation graphs suggests representing them as a “one-dimensional” structure, de-
veloping, for instance, from left to right as in Figure 3. Based on the above idea, which involves two
parameters, we split the vertices of a universal bipartite permutation graph into layers and represent them
as a two-dimensional structure. This representation allows us to speak about rows and columns of the
universal graph, and we denote a universal bipartite permutation graph with n rows and n columns by
Xn,n. An example of the graph Xn,n for n = 6 (i.e. 6 columns and 6 rows) is shown on the left of
Figure 4.
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Figure 4: Graphs X6,6 (left) and Z7,6 (right). The graph Z7,6 contains the edges shown in the picture and
the “diagonal” edges connecting every even column i to every odd column i′ ≥ i + 3 (these edges are
not shown for clarity of the picture).

The following theorem was proved in [14].

Theorem 1. The graph Xn,n is an n-universal bipartite permutation graph, i.e. it contains every bipar-
tite permutation graph with n vertices as an induced subgraph.

The two-dimensional representation of the universal bipartite permutation graph also suggests an idea
of why the clique-width is unbounded in this class. Observe that every row of Xn,n is a chordless path,
and hence, an algebraic expression defining the graph by means of bounded number of labels should
develop “horizontally”. On the other hand, any two consecutive columns of Xn,n induce an n-universal
chain graph, and hence, suggested by Lemma 1, an algebraic expression defining the graph by means of
bounded number of labels should develop “vertically”. Therefore, if the graph grows in both directions,
the clique-width grows as well.

We call any graph of the form Xn,n an X-grid. The proof of minimality of the class of bipartite
permutation graphs with respect to clique-width is based on the universality of the X-grid and on the
following theorem proved in [12].
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Theorem 2. For every n, the clique-width of Xn,n-free bipartite permutation graphs is bounded by a
constant.

We develop a similar approach for bichain graphs. To this end, in the next section we describe a
universal construction for bichain graphs.

2.4 A universal bichain graph

Because of the relationship between bichain graphs and split permutation graphs described in Claim 1,
constructing a universal bichain graph is equivalent to constructing a universal split permutation graph.

For split permutation graphs, one can employ a geometric approach as follows. Let G be a bipartite
permutation graph and let A be one of its color classes. In the intersection model, the segments repre-
senting the vertices of A are mutually non-crossing. However, if we reverse the order of their bottom
endpoints, then the segments become pairwise crossing and hence A becomes a clique. Therefore, this
operation transforms G into a split permutation graph, say G′. One could expect that if G is a universal
bipartite permutation graph, then G′ is a universal split permutation graph. However, regardless of how
complex the graph G is, the graph G′ is necessarily a split graph of Dilworth number 1, i.e. a threshold
graph. This is where the idea of layering a universal bipartite permutation graph comes to light. To keep
the complex structure of G, one needs to do the transformation layer by layer.

A more straightforward approach to establishing a relationship between bipartite permutation graphs
and split permutation graphs was proposed in [11]. In terms of bichain graphs, this approach can be
described as follows.

Let G = (A,B,E) be a bichain graph given together with a partition of its vertex set into two
independent sets A and B. By definition, each of these sets can be further split into two chains, say
A = A1 ∪A2 and B = B1 ∪B2. Since A1 is a chain, the vertices of B in the subgraph of G obtained by
the deletion of A2 also form a chain according to Observation (*). In other words, the vertices of B can
be linearly ordered with respect to A1. Similarly, the vertices of B can be linearly ordered with respect to
A2. Two linear orders define a permutation on B, say π. Moreover, the permutation graph of π must be
bipartite, since B can also be split into two chains (each defining an independent set in the permutation
graph).

This relationship between bipartite permutation graphs on the one hand and bichain graphs (and split
permutation graphs) on the other hand suggests the following idea for constructing a universal bichain
(and hence split permutation) graph: build a bichain graph G = (A,B,E) such that the permutation
graph of π is a universal bipartite permutation graph. This idea was implemented in [2] and then im-
proved in [4] as follows.

Denote by Zn,k the graph with the vertex set {zi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} and with zijzi′j′ being
an edge if and only if

(1) i is odd and i′ = i+ 1 and j > j ′,

(2) i is even and i′ = i+ 1 and j ≤ j ′,

(3) i is even, i′ is odd and i′ ≥ i+ 3.

We call the edges of type 3 the diagonal edges. An example of the graph Zn,k with n = 7 and k = 6
is represented on the right of Figure 4, where for clarity of the picture we omitted the diagonal edges.
Any graph of the form Zn,k will be called a Z-grid.

We call an induced subgraph G of Zn,n row-sparse if every row of Zn,n contains at most one vertex
of G.
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Theorem 3. [4] The graph Zn,n is an n-universal bichain graph, i.e. it contains every bichain graph G
on n vertices as an induced subgraph. Moreover, G is isomorphic to a row-sparse induced subgraph of
Zn,n.

3 The class of bichain graphs is a minimal hereditary class of unbounded
clique-width

In order to show that bichain graphs form a minimal hereditary class of unbounded clique-width, we
need a number of preparatory results.

Lemma 2. Let n,m be positive integers. Then cwd(Zn,m) ≤ 3n.

Proof. We decompose the Z-grid Zn,m into rows and then apply Lemma 1. For j = 1, . . . ,m, let Uj

denote the j-th row of Zn,m, i.e. Uj = {vij | i ∈ {1, . . . , n}}. Since |Uj | = n, we have

• µ(Uj) ≤ n.

Also, it is not difficult to see that Uj induces a chain graph, and hence

• cwd(Zn,m[Uj ]) ≤ 3 for all j ∈ {1, . . . ,m}.

