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Abstract. The colouring problem on AT-free graphs is one of long-
standing open problems in algorithmic graph theory, and until now, its
complexity has been not established even if the number of colours is
fixed and more than two. One of the reasons behind this is that AT-free
graphs are not necessarily perfect unlike many popular subclasses of AT-
free graphs such as interval graphs or co-comparability graphs. In this
paper, we resolve the smallest open case of this problem, and present the
first polynomial time algorithm for 3-colouring of AT-free graphs.

1 Introduction

The colouring problem is one of the most studied problems on graphs. It is also
one of the first problems known to be NP -hard [5]. In other words, it is unlikely
that there is a polynomial time algorithm for solving this problem. This is true
even in very special cases such as in planar graphs, line graphs, graphs of bounded
degree or if the number of colours k is fixed and at least three. On the other
hand, for k = 2 the problem is polynomially solvable, as is the general problem
for many structured classes of graphs such as interval graphs, chordal graphs,
comparability graphs, and more generally for perfect graphs [8]. In these cases,
the special structure of the classes in question allows for polynomial algorithms.
However, there are also classes with simple structure such as circular-arc graphs
and circle graphs for which the problem is still hard [6].

We study the colouring problem in the class of AT-free graphs, i.e., graphs
with no asteroidal triple (a triple of vertices such that between any two vertices
of the triple there is a path disjoint from the closed neighbourhood of the third).
This class is a generalization of interval and co-comparability graphs as well as
some non-perfect graphs such as the complements of triangle-free graphs. Unlike
other standard optimization problems such as the independent set or the clique
problem whose complexity on AT-free graphs is known (the former being solvable
in polynomial time, the latter being NP -hard [2]), the complexity of colouring is
not known on AT-free graphs even for a fixed number of three or more colours.

As a first step towards resolving this, we propose in this paper the first
polynomial time algorithm for the 3-colouring problem on AT-free graphs. In
particular, we prove the following theorem.

Theorem 1. There is an O(n4) time algorithm to decide, given an AT-free
graph G, if G is 3-colourable and to construct a 3-colouring of G if it exists.
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Fig. 1. The triangular strip of order k.

We show this in three stages:

(1) we reduce the problem to AT-free graphs with no induced diamonds,
(2) we show how to decompose every AT-free graph with no induced diamond

and no K4 into triangular strips (see Figure 1) using stable cutsets, and
(3) we prove that we are allowed to contract minimal stable separators without

changing the answer to the problem.

This reduces the problem to graphs whose blocks are triangular strips which
are all clearly 3-colourable. If at any stage we encounter K4, a clique on four
vertices, we declare the graph not 3-colourable. A sketch of an algorithm resulting
from this is presented below as Algorithm 1. (Note that G/S denotes the graph
we obtain from G by contracting the set of vertices S into a single vertex.)

Input: An AT-free graph G.
Output: A 3-colouring of G or “G is not 3-colourable”

if G contains K4 then1

return “G is not 3-colourable”2

/* Now G contains no K4 */

if G contains adjacent vertices u, v with |N(u) ∩ N(v)| ≥ 2 then3

Recursively find a 3-colouring of G/N(u)∩N(v).4

/* Now G contains no induced diamond and no K4 */

if G contains a cutpoint or is disconnected then5

Recursively colour all blocks of G.6

/* Now G is 2-connected and contains no induced diamond and no K4 */

if G contains a minimal stable separator S with |S| ≥ 2 then7

Recursively find a 3-colouring of G/S.8

/* Now G is a triangular strip */

Construct a 3-colouring of G.9

Algorithm 1: Find a 3-colouring of an AT-free graph

Note that, in the above algorithm, once Line 5 is reached, the graph is guar-
anteed to be 3-colourable. This follows from the fact that AT-free graphs with
no induced diamond and no K4 are 3-colourable (we prove this as Theorem 3).



Hence, to obtain a decision algorithm, one can modify the procedure in Algo-
rithm 1 to announce that “G is 3-colourable” once Line 5 is reached.

We remark that, for instance, in graphs with no induced path on five [12]
or six [11] vertices the problem of 3-colouring is also known to be polynomially
solvable even though to compute the chromatic number is NP -hard in both
classes [10]. (In fact, in the former case, the k-colouring problem for every fixed
k is polynomially solvable [9].) The main reason behind this is that in these cases
we are able to reduce the problem of 3-colouring to an instance of 2-satisfiability
which is solvable in polynomial time. Our approach for AT-free graphs differs
from this in that it instead focuses on efficient decomposition of AT-free graphs
to graphs for which 3-colouring can be decided in polynomial time.

In the following sections, we examine the main ingredients to the proof of
correctness of our algorithm which are summarized in the following two theorems.

Theorem 2. Let G be an AT-free graph with at least three vertices and no
induced diamond or K4. Then either

(i) G is a triangular strip, or
(ii) G contains a stable cutset.

