## Maximum Flow Problems

Directed Graph (Network) $G=(V, E)$
i.e., edges in $E$ are ordered pairs from $V \times V$
$\underline{\text { Walk }}=$ sequence $\left(v_{0}, v_{1}, \ldots, v_{m}\right)$
where $v_{i-1} v_{i} \in E$ for all $i \in\{1 \ldots m\}$
$\underline{\text { Path }}=\operatorname{a}$ walk $\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ where all $v_{i}$ are distinct $\underline{s t \text {-path }}=$ a path $v_{0}, \ldots, v_{m}$ with $v_{0}=s$ and $v_{m}=t$
$\left(v_{0}, v_{1}, \ldots, v_{7}\right)$ is a walk/not a path

$\left(v_{0}, v_{1}, v_{5}, v_{6}, v_{7}\right)$ is a path $(s, t)$-connectivity $=\exists$ an $s t$-path ?
For $A \subseteq V$, the cut $\delta(A)$ is the set of edges $\delta(A)=\{v w \in E \mid v \in A, w \in V \backslash A\}$
Denote $\bar{A}=V \backslash A$

$$
\delta(A) \text { and } \delta(\bar{A}) \text { are not the same }\left\{\begin{array}{l}
\delta(A) \text { edges going out of } A \\
\delta(\bar{A}) \text { edges coming into } A
\end{array}\right.
$$

A cut is proper if $\emptyset \neq A \neq V$.
$G$ is connected if for all $s, t \in V$, there $\exists$ an $s t$-path.
Theorem 1. $G$ is connected $\Longleftrightarrow \forall A \subseteq V, \emptyset \neq A \neq V$, we have $\delta(A) \neq \emptyset$ "all proper cuts are non-empty"
$(s, t)$-cut $\delta(A)$ if $s \in A$ and $t \in \bar{A}$.
Theorem 2. $\exists$ an st-path $\Longleftrightarrow \forall A \subseteq V, s \in A, t \notin A$, we have $\delta(A) \neq \emptyset$ "all $(s, t)$-cuts are non-empty"
Proof. $(\Rightarrow)$ If $\exists$ an $s t$-path $P \Rightarrow$ every $(s, t)$-cut $\delta(A)$ contains at least one edge of $P$. So $\delta(A) \neq \emptyset$.
$(\Leftarrow)$ Let $U=\{z \in V \mid \exists$ an $s z$-path $\}$. If $t \in U$, then $\exists$ an $s t$-path. If $t \notin U$, then we have $s \in U, t \notin U$, and $\delta(U)=\emptyset$. Indeed, if $z w \in \delta(U)$, then $w \in U$, a contradiction. So, $\delta(U)$ is an empty $(s, t)$-cut.

$\underline{(s, t) \text {-edge-connectivity }}=$ maximum number of edge disjoint st-paths
$(s, t)$-vertex-connectivity $=$ maximum number of internally vertex disjoint $s t$-paths (i.e., vertex disjoint except for sharing $s$ and $t$ )

## 1 Edge capacities

Edge capacity $u: E \rightarrow \mathbb{R}_{\geq 0} \quad \rightsquigarrow \quad$ capacitated graph/network $G=(V, E, u)$
important note: capacity $\neq$ cost
cost $\sim$ length, reliability, cost (lease, toll), revenue can be negative capacity $\sim$ thickness (pipe, cable), maximum throughput always non-negative
Question: Given a capacitated network and two nodes $s, t$ what is the largest collection $\left(P_{1}, \ldots, P_{k}\right)$ of $s t$-paths (not necessarily distinct) such that for each edge $e \in E$, the number of paths $P_{i}$ containing $e$ is at most $u_{e}$ (capacity of $e$ )?
Answer: Maximum flow