Finally, by direct inspection, the reader can easily check that

• µ(U1 ∪ U2 ∪ · · · ∪ Uj) ≤ n for all j ∈ {1, . . . ,m}.

Now applying Lemma 1 with the partition U1, . . . , Um and using the above claims, we conclude that
cwd(Zn,m) ≤ 3n.

Lemma 3. Let n,m be positive integers and G be a row-sparse induced subgraph of Zn,m. Denote
by Vi the i-th column of Zn,m, i.e. Vi = {vij | j ∈ {1, . . . ,m}}. If G contains no induced subgraph
isomorphic to Zn,n, then there exists a partition V (G) = X ∪ Y such that

• |X ∩ Vn| ≤ n− 1 and |Y ∩ V1| ≤ n− 1,

• µG[Y ∪Vi](X ∩ Vi) ≤ n and µG[X∪Vi](Y ∩ Vi) ≤ n for all i ∈ {1, . . . , n}.

Proof. Let G be a row-sparse induced subgraph of Zn,m that contains no induced Zn,n. In order to find
the desired partition of V (G), we construct the following directed graph H:

(i) V (H) = V (Zn,m) ∪ {s, t}, where s, t are two new vertices.

(ii) E(H) consists of

– an arc from vij to vi(j+1) for each i ∈ {1, . . . , n} and j ∈ {1, . . . m− 1},
– an arc from s to v1j for each j ∈ {1, . . . ,m} such that v1j ∈ V (G),
– an arc from vnj to t for each j ∈ {1, . . . ,m} such that vnj ∈ V (G), and
– two arcs between vij and v(i−1)j , one in each direction, for each i ∈ {2, . . . , n} and j ∈

{1, . . . m} such that vij ∈ V (G). For simplicity, in the proof we talk about one arc connect-
ing vij and v(i−1)j in both directions.
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a) b)

s t

c)

s t

d)

Figure 5: Example of the construction of the directed graph H: a) the subgraph G of Z4,m; only edges
of G shown, b) directed graph H , c) maximum st-flow; two disjoint paths, d) corresponding induced
subgraph Z4,2 in G.

An example of this construction is represented in Figure 5. We make an important observation that
H is a directed planar graph. Indeed, note that H can be drawn in the plane by representing the vertices
vij as points (i, j) in an n ×m grid, and drawing s and t to the left and right of this grid, respectively.
Then connecting adjacent vertices by straight lines clearly does not create crossings. (See Figure 5b for
an example of this representation.)

The following claim about the graph H is very important for the proof of the lemma.

(3.1) Every vertex vij in H with i < n has degree at most 3, since otherwise G is not a row-sparse
subgraph of Zn,m.

Now, let P 1, P 2, . . . , P r be the largest collection of pairwise arc-disjoint directed st-paths in H .
Using these paths, we will show how to obtain an induced subgraph of G isomorphic to Zn,r, where r is
the number of paths. Since G does not contain Zn,n as an induced subgraph, this will give us a bound on
r and thus will provide us with an st-cut of H of capacity less than n. We then show that the cut induces
the desired partition of G, which will prove the lemma.

Note that each path P k goes from s to t and thus crosses each of the sets Vi. Thus we may define
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φ(i, k) to be the index j such that vij is the first vertex on P k that belongs to Vi (first when traversing P k

from s to t).

Since the paths P 1, . . . , P r are pairwise arc-disjoint, we have φ(1, k) 6= φ(1, k ′) for distinct k, k′ ∈
{1, . . . , r}. Thus without loss of generality, we may assume that the paths are ordered so that φ(1, 1) <
φ(1, 2) < . . . < φ(1, r). We also assume that each path P k crosses the last column Vn at exactly one
vertex vnj with j = φ(n, k), i.e. from this vertex the path moves directly to t. With these assumptions,
we can conclude that

(3.2) the paths P 1, P 2, . . . , P r are internally vertex-disjoint (i.e. s and t are the only common vertices of
the paths), because if two paths have a common vertex v, then either v has degree 4 (contradicting
Claim 3.1) or the paths have a common arc (contradicting the choice of the paths).

From this conclusion and the definition of H , taking also into account the planarity of H , the reader can
easily derive the following claims about φ(i, k).

(3.3) φ(i, k) < φ(i, k′) if and only if k < k′.

(3.4) Let j = φ(i, k). Then vij ∈ V (G).

(3.5) φ(i, k) < φ(i′, k) if and only if i < i′.

(3.6) If i > 1 and k < k′, then φ(i, k) < φ(i− 1, k′).

With these technical claims in mind, we are finally ready to define the desired isomorphism showing
that G contains an induced copy of Zn,r. For each k ∈ {1, . . . , r}, define Wk = {vij | j = φ(i, k), i ∈
{1, . . . , n}}. Define W = W1 ∪W2 ∪ . . .Wr. Note that W ⊆ V (G) by Claim 3.4.