Theorem 3. Every AT-free graph G with no induced diamond and no K4 is
3-colourable. Moreover, if G contains a minimal stable separator S, then there
is a 3-colouring of G in which all vertices of S have the same colour.

In the final sections, we provide implementation details needed to guarantee
the running time O(n4), and then conclude with a discussion of further results
on colouring of AT-free graph.

2 Notation

In this paper, a graph is always simple, undirected, and loopless.
For a vertex v of a graph G, we denote by N(v) the set of vertices adjacent

to v in G, and write N [v] = N(v) ∪ {v}. For X ⊆ V (G), we write G[X ] for the
subgraph of G induced by X , and write G − X for the subgraph of G induced
by V (G) \ X . A set X ⊆ V (G) is stable, if G[X ] contains no edges, and X is
a clique, if G[X ] has all possible edges. As usual, Kn denotes the clique on n
vertices, and diamond is the (unique) graph on four vertices with five edges.

We say that a path P of a graph G is missed by a vertex x if no vertex of P
is adjacent to x. A triple of vertices x, y, z of a graph G is asteroidal if between
any two vertices of the triple there exists a path missed by the third vertex.

We write G/S for the graph we obtain from G by identifying (contracting)
all vertices in S into a single vertex. That is,

V (G/S) = V (G) \ S ∪ {s} where s 6∈ V (G)

E(G/S) =
{

xy ∈ E(G)
∣

∣

∣
x, y 6∈ S

}

∪
{

sy
∣

∣

∣
xy ∈ E(G) ∧ x ∈ S ∧ y 6∈ S

}

A set S ⊆ V (G) disconnects vertices a, b in G if a and b are in different
connected components of G− S. We say that S is a cutset of G if it disconnects



some vertices a, b. We say that S is a minimal separator of G if there exist
vertices a and b such that S disconnects a and b, but no proper subset of S
disconnects them. (Note that a minimal separator is not necessarily an inclusion-
wise minimal cutset; for example, consider a 4-cycle with a pendant vertex.)

For a complete terminology, see [15].

3 Removing diamonds

In this section, we explain how to reduce the problem to the case of AT-free
graphs with no induced diamonds. We show that if we have a diamond in G, i.e.,
we have adjacent vertices u, v such that their common neighbourhood contains
two non-adjacent vertices, then we can contract any maximal set S of pair-wise
non-adjacent common neighbours of u, v and the resulting graph remains AT-
free. It also is 3-colourable if and only if G is, since in any 3-colouring of G all
vertices of S must have the same colour. Thus we show the following theorem.

Theorem 4. If u, v are adjacent vertices of an AT-free graph G and S is a
maximal stable set in N(u) ∩ N(v), then G/S is AT-free. Moverover, G is 3-
colourable if and only if G/S is.

To prove this, we use a more general tool that allows contracting specific
sets in G without creating asteroidal triples. We say that a set S ⊆ V (G) is
externally connected in G, if for each x ∈ V (G) with N [x] ∩ S = ∅, the set S is
contained in a (single) connected component of G − N [x].

Lemma 1. Let G be an AT-free graph and S ⊆ V (G) be an externally connected
set in G. Then G/S is AT-free.

Proof. Let s denote the vertex of G/S to which we contracted the vertices of S,
and suppose that G/S contains an asteroidal triple {x, y, z}. Let P be a path in
G/S from y to z missed by x. If s is not on P , then P is also a path in G, and if
x = s, then every vertex of S misses P in G. So, suppose that s belongs to P and
is not one of the endpoints of P . Let u, v be the two neighbours of s on P . By
the construction of G/S, there exist vertices a, b ∈ S, such that ua, vb ∈ E(G).
Since xs 6∈ E, we have N [x] ∩ S = ∅, and since S is externally connected in
G, we conclude that a and b, and hence, u and v are in the same connected
component of G−N [x]. Consequently, there is a path in G from y and z missed
by x. Similarly, if s is one of the endpoints of P , say y = s, then we conclude
that there exists a path in G missed by x between z and each vertex of S.

This proves that if s is not one of x, y, z, then x, y, z is an asteroidal triple of
G, and otherwise, if say x = s, then a, y, z is an asteroidal triple of G for every
a ∈ S, a contradiction. �

From this lemma, we immediately obtain a proof of Theorem 4 as well as
two other corollaries that we make use of later.

Lemma 2. If G is AT-free and G[S] is connected, then G/S is AT-free.



Proof. By Lemma 1, it suffices to show that S is externally connected. This is
obvious, since S induces a connected subgraph in G− N [x] for N [x] ∩ S = ∅. �

Lemma 3. If G is AT-free and S is a minimal separator, then G/S is AT-free.

