CS 137 - Graph Theory - Lectures 4-5

February 21, 2012
(further reading Rosen K. HDiscrete Mathematics and its Applications, 5th ed., chapters 8.7, 8.8)

1.1. Summary

— Bipartite graphs
— Colouring vertices and edges

— Planar graphs

1.2. Graph substructures m

subgraph = G is asubgraph of G if V(G’) C V(G) andE(G’) C E(G) < ”
4 5

independent set of G = set of pairwise non-adjacent verticesGn

clique of G = set of pairwise adjacent vertices@h
complete graplk,
cycleC,
C, C,

2. Bipartite graphs

bipartite graph = vertex set can be partitioned into two independent sets
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complete bipartite graph K, ,, = vertices{ay, ..., ay,b1,...,b
edges{{ai,bj} |ie {1,...,n},] € {1,...,m}}
Theorem 1. Agraph G isa bipartite graph if and only if it does not contain a cycle of odd length. . inA

Qins

Proof. We may assume tha&t is connected (why?). Pick a vertexand put it inA. Then
repeatedly pick a vertexin A and put its neighbours iB, or pick a vertex inB and put
its neighbours iMA. If a vertex is put both i and inB (for the first time), we find an odd
cycle. If this never happens, then the sétsB form a partition of the vertices df into two
independent sets; i.€ is a bipartite graph. ]

The proof suggests a notion of “colouring”... we used twaoes for vertices in such
a way that no two vertices of the same colour are adjacettte tfo colours represent the
two independent sets we seek)

This can be generalized as follows. vin AnB

3. Colouring

A colouring or avertex-colouring of a graphG assigns colours to vertices so that no two adjacent vemiaee
the same colour. Smallest number of colours needed to ca@lasithechromatic number of G, denoted by (G
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Example: If G is bipartite, assign 1 to each vertex in one independentrsg?ato each vertex in the other
independent set. This constitutes a colouring using 2 ¢slou

Let G be a graph om vertices. What i (G) if G is
— the complete graph
— the empty graph
— bipartite graph
— acycle
— atree

The largest degree of a vertexGhis denoted byA(G) and is called thenaximum degreein G.
Theorem 2. x(G) < A(G)+1

“Greedy colouring™ fix colourq1,...,A(G) + 1} and iteratively colour every vertex using a colour that is
not used by its neighbouts- always succeeds — there is always at least one availablercolo
Notes:

— this bound is tight (why? consid&, for anyn andC,, for oddn)
— x(G) can be arbitrarily far from\(G).

It turns out that complete graphs and odd cycles are the aalyhg withy(G) = A(G) + 1.
Theorem 3 (Brooks) x(G) < A(G) unless G isthe complete graph or an odd cycle.

Applications of colouring: schedulling, wireless comneation, job assignment, and many more. ..

3.1. Edge-colouring

We can similarly colour edges of a graph.

An edge-colouring of G assigns colours to edges Gfso that no edges that share an endpoint have the same
colour. Smallest number of colours needed to edge-cd@dsicalled thechromaticindex of G, denoted by’ (G
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Notes:

— observethat’(G) > A(G)
“greedy” colouring giveg’(G) < 2A(G) — 1.

Even better: the chromatic index can only be one of two values
Theorem 4 (Vizing). A(G) < x'(G) < A(G) +1

In case of bipartite graphs, the chromatic index is always).
Theorem 5 (Konig). If G isbipartite, then x'(G) = A(G).

Proof. Fix colours{1,...,A(G)} and greedily colour edges as long as possible. Suppose @na point this
process halts before colouring all edges. Lcetbe an uncoloured edge.

Letcol, andcol, denote the sets of colours used by edges incidemttodo, respectively. Note thdtol, | <
A(G) — 1 and|col,| < A(G) — 1 sinceuv is not coloured and both andv are incident to at mogi(G) edges.
Moreover,|col, U col,| = A(G) since we do not have a colour available to colour Thuscol,, \ col, # @ and
coly \ col, # @. In other words, some colour, sdyis used on edges incident#o but not on edges incident to
v, and some other colour, s&yis used on edges incidentddout not on edges incident to Consider the longest
walk W in G starting fromu that uses only edges colouréénd2. Observe thatV is a path (thus is finite), and
W is unique. IfWW containsy, then it terminates i because is incident to no edge of colodr. Adding the edge
{u,v} to W yields a cycle of odd length, which is impossible, sii¢és bipartite. SOV does not contair and
we can exchange coloutsand2 on the edges of the wall. This allows us to colounv with colourl.

