Maximum Flow Problems

Directed Graph (Network) G = (V, E)i.e., edges in E are ordered pairs from $V \times V$ (v_0, v_1, \dots, v_7) is a walk/not a path <u>Walk</u> = sequence (v_0, v_1, \ldots, v_m) where $v_{i-1}v_i \in E$ for all $i \in \{1 \dots m\}$ <u>Path</u> = a walk (v_0, v_1, \ldots, v_m) where all v_i are distinct $(v_0, v_1, v_5, v_6, v_7)$ is a path st-path = a path v_0, \ldots, v_m with $v_0 = s$ and $v_m = t$ (s, t)-connectivity = \exists an *st*-path ? For $A \subseteq V$, the cut $\delta(A)$ is the set of edges $\delta(A) = \{vw \in E \mid v \in A, w \in V \setminus A\}$ Denote $\overline{A} = V \setminus A$ $\delta(A)$ and $\delta(\overline{A})$ are not the same $\begin{cases} \delta(A) \text{ edges going out of } A \\ \delta(\overline{A}) \text{ edges coming into } A \end{cases}$ A cut is proper if $\emptyset \neq A \neq V$. G is connected if for all $s, t \in V$, there \exists an st-path. **Theorem 1.** G is connected $\iff \forall A \subseteq V, \ \emptyset \neq A \neq V$, we have $\delta(A) \neq \emptyset$ "all proper cuts are non-empty" (s, t)-cut $\delta(A)$ if $s \in A$ and $t \in \overline{A}$. **Theorem 2.** \exists an st-path $\iff \forall A \subseteq V, s \in A, t \notin A, we have \delta(A) \neq \emptyset$ "all (s, t)-cuts are non-empty" *Proof.* (\Rightarrow) If \exists an st-path $P \Rightarrow$ every (s, t)-cut $\delta(A)$ contains at least one edge of P. So $\delta(A) \neq \emptyset$. (\Leftarrow) Let $U = \{z \in V \mid \exists an sz-path\}$. If $t \in U$, then S **(t)** \exists an st-path. If $t \notin U$, then we have $s \in U, t \notin U$, and $\delta(U) = \emptyset$. Indeed, if $zw \in \delta(U)$, then $w \in U$, a contradiction. So, $\delta(U)$ is an empty (s, t)-cut. δ(U) (s, t)-edge-connectivity = maximum number of edge disjoint st-paths

 $\frac{(s,t)\text{-vertex-connectivity}}{(i.e., vertex disjoint except for sharing s and t)}$

1 Edge capacities

Edge capacity $u: E \to \mathbb{R}_{\geq 0} \longrightarrow$ capacitated graph/network G = (V, E, u)important note: capacity $\neq cost$

 $cost \sim length$, reliability, cost (lease, toll), revenue can be negative capacity \sim thickness (pipe, cable), maximum throughput always non-negative

Question: Given a capacitated network and two nodes s, twhat is the largest collection (P_1, \ldots, P_k) of st-paths (not necessarily distinct) such that for each edge $e \in E$, the number of paths P_i containing e is at most u_e (capacity of e)?

1

Answer: Maximum flow