Proof. Again, we show that S is externally connected. Consider x ∈ V (G)
with N [x] ∩ S = ∅, and let K denote the connected component of G − S that
contains x. Since S is a minimal separator, there exists a connected component
K ′ of G− S different from K such that each vertex of S has a neighbour in K ′.
Therefore, G[K ′ ∪ S] is connected, and so, S belongs to a connected component
of G − N [x], since clearly N [x] ∩ (K ′ ∪ S) = ∅. This proves that S is externally
connected, and so the claim follows from Lemma 1. �

Proof of Theorem 4. For the first part of the claim, it again suffices to prove
that S is externally connected. Consider x ∈ V (G) with N [x]∩S = ∅. Therefore
x is not adjacent to any vertex of S implying that S ∪ {x} is a stable set. By
the maximality of S, x is non-adjacent to one of u, v. By symmetry, suppose
that xu 6∈ E(G). Then S ∪ {u} is in a connected component of G − N [x] since
G[S ∪ {u}] is connected. So, we conclude that S is indeed externally connected.

For the second part of the claim, let s be the vertex of G/S to which we
contracted S. If we have a 3-colouring of G/S , then we can extend this colouring
of G by colouring all vertices of S with the colour of s. Conversely, if we have a
3-colouring of G, then u, v have different colours in this colouring, and hence, all
vertices of S must have the same colour. So, we use this colour for s and colour
all other vertices of G/S as in G. This clearly yields a 3-colouring of G/S . �

4 Structural decomposition

In this section, we prove Theorem 2 asserting that every AT-free graph with no
induced diamond and no K4 decomposes into triangular strips via stable cutsets.

The triangular strip of order k is the graph formed by taking three disjoint
paths P 1 = v1

1 , v
1
2 , . . . , v1

k, P 2 = v2
1 , v2

2 , . . . , v
2
k, P 3 = v3

1 , v
3
2 , . . . , v3

k and adding
a triangle on v1

i , v2
i , v3

i for each i = 1 . . . k. In other words, the triangular strip
of order k is the cartesian product of an induced path on k vertices and a
triangle. (See Figure 1 for an illustration.) We say that the triangles v1

1 , v
2
1 , v3

1

and v1
k, v2

k, v3
k of the triangular strip of order k are the end-triangles.

We say that G is a triangular strip if G is isomorphic to the triangular strip
of order k for some k. Clearly, every triangular strip is AT-free and contains no
induced diamond or K4. Note that triangular strips have no stable cutsets; in
other words, the two conditions of Theorem 2 are mutually exclusive.

Let G be an AT-free graph with |V (G)| ≥ 3, no induced diamond, and no K4.
First, we observe that it suffices to prove Theorem 2 for 2-connected graphs G,
since any cutpoint (and also the empty set) forms a stable cutset of G. Since G
contains no diamond and no K4, no two triangles of G share an edge. We show
that, actually, no two triangles share a vertex provided G is 2-connected.



Lemma 4. Let G be a 2-connected AT-free graph with no induced diamond and
no K4. Then every vertex of G is in at most one triangle.

Proof. Let x be a vertex that belongs to two different triangles, namely, a
triangle x, a, b and a triangle x, u, v. Clearly, {u, v} ∩ {a, b} = ∅, since otherwise
x, u, v, a, b induces a diamond or a K4 in G. For the same reason, there is no
edge between vertices u, v and a, b.

Since G is 2-connected, G−x is connected, and hence, there is a path between
vertices u, v and a, b in G − x. Let P be a shortest such path. Without loss of
generality, P is a path from u to a. Let y be the second vertex on P (after u).
Clearly, yv 6∈ E(G) and xy 6∈ E(G), since otherwise y, v, u, x induces a diamond
or a K4. Also, y is not adjacent to one of a, b, since otherwise y, a, b, x induces
a diamond. In particular, yb 6∈ E(G), since otherwise ya 6∈ E(G) and u, y, b is a
shorter path from u, v to a, b which contradicts the minimality of P .

We now show that {y, v, b} is an asteroidal triple of G. Indeed, v, x, b is a
path from v to b missed by y, and v, u, y is a path from v to y missed by b.
Finally, P ′ = P \ {u} ∪ {b} is a path from y to b missed by v, since vy 6∈ E(G)
and v has no neighbour on P \ {u, y} by the minimality of P . �

By the above lemma, every vertex of G is in at most one triangle. If some
vertex v is in no triangle, then N(v) is a stable cutset of G unless V (G) = N [v]
in which case v is a cutpoint because G is assumed to have at least three vertices.

This implies that we may assume that every vertex of G is in exactly one
triangle. In other words, G contains a triangular strip (of order 1). We show that
by taking a maximal such strip, we either get the whole graph G or find a stable
cutset in G, thus proving Theorem 2. To simplify the proof of this, we need the
following technical lemma. (The proof is omitted; see the appendix)

Lemma 5. Let G be an AT-free graph with no induced diamond and no K4, and
let H be a (not necessarily induced) subgraph of G isomorphic to a triangular
strip. Then (i) H is induced in G, and (ii) no vertex of H has a neighbour in
G − V (H) except for the vertices of the end-triangles of H.

