## Maximum Flow Problems II.

**Review**: (directed) graph G = (V, E), st-path, edge capacity  $u : E \to \mathbb{R}_{\geq 0}$ 

G = (V, E), edges in E are ordered pairs from  $V \times V$ path = sequence  $(v_0, v_1, \ldots, v_m)$  where  $v_i$  distinct and  $v_{i-1}v_i \in E$  for  $i \in \{1 \ldots m\}$ st-path = a path  $(v_0, v_1, \ldots, v_m)$  with  $v_0 = s$  and  $v_m = t$ write  $e \in P$  where e is an edge and  $P = (v_0, \ldots, v_m)$  is a path and say "the path P goes through (contains) e" if  $e = v_{i-1}v_i$  for some  $i \in \{1 \ldots m\}$ edge capacity  $u : E \to \mathbb{R}_{>0}$ , capacitated graph/network G = (V, E, u)

**Goal:**  $(P_1, \ldots, P_k)$  collection of *st*-paths

for  $v \in V \setminus \{s, t\}$  and path  $P_i$  containing v, exactly <u>one</u> edge coming into v and <u>one</u> edge going out of v



 $\Rightarrow$  #of paths  $P_i$  coming into v = #of paths  $P_i$  going out of v

**Idea:** instead of looking for paths directly we only count, for each edge e, the number of paths going through  $e \rightsquigarrow$  we call this a *flow* 

## Formally:

(s,t)-flow or just flow = a function  $x: E \to \mathbb{R}_{>0}$  satisfying  $\forall v \in V \setminus \{s,t\}$ 

$$\underbrace{\sum_{\substack{w \in V \\ wv \in E}}^{\text{amount}} x_{wv}}_{\text{out of } v} - \underbrace{\sum_{\substack{w \in V \\ vw \in E}}^{\text{out of } v} x_{vw}}_{ww \in E} = 0 \quad \text{(Flow Conservation Law)}$$

$$\underbrace{\text{net flow (excess) at } v}_{\text{denoted by } f_x(v)}$$

- i.e., x is a flow if  $f_x(v) = 0$  for all v except s and t.
- if x assigns only integral values (values from  $\mathbb{Z}$ )  $\Rightarrow$  x is an *integral flow* 
  - $s \neq \underline{source}$  and  $t \neq \underline{target}$

value of a flow x = the excess  $f_x(t)$  at t (equal to  $-f_x(s)$  by the conservation law)

feasible (s, t)-flow = an (s, t)-flow that respects capacities, i.e.,

$$0 \le x_e \le u_e \qquad \forall e \in E$$

**Theorem 1.** The following statements are equivalent.

- (i) There exists a collection  $(P_1, \ldots, P_k)$  of st-paths such that for each edge  $e \in E$ , the number of paths  $P_i$  containing e is at most  $u_e$  (in symbols,  $|\{i \mid P_i \ni e\}| \le u_e$ ).
- (ii) There exists a feasible integral (s, t)-flow of value k.

*Proof.* ( $\Rightarrow$ ) define  $x_e = |\{i \mid P_i \ni e\}|$  for all  $e \in E$ , and note  $0 \leq x_e \leq u_e$  by our assumption  $\Rightarrow x$  is a feasible integral (s, t)-flow of value k.

 $(\Leftarrow)$  let x be feasible integral (s, t)-flow of value k with smallest  $\sum_{e \in E} x_e$ . Recall:

$$f_x(v) = \sum_{\substack{w \in V \\ wv \in E}} x_{wv} - \sum_{\substack{w \in V \\ vw \in E}} x_{vw}, \qquad k = f_x(t) = -f_x(s), \quad f_x(v) = 0 \text{ for } v \in V \setminus \{s, t\}$$

Assume  $k \ge 1$  (o/w done). We find an *st*-path  $(v_0, \ldots, v_m)$  with  $x_{v_{i-1}v_i} > 0 \quad \forall i \in \{1 \ldots m\}$ 

Initially let  $v_0 = s$  and since  $k = -f_x(s) > 0 \Rightarrow \exists v_1$  with  $x_{sv_1} > 0$ .

Assume we have constructed  $v_0, v_1, \ldots, v_j$  where  $j \ge 1 \Rightarrow$  we find  $v_{j+1}$  or done.

- If  $v_j = t$ , then done (m := j).
- If  $v_j = s$ , then  $\forall i$  decrease  $x_{v_{i-1}v_i}$  by 1 (recall  $x_{v_{i-1}v_i} > 0$  and integral)  $\Rightarrow$  feasible integral (s, t)-flow x with smaller  $\sum_{e \in E} x_e$ , a contradiction.
- Thus  $v_j \in V \setminus \{s, t\}$  and  $f_x(v_j) = 0$ . Since  $x_{v_{j-1}v_j} > 0 \Rightarrow \exists v_{j+1}$  with  $x_{v_iv_{j+1}} > 0$ .

 $\Rightarrow$  add  $(v_0, \ldots, v_m)$  to the collection of paths, and  $\forall i$  decrease  $x_{v_{i-1}v_i}$  by  $1 \Rightarrow$  a feasible integral (s, t)-flow of value k - 1, repeat.

## Maximum Flow Problem:

Maximize 
$$f_x(t) = \sum_{\substack{w \in V \\ wt \in E}} x_{wt} - \sum_{\substack{w \in V \\ tw \in E}} x_{tw}$$
  
subject to  $f_x(v) = \sum_{\substack{w \in V \\ wv \in E}} x_{wv} - \sum_{\substack{w \in V \\ vw \in E}} x_{vw} = 0 \qquad \forall v \in V \setminus \{s, t\}$ 
$$0 < x_e < u_e \qquad \forall e \in E$$