(3.7) G[W ] is isomorphic to Zn,r.
Proof. We define a mapping f between V (Zn,r) and W as follows. For each i ∈ {1, . . . , n} and
k ∈ {1, . . . , r}, the mapping f maps vik ∈ V (Zn,r) to the vertex vij ∈ Wk where j = φ(i, k).
Note that f is an injective mapping. Indeed, if f(vik) = f(vi′k′), then i = i′ and φ(i, k) =
φ(i′, k′); thus k = k′ by Claim 3.3. Clearly, f is also surjective, by the definition of W . Now,
recall that W ⊆ V (G) and that G is an induced subgraph of Zn,m. Thus, to prove that f is the
desired isomorphism, it remains to show that vikvi′k′ ∈ E(Zn,r) if and only if vijvi′j′ ∈ E(Zn,m)
for all i, i′ ∈ {1, . . . , n} and k, k′ ∈ {1, . . . r}, where j = φ(i, k) and j ′ = φ(i′, k′). This is shown
as follows.
Suppose first that vikvi′k′ ∈ E(Zn,r). Then by the definition of Zn,r, we may assume by symmetry
that i is even, i′ is odd, i′ ≥ i− 1, and if i′ = i− 1, then k < k′, while if i′ = i+ 1, then k ≤ k′.
Clearly, if i′ ≥ i + 3, then vijvi′j′ ∈ E(Zn,m) by the definition of Zn,m. If i′ = i − 1, then we
have k < k′ which yields φ(i, k) < φ(i − 1, k′) by Claim 3.6. Thus j < j ′ and we conclude
that vijvi′j′ ∈ E(Zn,m). Similarly, if i′ = i + 1, then k ≤ k′ which yields φ(i, k) ≤ φ(i, k′)
by Claim 3.3. We also deduce φ(i, k′) < φ(i′, k′) by Claim 3.5, since i < i′. Put together,
we have j = φ(i, k) ≤ φ(i, k′) < φ(i′, k′) = j′. Thus j < j ′ and we again conclude that
vijvi′j′ ∈ E(Zn,m).
Conversely, suppose that vijvi′j′ ∈ E(Zn,m). This time, by symmetry, we shall assume that i is
odd, i′ is even, and either i′ ≤ i− 3, or i′ = i+ 1 and j ′ < j, or i′ = i− 1 and j ′ ≤ j. Clearly, if
i′ ≤ i− 3, then vikvi′k′ ∈ E(Zn,r). If i′ = i− 1 and j ′ ≤ j, then we deduce k′ ≤ k by Claim 3.6.
Indeed, if k < k′, then Claim 3.6 yields φ(i, k) < φ(i − 1, k ′) which is j < j ′, a contradiction.
Therefore, since k′ ≤ k, it follows that vikvi′k′ ∈ E(Zn,r), Similarly, if i′ = i+1 and j ′ < j, then

9



φ(i, k) < φ(i′, k) by Claim 3.5. Thus if k ≤ k′, we have φ(i′, k) ≤ φ(i′, k′) by Claim 3.3 and so
j = φ(i, k) < φ(i′, k) ≤ φ(i′, k′) = j′ < j, a contradiction. We therefore conclude that k ′ < k
which again yields vikvi′k′ ∈ E(Zn,r), as required.

From Claim 3.7, we deduce that r < n, since G does not contain an induced Zn,n. By the Max-Flow-
Min-Cut Theorem, this implies that in H there exists an st-cut (X+, Y +) with s ∈ X+ and t ∈ Y +

such that there are at most n − 1 arcs in H going from X+ to Y +. We let X = X+ ∩ V (G) and
Y = Y + ∩ V (G).

We prove that X ∪ Y is the desired partition of V (G). First, we observe that if Y ∩ V1 contains n
vertices y1, . . . , yn, then these are also vertices in G, since Y ⊆ V (G). Thus H contains directed arcs
from s to each of y1, . . . , yn. Since s ∈ X+ while y1, . . . , yn ∈ Y ⊆ Y +, these arcs constitute a set of
n arcs going from X+ to Y +, contradicting our choice of the cut (X+, Y +). We conclude that

• |Y ∩ V1| ≤ n− 1

as required. Similarly, if X ∩ Vn contains vertices x1, . . . , xn, then H contains arcs from each of
x1, . . . , xn to t. Since t ∈ Y +, these n arcs go from X+ to Y +, again contradicting the choice of
(X+, Y +). Thus

• |X ∩ Vn| ≤ n− 1.

The remaining two properties of the partition (X,Y ) are proved below.

• µG[Y ∪Vi](X ∩ Vi) ≤ n for all i ∈ {1, . . . , n}.
For contradiction, let X ∩ Vi contains n + 1 vertices x1, . . . , xn+1 whose neighbourhoods in Y
are all pairwise different. Without loss of generality, we may assume N(x1) ⊆ N(x2) ⊆ · · · ⊆
N(xn+1), since the vertices belong to the same column Vi. Thus we deduce (N(x1) ∩ Y ) ⊂
(N(x2) ∩ Y ) ⊂ · · · ⊂ (N(xn+1)∩ Y ), where all inclusions are proper, since the neighbourhoods
of the vertices x1, . . . , xn+1 in Y are all different.
This implies that for all j ∈ {1, . . . , n}, the set N(xj+1) \ N(xj) contains a vertex of Y ; let us
denote it yj . Note that yj ∈ Vi−1 ∪ Vi+1, since by the definition of Zn,m, the vertices xj and xj+1

have same neighbourhoods in the columns V1, V2, . . . , Vi−2, Vi+2, Vi+3, . . . , Vn and they are both
non-adjacent to any other vertex in Vi.
Let `1, . . . , `n+1 be indices such that x1 = vi`1 , x2 = vi`2 , . . . , xn+1 = vi`n+1

. Similarly, let
k1, . . . , kn be indices such that for all j ∈ {1, . . . , n}, we have yj = v(i+1)kj if yj ∈ Vi+1, and
yj = v(i−1)kj if yj ∈ Vi−1.