Now, we are finally ready to prove Theorem 2.

Proof of Theorem 2. As remarked in the discussion above, we may assume
that G is 2-connected, and contains a triangle (triangular strip).

Let H be the largest triangular strip induced in G. If V (H) = V (G), then
G is a triangular strip, and we are done. Otherwise, there exists a vertex v ∈
V (G)\V (H) adjacent to a vertex of H . By Lemma 5, v is adjacent to a vertex c
of an end-triangle of H ; let a, b be the other two vertices of this triangle. Clearly,
va, vb 6∈ E(G) since otherwise v, a, b, c induces a diamond or K4 in G.

First, we note that N(b) \ {a} and N(a) \ {b} are stable sets, since otherwise
a or b is in two triangles which is not possible by Lemma 4. Also, the sets
N(a)∩N(v) and N(b)∩N(v) are both stable sets of G, because otherwise we have
an induced diamond in G. Moreover, we prove that there are no edges between
the two sets. Suppose otherwise, and let u ∈ N(a) ∩N(v) and w ∈ N(b)∩N(v)



be adjacent. We observe that if u ∈ V (H), then u belongs to a triangle in
H and the triangle u, v, w. But these triangles are different since v 6∈ V (H)
contradicting Lemma 4. Hence, u 6∈ V (H), and by the same token, w 6∈ V (H). So,
G[V (H) ∪ {u, v, w}] contains a spanning triangular strip which is, by Lemma 5,
induced in G. This, however, contradicts the maximality of H .

Now, suppose that there are no edges between N(b) \ {a} and N(a) ∩N(v).
In other words, S = (N(b) \ {a}) ∪ (N(a) ∩ N(v)) is a stable set. We show that
S is a stable cutset of G separating a from v. Suppose otherwise, and let P be a
shortest path in G − S from a to v. Let z be the second vertex on P (after a).
Since N(a)∩N(v) ⊆ S, we conclude zv 6∈ E(G). Also, zc 6∈ E(G), since otherwise
a, b, c, z induces a diamond or K4 in G. By the same token, zb 6∈ E(G). We show
that {b, v, z} is an asteroidal triple in G which will yield a contradiction. Indeed,
the path v, c, b is missed by z, the path z, a, b is missed by v, and P \ {a} is a
path from z to v missed by b, since all neighbours of b except for a are in S.

Similarly, if there are no edges between N(a) \ {b} and N(b) ∩ N(v), we
also conclude that G contains a stable cutset. So, assumming otherwise, we have
x ∈ N(a)∩N(v) adjacent to y ∈ N(b)\{a}, and also x′ ∈ N(b)∩N(v) adjacent to
y′ ∈ N(a)\{b}. We show that this is impossible. Clearly, y, y′ 6∈ N(v), since there
are no edges between N(a)∩N(v) and N(b)∩N(v). Also, y is not adjacent to any
of a, c, x′, since otherwise b is in two triangles which is impossible by Lemma 4.
By the same token, y′ is not adjacent to any of b, c, x. We show that G contains
an asteroidal triple. Suppose that yy′ 6∈ E(G). Then {y, y′, v} is an asteroidal
triple of G. Indeed, the path y, x, v is missed by y′, the path y′, x′, v is missed by
y, and the path y, b, a, y′ is missed by v. So, yy′ ∈ E(G) in which case {x, c, x′}
is an asteroidal triple of G. Indeed, the path x, a, c is missed by x′, the path
c, b, x′ is missed by x, and the path x, y, y′, x′ is missed by c.

That concludes the proof. �

5 Proof of Theorem 3

The proof is by induction on |V (G)|. Let G be an AT-free graph with no induced
diamond and no K4. If G has at most 2 vertices, the claim is trivially satisfied.

Therefore, we may assume |V (G)| ≥ 3. If G has a stable cutset, then by
(possibly) removing some of its vertices, we can find a minimal stable separator
in G. So, if G has no minimal stable separator, then it must be, by Theorem 2,
a triangular strip with vertices vi

j for i = 1, 2, 3 and j = 1 . . . k for some k. We

obtain a 3-colouring of G by assigning each vi
j the colour (i + j) mod 3 + 1.

So, we may assume that G contains a minimal stable separator S. If S is
empty, then G is disconnected and we obtain a 3-colouring of G by independently
3-colouring its connected components by induction. If S has one element, then
G has a cutpoint and we obtain a 3-colouring of G by 3-colouring its blocks by
induction, and permuting the colours in blocks so that they match on cutpoints.
In both cases, all vertices in S have the same colour. So, we may assume |S| ≥ 2.

To prove the claim, it now suffices to show that for every connected compo-
nent K of G − S, there exists a 3-colouring of G[K ∪ S] in which all vertices of
S have the same colour.



