Maximum Flow Problems I111.

Review: G = (V, E); (s,t)-cut 6(A); edge capacity u: E — Rx¢; (s,t)-flow 2 : E— Ryg

Goal: Maxzimum Flow Problem
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1 Cuts
Recall 6(A) = {vw | v € A,w € A}, and (s,t)-cut §(A) ifs€ Aandt € A=V \ A

Theorem 1. Every (s,t)-cut 6(A) and every (s,t)-flow x satisfy:
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flow across the cut 6(A)
denoted by x(§(A))

Proof. x is a flow = f,(v) =0 for all v € V' \ {s,¢}. Summing up over all v € A\ {t}:
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w +Tyy contribution to f,(w)
Consider e =vw € E
4 — Ty, contribution to f,(v)
Contribution of vw to the left-hand-side (LHS)
vEA weA none because LHS sums-up f,(v) forv € A
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Corollary 1. Every (s,t)-cut 6(A) and every feasible (s,t)-flow = satisfy:
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Proof. x is a feasible flow = 0 < z, < u, for Ve € E. Thus, by Theorem 1 =

fx(t): Z Le — Te < Z Ue
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<ue >0 capacity of
the cut §(A)
denoted by u(§(A)) 0

i.e., the value of a feasible flow is at most the capacity of a cut.

Theorem 2. (Max-Flow Min-Cut Theorem) [Ford-Fulkerson 1956], [Kotzig 1956]
The mazimum value of a feasible (s,t)-flow is equal to the minimum capacity of an (s,t)-
cut. If all capacities are integral, then there exists an integral maximum feasible flow.

2 Flow augmentation

Let = be a feasible (s,t)-flow of value k (for instance, z = 0 is a feasible flow of value 0)

For an st-path P = (v, ..., v,,) define z-width of P = Ze?lurin} Uy _0; — Loy _yo;

If P is a path of z-width € > 0, then Vi increase x,,_,,, by € = a feasible flow of value k+¢
(... just like in the proof of the flow-paths theorem. . .)

we may get stuck before reaching the maximum flow = need to allow more general paths

Idea: use also backward edges (Vo,-..,Vg) is an undirected path

. VoV1, VoV3, VoV, "forward" edges
directed path = path (as defined before) ViV, VaVe, Vevs "backward” edges

undirected path = a sequence (v, ..., v,,) where v; distinct VMWG
Iz 3

and for all 7 € {1...m} either v;_jv; € E (“forward” edge)

or vv; 1 € E (“backward” edge) (v2,V3,V,4) is a directed path
, . : Uy, v, — To,_yv; I Vi—qv; € B
z-width of an undirected path (vg,...,v,) = min viswvn v L
ie{l.m} | Tou;_, if viv, 1 €F

x-increasing path = undirected path of positive xz-width

r-augmenting path = x-increasing path from s to t

If P=(vg,...,vn)is an xz-augmenting path of width ¢ > 0, then Vi € {1...m}

it v;_1v; € E, increase x,,_,,, by €,

vivi_1 € E, decrease Ty, . by €. } = a feasible flow of value k + ¢

No z-augmenting path = maximum flow (we now prove)

Proof of Max-Flow Min-Cut Theorem. Let x be a feasible flow of maximum falue.

Let U = {z | 3 an z-increasing path from s to z}. Note that s € U.

If t € U, then 3 an z-augmenting path = x is not maximum flow, a contradiction.



Sos€UandtecU = §(U)is an (s,t)-cut. Moreover,

— every e = vw € §(U) satisfies u, —x, = 0, otherwise w € U.

— every e = vw € §(U) satisfies x, = 0, otherwise v € U.

2(t = Te — Te = Ue = u(o(U
ZUEEDS e =Y B
eco(v) e€d(U) e€o(v) capacity of 0(U)
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= U/e — O
The value of x is equal to the capacity of 6(U). By Corollary 1, the value of a feasible
(s,t)-flow is at most the capacity of an (s,t)-cut = §(U) is a minimum cut.

value of z

Integral capacities = integral widths of augmenting paths = integral flow. a

3 Closing remarks

Notice the similarity of the above proof with that of the theorem about cuts and the
existence of an st-path. This is no coincidence, as we shall see, and this correspondence will
allow us to reduce the problem of finding augmenting paths to simple (s, t)-connectivity
question on an auxiliary graph.

Advance note: similar situation occurs with the minimum-cost flow problem which re-
duces to maximum flow and iterations of shortest path question in an auxiliary graph
with general weights (Bellman-Ford); this phenomenon is more generally captured by the
so-called Primal-Dual method and is related to Linear Programming (LP) formulations
of these problems...