Case 1. Suppose that i is odd. Since N(x1) ⊆ · · · ⊆ N(xn+1), since i is odd, and since yj ∈
N(xj+1) \ N(xj) for all j ∈ {1, . . . , n}, the definition of Zn,m yields `1 ≤ k1 ≤ `2 ≤ k2 ≤
· · · ≤ kn ≤ `n+1. In fact, we can deduce `1 < k1 < `2 < k2 < · · · < kn < `n+1, since
x1, . . . , xn+1, y1, . . . , yn are vertices in G, and we assume that G is a row-sparse induced subgraph
of Zn,m.
Now, consider j ∈ {1, . . . , n}. Recall that `j < kj . This implies that H contains a directed
path Qj from xj to yj; namely if yj ∈ Vi+1, the path is vi`j , vi(`j+1), . . . , vikj , v(i+1)kj , while if
yj ∈ Vi−1, the path is vi`j , v(i−1)`j , v(i−1)(`j+1), . . . , v(i−1)kj . For this, recall that x, y ∈ V (G); so
if yj ∈ Vi+1, then H contains arcs in both directions between vikj and v(i+1)kj , while if yj ∈ Vi−1,
then i > 1 and so H contains arcs between v(i−1)`j and vi`j . Since xj ∈ X+ while yj ∈ Y +, the
path Qj contains an arc from X+ to Y +; let us denote this arc ej .
Notice that for all j < j ′ the paths Qj , Qj′ are vertex-disjoint, since `j < kj < `j′ < kj′ . This
implies that the arcs e1, . . . , en are all distinct. But then the arcs e1, . . . , en constitute a set of n
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arcs from X+ to Y +, which contradicts our choice of the cut (X+, Y +). So Case 1 is impossible.

Case 2. Suppose that i is even. We proceed similarly as in Case 1. Since i is even and G is
row-sparse, we deduce `1 > k1 > `2 > k2 > · · · > kn > `n+1. For j ∈ {1, . . . , n}, we let Qj

be a directed path in H from xj+1 to yj , namely if yj ∈ Vi+1, then the path is vi`j+1
, vi(`j+1+1),

. . . , vikj , v(i+1)kj , while if yj ∈ Vi−1, the path is vi`j+1
, v(i−1)`j+1

, v(i−1)(`j+1+1), . . . , v(i−1)kj .
The path Qj contains an arc ej from X+ to Y +, and the arcs e1, . . . , en are all distinct. This again
contradicts the choice of the cut (X+, Y +). So Case 2 is also impossible.

By analogy, we prove the remaining inequality:

• µG[X∪Vi](Y ∩ Vi) ≤ n for all i ∈ {1, . . . , n}.

This completes the proof of Lemma 3.

Lemma 4. Let N,n be positive integers and G a row-sparse induced subgraph of ZN,N . If G contains
no induced subgraph isomorphic to Zn,n, then cwd(G) ≤ 24n3 − 12n2.

Proof. Let G be a row-sparse induced subgraph of ZN,N such that G does not contain Zn,n as an induced
subgraph. We may assume n ≥ 2 or else there is nothing to prove (G has no vertices). We may also
assume that n divides N , since we can always enlarge N to achieve this. Let V1, . . . , VN denote the
columns of ZN,N , i.e. Vi = {vij | j ∈ {1, . . . , N}}.

Let us denote t = N/n and let us split ZN,N into t blocks, each containing n consecutive columns
of the grid. Also, let Ri denote the set of vertices of G in the i-th block. More formally, for each
i ∈ {1, . . . , t},

Ri is the set of vertices of G in columns V(i−1)·n+1, V(i−1)·n+2, . . . , Vi·n.

The application of Lemma 3 to G[Ri] yields a partition Xi ∪ Yi = Ri, where

(i) |Xi ∩ Vi·n| ≤ n− 1,

(ii) |Yi ∩ V(i−1)·n+1| ≤ n− 1,

(iii) µG[Yi∪Vj ](Xi ∩ Vj) ≤ n and µG[Xi∪Vj ](Yi ∩ Vj) ≤ n for all (i− 1) · n < j ≤ i · n.

To prove the lemma, we use the sets Xi, Yi (1 ≤ i ≤ t) to construct a partition U0, U1, . . . , Ut of
V (G) as follows: U0 = X1, Ut = Yt, and for i ∈ {1, . . . , t − 1}, Ui = Yi ∪ Xi+1. Then the result
follows by applying Lemma 1 to this partition. To complete the proof, we need to show that the partition
possesses the desired properties.

Claim 2. µG(X1) ≤ n2 and µG(Yt) ≤ n2.

Proof. Assume µG(X1) ≥ n2 +1. Then for some column Vj in the first block, the set X1 ∩ Vj contains
n+1 vertices x1, . . . , xn+1 with pairwise different neighbourhoods in V (G) \X1. By (ii) we know that
j ≤ n− 1, i.e. Vj is not the last column of the first block. Hence the vertices x1, . . . , xn+1 all have the
same neighbourhood in V (G) \ (X1 ∪ Y1), by the definition of ZN,N . Thus the vertices x1, . . . , xn+1

have pairwise different neighbourhoods in Y1. This contradicts (iii) and proves that µG(X1) ≤ n2. For
the other inequality, the proof is analogous.

Claim 3. For all 1 ≤ i < t, we have µG(Xi+1 ∪ Yi) ≤ 4n2 − 2n.
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Proof. Suppose that µG(Xi+1 ∪ Yi) ≥ 4n2 − 2n + 1. Then by the Pigeonhole Principle, there are two
possibilities.

Case 1. There exists a column Vj in the i-th block (i.e. with (i−1)·n < j ≤ i·n) such that Vj∩Yi contains
at least 2n vertices y1, y2, . . . , y2n with pairwise different neighbourhoods in V (G) \ (Xi+1 ∪ Yi).