Let K be a (fixed) connected component of G − S. Let S′ denote the set of
vertices of S with at least one neighbour in K. If S′ 6= S, then S′ is a minimal
stable separator in G′ = G− (S \S′). By induction, there exists a 3-colouring of
G′ in which all vertices of S′ have the same colour. By restricting this colouring
to K ∪ S and colouring the vertices of S \ S′ with the common colour of the
vertices of S′, we obtain the required 3-colouring. (Note that the vertices of S\S′

are isolated in G[K ∪ S].)

Hence, we may assume that every vertex of S has a neighbour in K. Further,
since S is a minimal separator, there exists a connected component K ′ of G−S
different from K such that each vertex of S also has a neighbour in K ′. Let G′

denote the graph G[K ∪ K ′ ∪ S]/K′ , and let x be the vertex of G′ to which we
contracted K ′. By Lemma 2, G′ is AT-free. Moreover, G′ contains no induced
diamond or K4, since any such subgraph is either in G, or contains x, but x
belongs to no triangle of G′. Also, S is a minimal separator in G′. Hence, if G′

has fewer vertices than G, then, by induction, there exists a 3-colouring of G′ in
which all vertices of S have the same colour. This colouring when restricted to
the vertices K ∪ S yields the required 3-colouring.

It follows that we may assume that G − S has exactly two connected com-
ponents, one of which is K, the other consists of a single vertex x, and every
vertex of S is adjacent to x and has a neighbour in K.

Now, let S∗ be a smallest subset of S such that
⋃

u∈S∗ N(u) =
⋃

u∈S N(u).
Suppose that S∗ contains three distinct vertices u, v, w. By the minimality of
S∗, there exist vertices u′, v′, w′ such that u′ ∈ N(u) \ (N(v) ∪ N(w)), v′ ∈
N(v) \ (N(u) ∪ N(w)) and w′ ∈ N(w) \ (N(u) ∪ N(v)). Clearly, u′, v′, w′ ∈ K
since S is a stable set and u, v, w are adjacent to x. Suppose that u′v′ 6∈ E(G).
Then {u′, v′, x} is an asteroidal triple of G. Indeed, the path u′, u, x is missed by
v′, the path v′, v, x is missed by u′, and x misses any path in K between u′ and v′.
Hence, we must conclude u′v′ ∈ E(G), and by the same token, u′w′, v′w′ ∈ E(G).
However, then {u, v, w} is an asteroidal triple in G. Indeed, the path u, u′, v′, v
is missed by w, the path u, u′, w′, w is missed by v, and the path v, v′, w′, w is
missed by u. We therefore conclude |S∗| ≤ 2.

If S∗ 6= S, then we consider the graph G′ = G − (S \ S∗). Clearly, S∗ is a
minimal separator in G′, and therefore, there exists, by induction, a 3-colouring
of G′ in which all vertices of S∗ have the same colour. We extend this colouring
to G by colouring all vertices of S \ S∗ with the common colour of the vertices
of S∗. By the definition of S∗, this yields the required 3-colouring.

Hence, we may assume that S consists of exactly two vertices u and v. We
let A = N(u) \ N(v), B = N(u) ∩ N(v) \ {x}, and C = N(v) \ N(u). By the
minimality of S∗, we have A 6= ∅ and C 6= ∅. Moreover, each vertex a ∈ A is
adjacent to every vertex c ∈ C, since otherwise {a, c, x} is an asteroidal triple
of G. Indeed, the path a, u, x is missed by c, the path c, v, x is missed by a, and
any path between a and c in K is missed by x. Furthermore, A is a stable set
in G, since any adjacent a, a′ ∈ A yield an induced diamond u, a, a′, c for any
vertex c ∈ C. By the same token, C is a stable set. Finally, B is a stable set,
since any adjacent b, b′ ∈ B yield an induced diamond b, b′, u, v in G.



Suppose that there is b ∈ B adjacent to some a ∈ A, and let c ∈ C. We show
that N(b) \ {u} ⊆ N(c). Suppose otherwise and let w ∈ N(b) \ {u} be such that
wc 6∈ E(G). Clearly, bc 6∈ E(G) since otherwise u, a, b, c induces a diamond in G.
Also, wu, wa 6∈ E(G) since otherwise w, a, b, u induces a diamond or K4 in G.
Finally, wx 6∈ E(G), since w is not one of u, v and x is only adjacent to u, v.
It follows that {w, x, c} is an asteroidal triple in G. Indeed, the path w, b, a, c is
missed by x, the path c, a, u, x is missed by w, and the path x, u, b, w is missed
by c. This proves that N(b) \ {u} ⊆ N(c). Now, by induction, there exists a
3-colouring of G − b in which u and v have the same colour. We extend this
colouring to G by assigning b the colour of c. Clearly, b and u have different
colours in this colouring, since otherwise c, u, v have the same colour, impossible
since cv is an edge in G−b. Also, b has colour different from its other neighbours,
since N(b) \ {u} ⊆ N(c). So, this gives the required 3-colouring.

