Maximum Flow Problems II.

Review: (directed) graph $G=(V, E)$, st-path, edge capacity $u: E \rightarrow \mathbb{R}_{\geq 0}$
$G=(V, E)$, edges in E are ordered pairs from $V \times V$
path $=$ sequence $\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ where v_{i} distinct and $v_{i-1} v_{i} \in E$ for $i \in\{1 \ldots m\}$
$s t$-path $=$ a path $\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ with $v_{0}=s$ and $v_{m}=t$
write $e \in P$ where e is an edge and $P=\left(v_{0}, \ldots, v_{m}\right)$ is a path and say "the path P goes through (contains) e " if $e=v_{i-1} v_{i}$ for some $i \in\{1 \ldots m\}$
edge capacity $u: E \rightarrow \mathbb{R}_{\geq 0}$, capacitated graph/network $G=(V, E, u)$

Goal: $\left(P_{1}, \ldots, P_{k}\right)$ collection of $s t$-paths
for $v \in V \backslash\{s, t\}$ and path P_{i} containing v, exactly one edge coming into v and one edge going out of v

$$
P_{i}=s \cdot \rightarrow \rightarrow \rightarrow \rightarrow
$$

$\Rightarrow \#$ of paths P_{i} coming into $v=\#$ of paths P_{i} going out of v
Idea: instead of looking for paths directly we only count, for each edge e, the number of paths going through $e \rightsquigarrow$ we call this a flow

Formally:

(s, t)-flow or just flow $=$ a function $x: E \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\forall v \in V \backslash\{s, t\}$

- i.e., x is a flow if $f_{x}(v)=0$ for all v except s and t.
- if x assigns only integral values (values from \mathbb{Z}) $\Rightarrow x$ is an integral flow s a source and t a target
value of a flow $x=$ the excess $f_{x}(t)$ at t (equal to $-f_{x}(s)$ by the conservation law) feasible (s, t)-flow $=$ an (s, t)-flow that respects capacities, i.e.,

$$
0 \leq x_{e} \leq u_{e} \quad \forall e \in E
$$

Theorem 1. The following statements are equivalent.
(i) There exists a collection $\left(P_{1}, \ldots, P_{k}\right)$ of st-paths such that for each edge $e \in E$, the number of paths P_{i} containing e is at most u_{e} (in symbols, $\left|\left\{i \mid P_{i} \ni e\right\}\right| \leq u_{e}$).
(ii) There exists a feasible integral (s, t)-flow of value k.

Proof. (\Rightarrow) define $x_{e}=\left|\left\{i \mid P_{i} \ni e\right\}\right|$ for all $e \in E$, and note $0 \leq x_{e} \leq u_{e}$ by our assumption $\Rightarrow x$ is a feasible integral (s, t)-flow of value k.
(\Leftarrow) let x be feasible integral (s, t)-flow of value k with smallest $\sum_{e \in E} x_{e}$. Recall:

$$
f_{x}(v)=\sum_{\substack{w \in V \\ w v \in E}} x_{w v}-\sum_{\substack{w \in V=\\ v w \in E}} x_{v w}, \quad k=f_{x}(t)=-f_{x}(s), \quad f_{x}(v)=0 \text { for } v \in V \backslash\{s, t\}
$$

Assume $k \geq 1$ (o/w done). We find an st-path $\left(v_{0}, \ldots, v_{m}\right)$ with $x_{v_{i-1} v_{i}}>0 \forall i \in\{1 \ldots m\}$
Initially let $v_{0}=s$ and since $k=-f_{x}(s)>0 \Rightarrow \exists v_{1}$ with $x_{s v_{1}}>0$.
Assume we have constructed $v_{0}, v_{1}, \ldots, v_{j}$ where $j \geq 1 \Rightarrow$ we find v_{j+1} or done.

- If $v_{j}=t$, then done $(m:=j)$.
- If $v_{j}=s$, then $\forall i$ decrease $x_{v_{i-1} v_{i}}$ by 1 (recall $x_{v_{i-1} v_{i}}>0$ and integral) \Rightarrow feasible integral (s, t)-flow x with smaller $\sum_{e \in E} x_{e}$, a contradiction.
- Thus $v_{j} \in V \backslash\{s, t\}$ and $f_{x}\left(v_{j}\right)=0$. Since $x_{v_{j-1} v_{j}}>0 \Rightarrow \exists v_{j+1}$ with $x_{v_{j} v_{j+1}}>0$. \Rightarrow add $\left(v_{0}, \ldots, v_{m}\right)$ to the collection of paths, and $\forall i$ decrease $x_{v_{i-1} v_{i}}$ by $1 \Rightarrow$ a feasible integral (s, t)-flow of value $k-1$, repeat.

Maximum Flow Problem:

$$
\begin{aligned}
& \text { Maximize } f_{x}(t)= \sum_{\substack{w \in V \\
w t \in E}} x_{w t}-\sum_{\substack{w \in V \\
t w \in E}} x_{t w} \\
& \text { subject to } f_{x}(v)=\sum_{\substack{w \in V \\
w v \in E}} x_{w v}-\sum_{\substack{w \in V \\
v w \in E}} x_{v w}=0 \quad \forall v \in V \backslash\{s, t\} \\
& \quad 0 \leq x_{e} \leq u_{e} \quad \forall e \in E
\end{aligned}
$$