Since the vertices y1, . . . , y2n all belong to the same column, we may assume, without loss of gen-
erality, that N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(y2n). This implies that for each k ∈ {1, . . . , 2n − 1}, there
exists xk ∈ N(yk+1) \ N(yk) such that xk 6∈ Xi+1 ∪ Yi, since the neighbourhoods of y1, . . . , y2n in
V (G) \ (Xi+1 ∪ Yi) are pairwise different.

Note that the vertices x1, . . . , x2n−1 are pairwise distinct. Further, note that all vertices in Vj have
the same neighbours in all columns except for Vj−1 and Vj+1. Thus it follows x1, . . . , x2n−1 are vertices
in Vj−1 ∪ Vj+1.

If Vj is the first column of the i-th block (i.e. if j = (i − 1) · n + 1), then we contradict (ii), since
Yi may contain at most n − 1 vertices in Vj in this case. If Vj is neither the first nor the last column of
i-th block (i.e. if (i− 1) · n+ 2 ≤ j ≤ i · n− 1), then vertices x1, . . . , x2n−1 all belong to Xi, in which
case we contradict (iii), because in this case the vertices of Yi in the same column may have at most n
pairwise different neighbourhoods in Xi. Assume now that Vj is the last column of the i-th block (i.e.
j = i ·n). Then x1, . . . , x2n−1 are vertices in Vi·n−1∪Vi·n+1 and so they are vertices in Xi∪Yi+1. From
(ii) we deduce that at most n− 1 of them belongs to Yi+1. Thus at least n among x1, . . . , x2n−1 belongs
to Xi. But then at least n+ 1 vertices among y1, . . . , y2n have pairwise different neighbourhoods in Xi,
contradicting (iii).

Case 2. There exists j such that Vj ∩Xi+1 contains vertices x1, . . . , x2n with pairwise different neigh-
bourhoods in V (G) \ (Xi+1 ∪ Yi). In this case, the proof coincides with that of Case 1, except that Xs
and Y s switch roles, and we use (i) in place of (ii).

Claim 4. For all 1 ≤ i ≤ t, we have µG(R1 ∪ · · · ∪Ri−1 ∪Xi) ≤ n2 + n+ 1.

Proof. Let S = R1 ∪ · · · ∪ Ri−1 ∪ Xi. For contradiction, suppose that µG(S) ≥ n2 + n + 2. Then
S contains a collection of n2 + n + 2 vertices with pairwise different neighbourhoods in V (G) \ S.
We observe that all vertices in V1 ∪ V2 ∪ · · · ∪ V(i−1)·n−1 have the same neighbourhood in V (G) \ S.
Thus the collection contains at most one vertex from the columns V1 ∪ V2 ∪ · · · ∪ V(i−1)·n−1. This
implies, by the Pigeonhole principle, that there is a column Vj with (i − 1) · n ≤ j ≤ i · n such that
Vj ∩S contains at least n+1 vertices x1, . . . , xn+1 with pairwise distinct neighbourhoods in V (G) \ S.
Since the vertices x1, . . . , xn+1 belong to the same column, we may assume, without loss of generality,
that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn+1). From this we deduce that for each k ∈ {1, . . . , n}, the set
(N(xk+1) \ N(xk)) \ S contains a vertex, denote it yk. Observe that the vertices y1, . . . , yn are all
distinct. Moreover, note that all vertices in Vj have the same neighbourhood in all columns except for
Vj−1 and Vj+1. Thus y1, . . . , yn are vertices in Vj−1 ∪ Vj+1.

This implies that if i > 1 and j = (i − 1) · n, then the vertices y1, . . . , yn belong to Vj+1, since
Vj−1 ∩ V (G) ⊆ S. But this contradicts (ii). Similarly, if j = i · n, then the vertices x1, . . . , xn+1

belong to Xi ∩ Vi·n, which is impossible by (i) since the set Xi ∩ Vi·n can contain at most n− 1 vertices.
Finally, assume that (i− 1) ·n < j < i ·n. Then the vertices x1, . . . , xn+1 belong to Xi and the vertices
y1, . . . , yn to Yi. This contradicts (iii), because in this case a column of Xi can have at most n−1 vertices
with pairwise different neighbourhood in Yi.

As the last bit of the proof of Lemma 4, we observe that any set in the partition U0, U1, . . . , Ut of
V (G) occupies at most 2n consecutive columns of the grid and hence cwd(G[Ui]) ≤ 6n by Lemma 2.
Combining this inequality with Claims 2, 3, 4, we conclude by Lemma 1 that cwd(G) ≤ 24n3 −
12n2.
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Now we are ready to prove the main result of the section.

Theorem 4. The class of bichain graphs is a minimal hereditary class of unbounded clique-width.

Proof. Consider a bichain graph H . We prove that every bichain graph that does not contain an in-
duced copy of H has bounded clique-width, more specifically has clique-width bounded by a function
of |V (H)|.

Consider a bichain graph G with no induced H . By Theorem 3, the graph H is an induced subgraph
of Zn,n where n = |V (H)|. Since H is an induced subgraph of Zn,n and G does not contain an
induced H , it also does not contain an induced Zn,n. By Theorem 3, the graph G is a row-sparse
induced subgraph of ZN,N for some N . The two facts together allow us to conclude by Lemma 3 that
cwd(G) ≤ 24n3 − 12n2.

This proves that the clique-width of G is bounded by a function depending only on H , as required.
Therefore, the class of bichain graphs is indeed a minimal hereditary class of unbounded clique-width.

3.1 An alternative proof

We observe that the proof given above is conceptually similar to that given in [12] for bipartite permu-
tation graphs. In this section, we develop an entirely different approach to proving Theorem 4, which
reduces the problem to bipartite permutation graphs. This approach is of independent interest, because
it provides a new tool for proving results in this area. The proof given above allows us to reduces the
description of the alternative approach to a sketch.