It follows that we may assume that there are no edges between A and B. In
other words, A ∪ B is a stable set. It is also a minimal separator of G[K ∪ S]
separating u from v, since u, a, c, v and u, b, v are paths from u to v for each
a ∈ A, b ∈ B, and c ∈ C. So, by induction, there is a 3-colouring of G[K ∪ S] in
which all vertices of A∪B have the same colour. If B 6= ∅, then by recolouring u
with the colour of v, we obtain the required 3-colouring. So, we conclude B = ∅.

Now, suppose that there is a ∈ A with N(a) ⊆ C∪{u}. If |A| ≥ 2, then u, v is
a minimal separator in G−a, and hence, there exists, by induction, a 3-colouring
of G − a in which u, v have the same colour. Recall that N(a′) ⊇ C ∪ {u} for
all a′ ∈ A. So, by assigning a the colour of any vertex in A \ {a}, we obtain the
required 3-colouring. Hence, we may assume A = {a}, and we observe that C
is a minimal separator of G − u separating a from v. By induction, there is a
3-colouring of G − u in which all vertices of C have the same colour. To obtain
the required 3-colouring, we colour u with the colour of v and recolour a with the
colour different from the colour of u and the common colour of the vertices of C.

Hence, we may assume that there exists w ∈ N(a)\(C∪{u}) for some a ∈ A,
and by symmetry, we also have z ∈ N(c) \ (A ∪ {v}) for some c ∈ C. We show
that G contains an asteroidal triple which will lead to a contradiction. Clearly,
w and z are both different from and non-adjacent to all of u, v, x. If wc ∈ E(G)
or wz ∈ E(G), then {w, u, v} is an asteroidal triple. Indeed, the path w, a, u is
missed by v, the path w, c, v or w, z, c, v is missed by u, and the path u, x, v
is missed by w. So, wc, wz 6∈ E(G), and by symmetry, za 6∈ E(G). But now
{z, w, x} is an asteroidal triple. Indeed, the path w, a, c, z is missed by x, the
path w, a, u, x is missed by z, and the path z, c, v, x is missed by w. �

6 The algorithm

In this section, we finally prove Theorem 1 by showing that Algorithm 1 is correct
and can be implemented to run in time O(n4).

The correctness follows easily from Theorems 2, 3, 4 and Lemma 3. We
therefore focus on the details of O(n4) implementation.

First, we note that the complexity is easily seen to be polynomial, since
all the tests in Algorithm 1 are polynomial including the test in Line 7 which



follows from [1]. Also, the algorithm makes at most n recursive calls, since each
call reduces the graph by at least one vertex. So, to get the running time O(n4),
it suffices to explain how to implement each test in time O(n3).

The test in Line 3 has a straightforward implementation of complexity O(n3).
Similarly, the test in Line 5 can be clearly implemented in time O(n2) by the
standard algorithm of [13]. Also, we can recognize and colour triangular strips
in Line 9 in time O(n2) by iteratively removing triangles on vertices of degree 3.

For the test in Line 1, we do the following. If we execute Line 1 for the first
time, we test if G contains a K4 by trying all possible 4-sets of vertices in time
O(n4). If we reach Line 1 by recursion to G/S and s is the vertex of G/S to which
we contracted S, then we only test if the neighbourhood of s in G/S contains
a triangle. This requires only O(n3) time, and it is enough to verify that G/S

contains no K4, since before contracting S, the graph G was assumed to contain
no K4 (because we have reached at least Line 3 before the recursive call).

Therefore, it remains to show that we can implement the test in Line 7
in time O(n3). This requires a little more work. As remarked earlier, if the
neighbourhood of some vertex x is a stable set, then either N(x) is a stable
cutset of G, or x is a cutpoint of G, or |V (G)| ≤ 2. It turns out that a partial
converse of this is also true as shown in the following lemma.

Lemma 6. If S is a minimal stable separator of an AT-free graph G, then there
exists a vertex x ∈ V (G) with N(x) ⊇ S.

Proof. Let S be a counterexample to the claim and let S∗ be a smallest subset
of S for which there is no vertex x with N(x) ⊇ S∗. Clearly, |S∗| ≥ 2.

First, suppose that |S∗| = 2. Hence, S∗ = {x, y} for some vertices x, y. Since
S is a minimal separator, there are connected components K, K ′ of G − S such
that each vertex of S has a neighbour in both K and K ′. In particular, we have
u ∈ N(x) ∩ K and v ∈ N(x) ∩ K ′. Clearly, uy, vy 6∈ E(G) by the minimality
of S∗. This implies that {u, v, y} is an asteroidal triple of G. Indeed, the path
u, x, v is missed by y. Also, since S is a minimal separator, we have a path P in
G[K ∪ {y}] from y to u, and a path P ′ in G[K ′ ∪ {y}] from y to v. Clearly, P is
missed by v and P ′ is missed by u.

