## Maximum Flow Problems III.

Review: $G=(V, E) ;(s, t)$-cut $\delta(A)$; edge capacity $u: E \rightarrow \mathbb{R}_{\geq 0} ;(s, t)$-flow $x: E \rightarrow \mathbb{R}_{\geq 0}$

## Goal: Maximum Flow Problem

$$
\begin{aligned}
& \text { Maximize } f_{x}(t)= \sum_{\substack{w \in V \\
w t \in E}} x_{w t}-\sum_{\substack{w \in V \\
t w \in E}} x_{t w} \\
& \text { subject to } f_{x}(v)=\sum_{\substack{w \in V \\
w v \in E}} x_{w v}-\sum_{\substack{w \in V \\
v w \in E}} x_{v w}=0 \quad \forall v \in V \backslash\{s, t\} \\
& \quad 0 \leq x_{e} \leq u_{e} \quad \forall e \in E
\end{aligned}
$$

## 1 Cuts

Recall $\delta(A)=\{v w \mid v \in A, w \in \bar{A}\}$, and $(s, t)$-cut $\delta(A)$ if $s \in A$ and $t \in \bar{A}=V \backslash A$
Theorem 1. Every $(s, t)$-cut $\delta(A)$ and every $(s, t)$-flow $x$ satisfy:

$$
\underbrace{\text { denoted by } x(\delta(A))}_{\underbrace{\sum_{e \in \delta(\bar{A})}}_{e \in \delta(A)} x_{e}-\sum_{e} x_{e}}=f_{x}(t)
$$

Proof. $x$ is a flow $\Rightarrow f_{x}(v)=0$ for all $v \in V \backslash\{s, t\}$. Summing up over all $v \in \bar{A} \backslash\{t\}$ :

Contribution of $v w$ to the left-hand-side (LHS)

$$
v \in A \quad w \in A \quad \text { none because LHS sums-up } f_{x}(v) \text { for } v \in \bar{A}
$$

$$
\begin{array}{llc}
v \in A & w \in \bar{A} & +x_{v w} \text { from } f_{x}(w) \\
v \in \bar{A} & w \in A & -x_{v w} \text { from } f_{x}(v) \\
v \in \bar{A} & w \in \bar{A} & \underbrace{+x_{v w}}_{\text {from } f_{x}(v)}+\underbrace{-x_{v w}}_{\text {from } f_{x}(w)}=0
\end{array}
$$

$$
e=v w \in \delta(A)
$$

Corollary 1. Every $(s, t)$-cut $\delta(A)$ and every feasible $(s, t)$-flow $x$ satisfy:

$$
f_{x}(t) \leq \sum_{e \in \delta(A)} u_{e}
$$

$$
\begin{aligned}
& \sum_{v \in \bar{A}} f_{x}(v)=f_{x}(t)+\overbrace{\sum_{v \in \bar{A} \backslash\{t\}} f_{x}(v)}^{=0}=f_{x}(t) \quad \text { Recall: } f_{x}(v)=\overbrace{\sum_{\substack{w \in V \\
w v \in E}} x_{w v}}^{\text {incoming }}-\overbrace{\sum_{\substack{w \in V \\
v w \in E}} x_{v w}}^{\text {outgoing }} \\
& \text { Consider } e=v w \in E \\
& +x_{v w} \text { contribution to } f_{x}(w) \\
& -x_{v w} \text { contribution to } f_{x}(v)
\end{aligned}
$$

Proof. $x$ is a feasible flow $\Rightarrow 0 \leq x_{e} \leq u_{e}$ for $\forall e \in E$. Thus, by Theorem $1 \Rightarrow$

$$
\begin{aligned}
& f_{x}(t)=\sum_{e \in \delta(A)} x_{e}-\sum_{e u_{e}} x_{e} \leq \underbrace{}_{\geq 0} \leq \underbrace{\sum_{e \in \delta(A)} u_{e}}_{\begin{array}{c}
\text { capacity of } \\
\text { the cut } \delta(A)
\end{array}} \\
& \text { denoted by } u(\delta(A))
\end{aligned}
$$

i.e., the value of a feasible flow is at most the capacity of a cut.

Theorem 2. (Max-Flow Min-Cut Theorem) [Ford-Fulkerson 1956], [Kotzig 1956] The maximum value of a feasible $(s, t)$-flow is equal to the minimum capacity of an $(s, t)$ cut. If all capacities are integral, then there exists an integral maximum feasible flow.

## 2 Flow augmentation

Let $x$ be a feasible ( $s, t$ )-flow of value $k$ (for instance, $x=0$ is a feasible flow of value 0 ) For an st-path $P=\left(v_{0}, \ldots, v_{m}\right)$ define $\underline{x \text {-width of } P}=\min _{i \in\{1 \ldots m\}} u_{v_{i-1} v_{i}}-x_{v_{i-1} v_{i}}$
If $P$ is a path of $x$-width $\varepsilon>0$, then $\forall i$ increase $x_{v_{i-1} v_{i}}$ by $\varepsilon \Rightarrow$ a feasible flow of value $k+\varepsilon$
(... just like in the proof of the flow-paths theorem...)
we may get stuck before reaching the maximum flow $\Rightarrow$ need to allow more general paths
Idea: use also backward edges
directed path $=$ path (as defined before)
undirected path $=$ a sequence $\left(v_{0}, \ldots, v_{m}\right)$ where $v_{i}$ distinct and for all $i \in\{1 \ldots m\}$ either $v_{i-1} v_{i} \in E$ ("forward" edge) or $v_{i} v_{i-1} \in E$ ("backward" edge)

$\underline{x \text {-width }}$ of an undirected path $\left(v_{0}, \ldots, v_{m}\right)=\min _{i \in\{1 \ldots m\}} \begin{cases}u_{v_{i-1} v_{i}}-x_{v_{i-1} v_{i}} & \text { if } v_{i-1} v_{i} \in E \\ x_{v_{i} v_{i-1}} & \text { if } v_{i} v_{i-1} \in E\end{cases}$ $\underline{x \text {-increasing path }}=$ undirected path of positive $x$-width
$\underline{\text {-augmenting path }}=x$-increasing path from $s$ to $t$
If $P=\left(v_{0}, \ldots, v_{m}\right)$ is an $x$-augmenting path of width $\varepsilon>0$, then $\forall i \in\{1 \ldots m\}$
$\left.\begin{array}{r}\text { if } v_{i-1} v_{i} \in E \text {, increase } x_{v_{i-1} v_{i}} \text { by } \varepsilon, \\ v_{i} v_{i-1} \in E \text {, decrease } x_{v_{i} v_{i-1}} \text { by } \varepsilon .\end{array}\right\} \Rightarrow$ a feasible flow of value $k+\varepsilon$
No $x$-augmenting path $\Rightarrow$ maximum flow (we now prove)
Proof of Max-Flow Min-Cut Theorem. Let $x$ be a feasible flow of maximum falue.
Let $U=\{z \mid \exists$ an $x$-increasing path from $s$ to $z\}$. Note that $s \in U$.
If $t \in U$, then $\exists$ an $x$-augmenting path $\Rightarrow x$ is not maximum flow, a contradiction.

So $s \in U$ and $t \in \bar{U} \Rightarrow \delta(U)$ is an $(s, t)$-cut. Moreover,

- every $e=v w \in \delta(U)$ satisfies $u_{e}-x_{e}=0$, otherwise $w \in U$.
- every $e=v w \in \delta(\bar{U})$ satisfies $x_{e}=0$, otherwise $v \in U$.
$\underbrace{f_{x}(t)}_{\text {value of } x}=\sum_{e \in \delta(U)} x_{e}-\sum_{e \in \delta(\bar{U})} x_{e}=\sum_{e=0} u_{e}=\underbrace{u(\delta(U))}_{\text {capacity of } \delta(U)} \underbrace{i^{\prime}}_{\delta(\bar{U})}{ }_{x} x_{l w}>0$
The value of $x$ is equal to the capacity of $\delta(U)$. By Corollary 1 , the value of a feasible $(s, t)$-flow is at most the capacity of an $(s, t)$-cut $\Rightarrow \delta(U)$ is a minimum cut.

Integral capacities $\Rightarrow$ integral widths of augmenting paths $\Rightarrow$ integral flow.

## 3 Closing remarks

Notice the similarity of the above proof with that of the theorem about cuts and the existence of an st-path. This is no coincidence, as we shall see, and this correspondence will allow us to reduce the problem of finding augmenting paths to simple $(s, t)$-connectivity question on an auxiliary graph.

Advance note: similar situation occurs with the minimum-cost flow problem which reduces to maximum flow and iterations of shortest path question in an auxiliary graph with general weights (Bellman-Ford); this phenomenon is more generally captured by the so-called Primal-Dual method and is related to Linear Programming (LP) formulations of these problems...