The alternative proof is done by means of so-called pivoting operation (to be defined later), which
does not change rank-width, and hence, does not change clique-width “too much”. We will show that a
Z-grid can be pivoted into an X-grid. To this end, we need an intermediate construction called Y -grid.
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Figure 6: Graphs Y7,5 (left) and Y +
7,5 (right)

A Y -grid is one more grid-like graph. A graph of this form with n columns and k rows is denoted
Yn,k and an example of this graph with n = 7 and k = 5 is shown in Figure 6 (left). By adding to Yn,k an
extra line at the bottom as shown in Figure 6 (right) we obtain a grid which we denote Y +

n,k. The example
shown in Figure 6 (right) represents the graph Y +

n,k with n = 7 and k = 5 (note that Y +
n,k contains k + 1

rows). We will refer to graphs of the form Yn,k and Y +
n,k as Y -grids and Y +-grids, respectively.

It is not difficult to see that a Y -grid is simply a modification of an X-grid obtained by shifting the
vertices within each column so that every horizontal line of the X-grid turns 45◦ clockwise. Therefore,
any Y -grid is a bipartite permutation graph and hence can be embedded into an X-grid. With a bit of
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care, one can verify that a Y +-grid is embeddable into an X-grid as well. Figure 7 (left) illustrates how
Y +
3,3 can be embedded into X6,6. On the other hand, an X-grid can be embedded into a Y -grid and hence

into a Y +-grid, as exemplified in Figure 7(right).

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A
A

A
A
A

@
@

@

A
A

A
A

A
A

@
@

@

A
A

A
A

A
A

@
@

@

A
A
A

A
A
A

@
@

@

A
A
A

A
A
A

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

r@
@

@

A
A

A
A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

D
D
D
D
D
D
D
D
D
D
D
D
D
DD

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
CC

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A

A
A

A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A
A

A
A
A

B
B
B
B
B
B
B
B
B

@
@

@

A
A
A

A
A
A

@
@

@

A
A

A
A

A
A

@
@

@

A
A

A
A

A
A

@
@

@

A
A
A

A
A
A

@
@

@

A
A
A

A
A
A

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@

Figure 7: On the left, the graph X6,6 contains the graph Y +
3,3 surrounded by a dotted boundary. On the

right, the graph Y +
6,5 contains the graph X3,3 surrounded by a dotted boundary.

Both examples can be easily generalized to the following statement.

Lemma 5. The graph X2n,2n contains Yn,n and Y +
n,n as induced subgraphs, and the graphs Y2n,2n and

Y +
2n,2n contain Xn,n as an induced subgraph.

Let ab be an edge in a bipartite graph, A = N(a) − {b} and B = N(b) − {a}. The operation of
pivoting consists in complementing the edges between A and B. i.e. replacing every edge xy (x ∈ A
and y ∈ B) with a non-edge and vice versa.

We want to show that a Z-grid can be transformed by a sequence of pivoting operations into a
bipartite permutation graph. Since the pivoting operation is very sensitive, we apply it to a particular
form of the Z-grid. First, we restrict ourselves to graphs of the form Zn,k only with odd values of n.
Second, we extend Zn,k in a specific way by adding to it an extra bottom line and denote the resulting
graph by Z+

n,k. Formally speaking, the graph Z+
n,k can be obtained from the graph Zn+2,k+1 by deleting

the bottom-left vertex and all vertices of the last two columns except the bottom vertices. An example
of the graph Z+

n,k with n = 7 and k = 5 is shown on the left of Figure 8. The bottom line is labelled by
0. We will call the bottom line of the graph Z+

n,k the pivoting line, which is explained by the following
lemma.

Lemma 6. The sequence of pivoting operations applied to the bottom edges of the graph Z+
n,k in the

order from left to right starting from the second edge transforms Z+
n,k into the graph Y +

n,k.

Proof. The result follows by direct inspection. The only peculiarity of this transformation is that after
the pivoting, every vertex of the bottom line in an odd column i moves to column i− 2, as illustrated in
Figure 8.

3.1.1 On more proof of Theorem 4

Let A be a proper hereditary subclass of bichain graphs, i.e. a subclass obtained by forbidding at least
one bichain graph. According to Theorem 3, every graph G ∈ A with n vertices can be embedded into a
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Figure 8: The graph Z+
7,5 (on the left, with diagonal edges omitted) transforms into the graph Y +

7,5 (on
the right) by pivoting on the edges cd, ef , gh.

Z-grid Zn,n. We extend Zn,n to Z+
n,n by adding to it a pivoting line. We also add the pivoting line to G

and denote the resulting graph by G+.
By pivoting on the edges of the pivoting line, we transform G+ into a graph which we denote by G∗

+,
and by deleting the pivoting line from G∗

+ we obtain a graph denoted by G∗. According to Lemma 5 and
Theorem 1, G∗

+ (and hence G∗) is a bipartite permutation graph.
For an arbitrary bipartite permutation graph H , let x(H) be the maximum n (the x-number) such

that H contains Xn,n as an induced subgraph, and for an arbitrary bichain graph H we denote by z(H)
the maximum n (the z-number) such that H contains Zn,n as an induced subgraph. We also denote