We therefore conclude |S∗| ≥ 3, and let x, y, z be any three vertices of S∗.
By the minimality of S∗, there exist vertices a, b, c such that N(a) ⊇ S∗ \ {x},
N(b) ⊇ S∗ \ {y}, and N(c) ⊇ S∗ \ {z}, and also ax, by, cz 6∈ E(G). Therefore,
{x, y, z} is an asteroidal triple of G. Indeed, the path x, c, y is missed by z, the
path y, a, z is missed by x, and the path z, b, x is missed by y.

That concludes the proof. �

We further need the following observation which is easy to check.

Observation 7. If S is a stable cutset of a connected graph G, and S′ ⊇ S is
a stable set, then S′ is also a stable cutset of G. �

Now, if G contains a minimal stable separator S, then all we have to do, by
Lemma 6, is to find a vertex x with N(x) ⊇ S. Since G is assumed to have no



induced diamond and no K4 in Line 7, N(x) contains, by Lemma 4, at most two
maximal stable sets one of which contains S. But then this set is also a stable
cutset of G by Observation 7. So, to find a minimal stable separator in G, we
test for each vertex x if N(x) or N(x)\{u} or N(x)\{v} is a stable cutset where
uv (if exists) is the unique edge in G[N(x)]. This can be accomplished in time
O(n2) by a standard graph search, so altogether O(n3) for all x. If a stable cutset
S is found, we reduce it to a minimal stable separator by iteratively removing
vertices of S and testing if the resulting set is a still a cutset. Again, O(n3) time,
since it suffices to test each vertex only once.

7 Concluding remarks

In this paper, we have shown how to find in polynomial time a 3-colouring of
a given AT-free graph if one exists. To obtain this result, we relied to a large
extent on a nice structural decomposition of AT-free graphs without diamonds.
As such, it is likely that this approach does not naturally extend to the k-
colouring problem on AT-free graphs for larger k ≥ 4.

On the other hand, there are special cases of AT-free graphs in which we
can compute the chromatic number in polynomial time, for instance, in interval,
co-comparability, and more generally in perfect AT-free graphs [8]. This is also
true for some non-perfect AT-free graphs. For instance, if G is the complement
of a triangle-free graph, then any colour class in a colouring of G has at most two
vertices. Therefore, to find the chromatic number of G we need to pack as many
stable sets of size two into G as possible. This is solvable in polynomial time,
since it is precisely the problem of maximum matching on the complement of G.
What about AT-free graphs that are not complements of triangle-free graphs ?
It turns out that every connected AT-free graph decomposes into complements
of triangle-free graphs by means of star cutsets, i.e., cutsets having a vertex
adjacent to all other vertices of the cutset. This can be seen as follows: if a
connected AT-free graph contains a stable set of size three, then the closed
neighbourhood of at least one of the three vertices disconnects the other two,
that is, the closed neighbourhood of one of the three vertices is a star cutset.

Theorem 5. If G is a connected AT-free graph, then at least one of the following
is true:

(i) G is the complement of a triangle-free graph.
(ii) G contains a star cutset.

Note the similarity with Theorem 2. This tells us that to find a polynomial
time algorithm for colouring AT-free graphs, it suffices to find a way to combine
colourings of AT-free graphs through star cutsets. Recall that this is possible in
perfect graphs as shown in [3].

Finally, we remark that there exists a similar decomposition of another sub-
class of AT-free graphs, namely AT-free graphs with no induced 4-cycle. The
following theorem is from [4]. A thick 5-cycle is any graph we obtain by substi-
tuting cliques (of arbitrary size) for the vertices of a 5-cycle, and a thick 5-wheel
is obtained by substituting cliques the for vertices of a 5-wheel.



Theorem 6. [4] If G is a connected AT-free graph with no induced 4-cycle, then
at least one of the following is true:

(i) G is an interval graph.
(ii) G is a thick 5-cycle or a thick 5-wheel.
(iii) G contains a clique cutset.

Observe that the complement of every thick 5-cycle (thick 5-wheel) is triangle-
free. Also, recall that we can optimally colour interval graphs in polynomial
time [7] and it is possible to find all clique cutsets also in polynomial time by
the algorithm of [14]. So, since to get a colouring of a graph with a clique cutset,
it suffices to colour the pieces individually and then permute the colours on the
pieces so that they match on the cutset, it follows that there is a polynomial
time algorithm to optimally colour AT-free graphs with no induced 4-cycles.
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A Omitted proofs (for the referees)

Proof of Lemma 5. Let vi
j for i = 1, 2, 3 and j = 1 . . . k for some k be the

vertices of H . Suppose that H is not induced in G, and let vi
jv

i′

j′ be an edge not
in H such that j < j′ and j′ − j is smallest possible. By symmetry, we may
assume that i′ = 1, and i ∈ {1, 2}. Clearly, j 6= j′.

