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Let A={1,2,3,4,5} and B={w,x,y,z} and
f:A— Bbef={(1x),(2x),(3,y),(4y), (5 2)}.

Let A, = {1}, A, = {1,2}, A;s = {2,3}, A, = {2,4,5}.
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Theorem 2

Letf: A— B and A;, A, C A, then

a) f(ALUA) = (A1) U f(Ay)

b) f(A1NAy) C f(A)NF(A)

c) f(AL1NAy) = f(A1) N f(Ay) if f is one-to-one
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Definition 3

For f: A— Band C C A, let f|¢c: C — B be the function defined
as f|c(a) = f(a) for a € C. We call f|¢ the restriction of f to C,
and call f an extention of f|¢ to A.
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let f: A— R be defined as f = {(1,—-4),(2,-1),(3,2),(4,5)},
let g : Z — R be defined as g(x) = 3x — 7 for x € Z and

let h: R — R be defined as h(x) = 3x — 7 for x € R.
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NN

For finite sets A, B with |A| = n and |B| = m, the number of onto
functions from A to B is

S(in, ) = é(—l)k (7)m— sy

k=0
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Exercises.

523 Let A={1,2,3,4} and let B = {x,y, z}.
a) # of functions from A to B?
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523 Let A={1,2,3,4} and let B = {x,y, z}.

a) # of functions from A to B? Answer: 3* = 81
b) # of one-to-one functions from A to B Answer: P(3,4) =0
c) # of onto functions from Ato B Answer: 3* —3.2%+3 =136
d) # of functions from B to A? Answer: 4> = 64
e) # of one-to-one functions from B to A Answer: P(4,3) = 24
f) # of onto functions from B to A

Answer: 43 —4.334+6.2 —4=0
g) # of functions from A to B with (1) = x Answer: 3% = 27

h) # of functions from A to B with f(1) = f(2) =
Answer: 32 =9

i) # of functions from A to B with f(1) = x and f(2) =y
Answer: 32 =9
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Theorem 5
The number of ways of distributing n distinct objects into m
containers where no container is empty is S(n,m) = X - s(n, m)

Proof. Each distribution defines a surjective mapping from
{1,...,n} to {1,... m}, and there are m! different ways of
numbering the containers. 0
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Proof. Each distribution defines a surjective mapping from
{1,...,n} to {1,... m}, and there are m! different ways of
numbering the containers. 0

Example. 5.3.8 Suppose we have seven differently coloured balls and
four containers [, 11 111, 1V:
a) # ways to distribute balls Answer: 47 = 16384
b) # ways to distribute balls so that no container is empty
Answer: s(7,4) = 4! -350 = 8400
c) # ways to distribute balls so that no container is empty and the
blue ball is in // Answer: s(6,4) = 4!-65 = 1560
d) a) and b) if we remove labels from the containers
Answer: a) S(7,1) + S(7,2) + S(7,3) + S(7,4) = 715; b) 350
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Answer: 5(5,2) + 5(5,3) + S(5,4) + S(5,5) =51
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5.3.16 Ten candidates (i, ..., Cio for senior class president
a) How many possible outcomes of the election (no ties)? 10!
b) How many possible outcomes with possible ties?

Answer: s(10,1) + s(10,2) + ... + s(10,10) = 102, 247,563
c) b) where exactly three candidates tie for first place?

Answer: (%) S°7_ s(7, i) = 120 - 47,293 = 5,675, 160

d) a), b) and c) where G; in first place?
Answer: a) 9! b) 327 5(9,i) ¢) ) S s(7,0)
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