A+ = {G+ : G ∈ A}

A∗

+ = {G∗

+ : G+ ∈ A+}

A∗ = {G∗ : G∗

+ ∈ A∗

+}

Assume the x-number is unbounded for graphs in A∗, i.e. assume that graphs in A∗ contain arbitrar-
ily large induced copies of Xn,n. Then, by Lemma 5, they also contain arbitrarily large induced copies
of Yn,n,. With the help of Lemma 6 it is not difficult to see that if a set of vertices induces in a graph
G∗ ∈ A∗ a large copy of Yn,n,, then the same set of vertices induces in G ∈ A a graph containing a large
copy of Zn,n (we talk about embeddings of G and G∗ into a Z-grid and Y -grid, respectively). Therefore,
if the x-number is unbounded for graphs in A∗, then the z-number is unbounded for graphs in A. But
then, by Theorem 3, A must contain all bichain graphs, contradicting our assumption. This contradiction
shows that the x-number is bounded by a constant, say k, for graphs in A∗, i.e. these graphs are Xk,k-
free. Therefore, graphs in A∗

+ are Hk+1,k+1-free, since by adding one line of the grid we can increase
the x-number by at most one. By Theorem 2 this implies that graphs in A∗

+ have bounded clique-width.
Therefore, they also have bounded rank-width. Since pivoting does not change rank-width [15], graphs
in A+ also have bounded rank, and hence, bounded clique-width. As a result, graphs in A have bounded
clique-width.

4 One more minimal class of bipartite graphs of unbounded clique-width

Let us denote by Fn the bipartite complement of a 1-regular graph with 2n vertices. In other words, Fn

is a bipartite graph in which every vertex has exactly one non-neighbour in the opposite part. Further,
let Fk,n be the graph with k × n vertices arranged in k rows, each of length n, in which every two
consecutive rows induce an Fn. Throughout the section we denote by vi,j the vertex of Fn,n in row i and
column j.
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Let F be the hereditary closure of the set {Fn,n : n ≥ 1}, i.e the set of graphs containing all graphs
of the form Fn,n and all their induced subgraphs. By definition, F is a hereditary class. In this section,
we prove that F is a minimal hereditary class of unbounded clique-width. We start by showing that
clique-width is unbounded in F .

Theorem 5. The clique-width of the graph Fn,n is at least bn/2c.

Proof. Let cwd(Fn,n) = t. Denote by τ a t-expression defining Fn,n and by tree(τ) the rooted tree
representing τ . The subtree of tree(τ) rooted at a node x will be denoted tree(x, τ). This subtree
corresponds to a subgraph of Fn,n, which will be denoted F (x). The label of a vertex v of the graph
Fn,n at the node x is defined as the label that v has immediately prior to applying the operation x.

Let a be a lowest ⊕-node in tree(τ) such that F (a) contains a full row of V . Denote the children
of a in tree(τ) by b and c. Let us color all vertices in F (b) blue and all vertices in F (c) red, and the
remaining vertices of Fn,n yellow. Note that by the choice of a the graph Fn,n contains a non-yellow row
(i.e. a row each vertex of which is non-yellow), but none of its rows is entirely red or blue. We denote a
non-yellow row of Fn,n by r. Without loss of generality we assume that r ≤ dn/2e and that the row r
contains at least n/2 red vertices, since otherwise we could consider the rows in reverse order and swap
colors red and blue.

Observe that edges of Fn,n between different colored vertices are not present in F (a). Therefore, if
a non-red vertex distinguishes two red vertices u and v, then u and v must have different labels at the
node a. We will use this fact to show that F (a) contains a set U of at least bn/2c vertices with pairwise
different labels at the node a. Such a set can be constructed by the following procedure.

1. Set i = r, U = ∅ and J = {j : vr,j is red}.

2. Set K = {j ∈ J : vi+1,j is non-red}.

3. If K 6= ∅, add the vertices {vi,k : k ∈ K} to U . Remove members of K from J .

4. If J = ∅, terminate the procedure.

5. Increase i by 1. If i = n, choose an arbitrary j ∈ J , put U = {vm,j : r ≤ m ≤ n − 1} and
terminate the procedure.

6. Go back to Step 2.

It is not difficult to see that this procedure must terminate. To complete the proof, it suffices to show
that whenever the procedure terminates, the size of U is at least bn/2c and the vertices in U have pairwise
different labels at the node a

First, suppose that the procedure terminates in Step 5. Then U is a subset of red vertices from at least
bn/2c consecutive rows of column j. Consider two vertices vl,j , vm,j ∈ U with l < m. According to
the above procedure, vm+1, j is red. Since Fn,n does not contain an entirely red row, there must exist
a non-red vertex w in row m + 1. According to the structure of Fn,n, vertex w is adjacent to vm,j and
non-adjacent to vl,j . We conclude that vl,j and vm,j have different labels. Since vl,j and vm,j have been
chosen arbitrarily, the vertices of U have pairwise different labels.

Now suppose that the procedure terminates in Step 4. By analyzing Steps 2 and 3, it is easy to deduce
that U is a subset of red vertices of size at least bn/2c. Suppose that vl,j and vm,k are two vertices in U
with l ≤ m. The procedure certainly guarantees that j 6= k and that both vl+1,j and vm+1,k are non-red.
If m ∈ {l, l + 2}, then it is clear that vl+1,j distinguishes vertices vl,j and vm,k, and therefore these
vertices have different labels. If m /∈ {l, l + 2}, we may consider vertex vm−1,k which must be red.
Since Fn,n does not contain an entirely red row, the vertex vm,k must have a non-red neighbor w in row
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m− 1. But w is not a neighbor of vl,j , trivially. We conclude that vl,j and vm,k have different labels, and
therefore, the vertices of U have pairwise different labels. The proof is complete.

By Theorem 5, the clique-width of graphs in F is unbounded. Now we turn to proving that F is
a minimal hereditary class of unbounded clique-width. First, with the help of Lemma 1 we derive the
following conclusion.

Proposition 1. The clique-width of Fk,n is at most 2k.