First, we observe that vi
j is not adjacent to v2

j′ and v3
j′ , since otherwise

vi
j , v

1
j′ , v

2
j′ , v

3
j′ induces a diamond or K4 in G. This also implies j′ − j ≥ 2.

By the choice of j, j′ and the fact that j′ − j ≥ 2, we conclude that vi
j is not

adjacent to v3
j+1, v

3
j+2, . . . , v

3
j′ , and v3

j+1 is not adjacent to v1
j′ . By the same

token, v2
j′ is not adjacent to v1

j+1 and v3
j+1.

We show that {vi
j, v

3
j+1, v

2
j′} is an asteroidal triple in G. Indeed, the path

vi
j , v

1
j′ , v

2
j′ is missed by v3

j+1, and the path v3
j+1, v

3
j+2, . . . , v

3
j′ , v

2
j′ is missed by

vi
j . Finally, v2

j′ is non-adjacent to at least one of v1
j , v3

j otherwise v1
j , v2

j , v3
j , v2

j′

induces a diamond or K4 in G. If v3
j v2

j′ 6∈ E(G), then the path vi
j , v

3
j , v3

j+1 is

missed by v2
j′ . Otherwise, v1

j v2
j′ 6∈ E(G) in which case vi

j , v
1
j , v1

j+1, v
3
j+1 is a path

(or walk) missed by v2
j′ . That proves (i).

For (ii), let x 6∈ V (H) be a vertex adjacent to vi
j for some i ∈ {1, 2, 3}

and j ∈ {2 . . . k − 1}. By symmetry, we may assume i = 1. Clearly, x is not
adjacent to v2

j , v3
j , otherwise x, v1

j , v2
j , v3

j induces a diamond or K4 in G. First,

suppose that x is also adjacent to v1
j+1. Then x is not adjacent to v2

j+1, v
3
j+1, since

otherwise x, v1
j+1, v

2
j+1, v

3
j+1 induces a diamond or a K4. But now {x, v3

j , v2
j+1}

is an asteroidal triple in G. Indeed, the path x, v1
j , v3

j is missed by v2
j+1, the path

v3
j , v3

j+1, v
2
j+1 is missed by x, and the path v2

j+1, v
1
j+1, x is missed by v3

j . So, we

may assume that xv1
j+1 6∈ E(G), and by symmetry, also xv1

j−1 6∈ E(G).

Suppose that x is not adjacent to v2
j+1, v

3
j−1. Then {x, v2

j+1, v
3
j−1} is an as-

teroidal triple in G. Indeed, the path x, v1
j , v2

j , v2
j+1 is missed by v3

j−1, the path

v2
j+1, v

2
j , v3

j , v3
j−1 is missed by x, and the path v3

j−1, v
3
j , v1

j , x is missed by v2
j+1. So

x has at least one neighbour among v2
j+1, v

3
j−1. By the same token, x has at least

one neighbour among v3
j+1, v

2
j−1. Clearly, x cannot be adjacent to both v2

j+1, v
3
j+1

or to both v2
j−1, v

3
j−1, since we get an induced diamond in G on x, v1

j+1, v
2
j+1, v

3
j+1,

or on x, v1
j−1, v

2
j−1, v

3
j−1. So, by symmetry, we may assume that x is adjacent to

v2
j−1, v

2
j+1 and not adjacent to v3

j−1, v
3
j+1. But then {x, v3

j−1, v
3
j+1} is an aster-

oidal triple in G. Indeed, the path x, v2
j+1, v

3
j+1 is missed by v3

j−1, the path

v3
j+1, v

3
j , v3

j−1 is missed by x, and the path v3
j−1, v

2
j−1, x is missed by v3

j+1.
That concludes the proof of (ii). �

Proof of Observation 7. Suppose that G − S′ is connected. Since G − S is
disconnected, let K, K ′ be two different connected components of G − S. Let
u ∈ K and v ∈ K ′, and let P be a shortest path from u to v in G. By the choice
of u, v, we conclude that P contain at least one vertex of S. Let x be the first
vertex of S on P and let y be the last vertex of S on P (possibly x = y). Let a
be the vertex before x on P and let b be the vertex after y on P . By the choice



of x, y, we conclude that a ∈ K and b ∈ K ′. Also, since P is a path, we have
ax, yb ∈ E(G). Therefore, we must conclude a, b 6∈ S′, since S′ is a stable set
containing S and x, y ∈ S. Now, recall that we assume that G−S′ is connected.
Therefore, there exists a path P ′ in G − S′ from a to b, and clearly, P ′ is also
a path in G − S since S ⊆ S′. But this is a contradiction, since P ′ contains no
vertex of S yet a, b are in different connected components of G − S. �


