
Maximum Flow Problems III.

Review: G = (V,E); (s, t)-cut δ(A); edge capacity u : E → R≥0; (s, t)-flow x : E → R≥0

Goal: Maximum Flow Problem

Maximize fx(t) =
∑
w∈V
wt∈E

xwt −
∑
w∈V
tw∈E

xtw

subject to fx(v) =
∑
w∈V
wv∈E

xwv −
∑
w∈V
vw∈E

xvw = 0 ∀v ∈ V \ {s, t}

0 ≤ xe ≤ ue ∀e ∈ E

1 Cuts

Recall δ(A) = {vw | v ∈ A,w ∈ A}, and (s, t)-cut δ(A) if s ∈ A and t ∈ A = V \ A

Theorem 1. Every (s, t)-cut δ(A) and every (s, t)-flow x satisfy:∑
e∈δ(A)

xe −
∑
e∈δ(A)

xe︸ ︷︷ ︸
flow across the cut δ(A)

denoted by x(δ(A))

= fx(t)

Proof. x is a flow ⇒ fx(v) = 0 for all v ∈ V \ {s, t}. Summing up over all v ∈ A \ {t}:

∑
v∈A

fx(v) = fx(t) +

=0︷ ︸︸ ︷∑
v∈A\{t}

fx(v) = fx(t) Recall: fx(v) =

incoming︷ ︸︸ ︷∑
w∈V
wv∈E

xwv−

outgoing︷ ︸︸ ︷∑
w∈V
vw∈E

xvw

Consider e = vw ∈ E
v

w +xvw contribution to fx(w)

−xvw contribution to fx(v)

Contribution of vw to the left-hand-side (LHS)

v ∈ A w ∈ A none because LHS sums-up fx(v) for v ∈ A
v ∈ A w ∈ A +xvw from fx(w) e = vw ∈ δ(A)

v ∈ A w ∈ A −xvw from fx(v) e = vw ∈ δ(A)

v ∈ A w ∈ A +xvw︸ ︷︷ ︸
from fx(v)

+ −xvw︸ ︷︷ ︸
from fx(w)

= 0

ut

Corollary 1. Every (s, t)-cut δ(A) and every feasible (s, t)-flow x satisfy:

fx(t) ≤
∑
e∈δ(A)

ue
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Proof. x is a feasible flow ⇒ 0 ≤ xe ≤ ue for ∀e ∈ E. Thus, by Theorem 1 ⇒

fx(t) =
∑
e∈δ(A)

xe︸︷︷︸
≤ue

−
∑
e∈δ(A)

xe︸︷︷︸
≥0

≤
∑
e∈δ(A)

ue︸ ︷︷ ︸
capacity of

the cut δ(A)

denoted by u(δ(A)) ut

i.e., the value of a feasible flow is at most the capacity of a cut.

Theorem 2. (Max-Flow Min-Cut Theorem) [Ford-Fulkerson 1956], [Kotzig 1956]
The maximum value of a feasible (s, t)-flow is equal to the minimum capacity of an (s, t)-
cut. If all capacities are integral, then there exists an integral maximum feasible flow.

2 Flow augmentation

Let x be a feasible (s, t)-flow of value k (for instance, x = 0 is a feasible flow of value 0)

For an st-path P = (v0, . . . , vm) define x-width of P = min
i∈{1...m}

uvi−1vi − xvi−1vi

If P is a path of x-width ε > 0, then ∀i increase xvi−1vi by ε⇒ a feasible flow of value k+ε

(... just like in the proof of the flow-paths theorem. . . )

we may get stuck before reaching the maximum flow⇒ need to allow more general paths

Idea: use also backward edges

directed path = path (as defined before)

undirected path = a sequence (v0, . . . , vm) where vi distinct
and for all i ∈ {1 . . .m} either vi−1vi ∈ E (“forward” edge)

or vivi−1 ∈ E (“backward” edge)

v0
v1

v2
v3

v4 v5
v6

(v0,...,v6) is an undirected path

(v2,v3,v4) is a directed path

v0v1, v2v3, v3v4 "forward" edges
v1v2, v4v5, v5v6 "backward" edges

x-width of an undirected path (v0, . . . , vm) = min
i∈{1...m}

{
uvi−1vi − xvi−1vi if vi−1vi ∈ E
xvivi−1

if vivi−1 ∈ E
x-increasing path = undirected path of positive x-width

x-augmenting path = x-increasing path from s to t

If P = (v0, . . . , vm) is an x-augmenting path of width ε > 0, then ∀i ∈ {1 . . .m}
if vi−1vi ∈ E, increase xvi−1vi by ε,
vivi−1 ∈ E, decrease xvivi−1

by ε.

}
⇒ a feasible flow of value k + ε

No x-augmenting path ⇒ maximum flow (we now prove)

Proof of Max-Flow Min-Cut Theorem. Let x be a feasible flow of maximum falue.

Let U = {z | ∃ an x-increasing path from s to z}. Note that s ∈ U .

If t ∈ U , then ∃ an x-augmenting path ⇒ x is not maximum flow, a contradiction.
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So s ∈ U and t ∈ U ⇒ δ(U) is an (s, t)-cut. Moreover,

– every e = vw ∈ δ(U) satisfies ue−xe = 0, otherwise w ∈ U .

– every e = vw ∈ δ(U) satisfies xe = 0, otherwise v ∈ U .

fx(t)︸︷︷︸
value of x

=
∑
e∈δ(U)

xe︸︷︷︸
= ue

−
∑
e∈δ(U)

xe︸︷︷︸
= 0

=
∑
e∈δ(U)

ue = u(δ(U))︸ ︷︷ ︸
capacity of δ(U)

U
v

wδ(U)

s
t

xvw < uvw

δ(U)

vw

xvw > 0

The value of x is equal to the capacity of δ(U). By Corollary 1, the value of a feasible
(s, t)-flow is at most the capacity of an (s, t)-cut ⇒ δ(U) is a minimum cut.

Integral capacities ⇒ integral widths of augmenting paths ⇒ integral flow. ut

3 Closing remarks

Notice the similarity of the above proof with that of the theorem about cuts and the
existence of an st-path. This is no coincidence, as we shall see, and this correspondence will
allow us to reduce the problem of finding augmenting paths to simple (s, t)-connectivity
question on an auxiliary graph.

Advance note: similar situation occurs with the minimum-cost flow problem which re-
duces to maximum flow and iterations of shortest path question in an auxiliary graph
with general weights (Bellman-Ford); this phenomenon is more generally captured by the
so-called Primal-Dual method and is related to Linear Programming (LP) formulations
of these problems...
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