Proof. Denote by Vi the i-th column of Fk,n. Since each column induces an independent set, it is clear
that cwd(G[Vi]) ≤ 2 for every i. Trivially, µ(Vi) ≤ k, since |Vi| = k. Also, denoting Wi := V1∪ ...∪Vi,
it is not difficult to see that µ(Wi) ≤ k for every i, since the vertices of the same row in Wi are Wi-
similar. Now the conclusion follows from Lemma 1.

Now we use Lemma 1 and Proposition 1 to prove the following result.

Lemma 7. For any fixed k ≥ 1, the clique-width of Fk,k-free graphs in the class F is bounded by a
function of k.

Proof. Let k be a fixed number and G be a Fk,k-free graph in F . By definition of F , the graph G is an
induced subgraph of Fn,n for some n. For convenience, assume that n is a multiple of k, say n = tk.
The vertices of Fn,n that induce G will be called black and the remaining vertices of Fn,n will be called
white. Also, we will refer to the set of vertices of G in the same row of Fn,n as a layer of G.

For 1 ≤ i ≤ t, let us denote by Wi the subgraph of Fn,n induced by the k consecutive rows (i −
1)k+1, (i−1)k+2, . . . , ik. For simplicity, we will use the term ’row r of Wi’ when referring to the row
(i− 1)k+ r of Fn,n. We partition the vertices of G into subsets V1, V2, ..., Vt according to the following
procedure:

1. Set Vj = ∅ for 1 ≤ j ≤ t. Add every black vertex of W1 to V1 . Set i = 2.

2. For j = 1, . . . , n,

• if column j of Wi is entirely black, then add the first vertex of this column to Vi−1 and the
remaining vertices of the column to Vi.

• otherwise, add the (black) vertices of column j preceding the first white vertex to Vi−1 and
add the remaining black vertices of the column to Vi.

3. Increase i by 1. If i = t+ 1, terminate the procedure.

4. Go back to Step 2.

Let us show that the partition V1, V2, ..., Vt given by the procedure satisfies the assumptions of
Lemma 1 with l and m depending only on k.

The procedure clearly assures that each G[Vi] is an induced subgraph of Wi∪Wi+1. By Proposition 1,
we have cwd(Wi ∪Wi+1) = cwd(F2k,n) ≤ 4k. Since the clique-width of an induced subgraph cannot
exceed the clique-width of the parent graph, we conclude that cwd(G[Vj ]) ≤ 4k, which shows condition
(1) of Lemma 1.

To show condition (2) of Lemma 1, let us call a vertex vm,j of Vi boundary if either vm−1,j belongs
to Vi−1 or vm+1,j belongs to Vi+1 (or both). It is not difficult to see that a vertex of Vi is boundary if it
belongs either to the second row of an entirely black column of Wi or to the first row of an entirely black
column of Wi+1. Since the graph G is Fk,k-free, the number of columns of Wi which are entirely black
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is at most k − 1. Therefore, the boundary vertices of Vi introduce at most 2(k − 1) equivalence classes
in Vi.

Now consider two non-boundary vertices vm,j and vm,p in Vi from the same row. It is not difficult to
see that vm,j and vm,p have the same neighborhood outside Vi. Therefore, the non-boundary vertices of
the same row of Vi are Vi-similar, and hence the non-boundary vertices give rise to at most 2k equivalence
classes in Vi. Thus, µ(Vi) ≤ 4k − 2 for all i.

An identical argument shows that µ(V1 ∪ ... ∪ Vi) ≤ 3k − 1 ≤ 4k − 2 for all i. Therefore, by
Lemma 1, we conclude that cwd(G) ≤ c(k) := 16k2 − 8k, which completes the proof.

Theorem 6. F is a minimal hereditary class of graphs of unbounded clique-width.

Proof. Let X be a proper hereditary subclass of F and H ∈ F −X . Since H is an induced subgraph of
Fk,k for some k, each graph in X is Fk,k-free. Therefore, by Lemma 7, the clique-width of graphs in X
is bounded by a constant.

5 Conclusion

In the present paper, we identified two new minimal hereditary classes of graphs of unbounded clique-
width. We believe that there are many more such classes and that the problem of identifying all of them
can be done through the notion of well-quasi-orderability. In [7], it was conjectured that the clique-width
is bounded in every hereditary class of graphs which is well-quasi-ordered by the induced subgraph
relation. In other words, every class of graphs of unbounded clique-width contains an infinite antichain
with respect to this relation. We further conjecture that every minimal class of unbounded clique-width
contains a canonical antichain (i.e. an antichain which, in a sense, is unique). For the first two minimal
classes (bipartite permutation and unit interval graphs) this was verified in [13]. In a separate publication,
we show this for the class of bichain graphs.

In the problem of identifying infinite antichains with respect to the induced subgraph relation, the
main tool is the notion of so-called factor graphs: these are graphs that are given together with a linear
order of its vertices and any embedding of one graph of this type into another graph must follow the order.
A trivial example of factor graphs are chordless paths, and the canonical antichains of both bipartite
permutation and unit interval graphs are based on these graphs. In the case of bichain graphs (that do bot
contain large chordless paths) the factor graphs are induced by the diagonal vertices of the Z-grid.

The problem of identifying infinite antichains with respect to the induced subgraph relation can be
solve through a language-theoretic approach, because the induced subgraph relation on factor graphs is
equivalent to the factor containment relation on words. For languages, this problem was recently solved
in [1]. Once an infinite antichain with respect to the induced subgraph relation is identified, a minimal
class of unbounded clique-width can be created by means of simple building blocks (that include chain
graphs and other minimal classes in the factorial range of growth of the family of hereditary classes of
graphs) stringed along this antichain.
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