CS137 Discrete Mathematics and its Applications 2

Coursework 3
Due by Monday 25 February 2013 at 12noon
Submit with an appropriate coversheet to a collection box in CS0.06
Attempt to solve ALL SEVEN of the following problems.
Submit a solution to THREE of the seven problems, ONE from EACH GROUP.

Group 1

1. (a) Draw all pairwise non-isomorphic connected graphs with 4 edges.
(b) A cycle is Hamiltonian if it contains all vertices of the graph. Find an Euler circuit and a Hamiltonian cycle in the following graphs. If it does not exist, explain why.

2. A walk with endpoints u, v is a $u v$-walk. A path with endpoints u, v is a $u v$-path.

Let G be a graph. Prove that
(a) G contains a $u v$-walk if and only if G contains a $u v$-path.
(b) G contains a closed walk of odd length if and only if G contains a cycle of odd length.

Group 2

1. Reconstruct the trees from their Prüfer codes: $(3,3,5,5,6,6),(1,5,1,5,9,8,2),(1,5,2,2,1,5,5)$

Let i be a positive integer. What tree has the Prüfer code
(a) (i, i, \ldots, i) ?
(b) $(i-2, i-3, \ldots, 1)$?
2. Let T be a tree with n vertices, k leaves, and no vertex of degree 2 .
(a) Prove that $k \geq(n+2) / 2$.
(b) What does T look like if $k=(n+2) / 2$?
3. Let G be a graph with n vertices, m edges, and k connected components. Prove that

$$
n-k \leq m \leq\binom{ n-k+1}{2}
$$

Group 3

1. Let G be a graph m edges and chromatic number $\chi(G)=k$. Prove that $m \geq\binom{ k}{2}$.
2. Let G be a graph with $n \geq 11$ vertices. Prove that G and \bar{G} cannot be both planar. (Hint: use Euler's formula)