We continue this way and eventually all edgessodire coloured. O



4. Planar graphs

A graphG is said to beplanar if it can be drawn in the plane in such a way that no two edgessoooe another.
(We will not define this precisely as this is beyond the scdphise lecture.)

see DI ©0
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Example with 3 houses/3 utilities

Question: which of these graphs are planar ? @
— the complete grapK;
— the complete bipartite gragy,

— trees outer face

edges of a planar drawing divide the plane ifsices
4 faces, 12 edges, 10 vertices

Theorem 6 (Jordan Curve Theorem)
Any simple closed curve C dividesthe planeinto two regions each having C as boundary

(simple means that the curve does not cross itself; sucleésialso known adordan curve)

Theorem 7 (Euler’s formula) Let G be a connected planar graph with n vertices and m edges and consider a
planar drawing G having f faces. Then

n—m+f=2

Proof. By induction on the number of edges.if < n — 1, thenm = n — 1 andG is a tree; the drawing has
exactly one face (becauskehas no cycles). S = 1 andthust —m + f =n— (n—1) +1 = 2 as required.
So we may assum@ > n and thusG has a cycleC. We see that the edges Gfform a closed curve of the
plane. Pick any edgeof C and observe thatlies on the boundary of exactly two faces (the other possibi
thate lies on the boundary of only one face — is exluded by the Jo@iame Theorem). Constru&’ from G by
removinge. Removing the edgefrom the drawing yields a planar drawing @f with f — 1 faces. Sinc&’ has
m — 1 edges (less tha@), the inductive hypothesis can be appliedtovhich yieldsn — (m —1) + (f — 1) = 2.
Thusn —m + f = 2 as required. O

Theorem 8. A connected planar graph G with n > 4 vertices and m > 4 edges has at most 3n — 6 edges.
Moreover, if G has no triangles (cycles of length 3), then it has at most 2n — 4 edges.

Proof. Consider a planar drawing &f and letf denote the number of faces in the drawing. Observe that every
edge appears in at most two faces and every face is boundaddasa3 edges (sinee > 3). Thus3f < 2m.
By Euler’s formula, we haver =n+ f —2 <n+2m/3 —2. Som/3 < n —2andhence: < 3m — 6.

If G contains no triangles, then every face is bounded by atdesdgies (since: > 4), and we havd f < 2m.
Thisyieldsm =n+ f —2 <n+m/2 —2and thusn/2 < n — 2 whichism < 2n — 4 as required. O

Notes: we can now show th&s andK3 3 are not planar:

— Kshas10edgeshdd >3x5—6=9
— Kz has 9 edges and no triangle while> 26 —4 =8



new
vertex

— subdividing an edge = replace by a 2-edge path

—
— asubdivision of G = repeatedly subdivide edgesGf
observe thatG is planar if and only if every subdivision @ is also planar
: . . subdividing
— moreover, if we remove an edge from a planar graph, thetheggraph is also planar edge

in other words:G is planar if and only if every subgraph 6fis also planar
— puttogether: every graph that contains a subdivitiok#br K3 3 as a subgraph is not planar
In fact, the reverse statement is also true as famously grioyd&uratowski in 1930's.

Theorem 9 (Kuratowski's theorem)
Agraph G isplanar if and only if it does not contain a subdivision of K5 or K3 3 as a subgraph.

4.1. Colouring planar graphs (optional)

The famous “4-colour Theorem” proved by Appel and Hakereadimost 100 years of unsuccessful attempts)
states that every planar graghhas a vertex colouring using 4 colours. df has no triangles, then actually
3 colours are enough as proved by Grotzsch.

Theorem 10 (4-colour Theorem, Appel-Haken 1976) G is planar, then x (G) < 4.
Theorem 11 (Grotzsch's Theorem)If G is planar and has no triangles, then x (G) < 3.

The proof of the 4-colour theorem is quite complicated arebisea computer to verify its correctness. A much
simpler proof (though still non-trivial) is required to p@that every planar graph has a colouring with 5 colours.

Theorem 12 (5-colour Theorem, Heawood 1890 G is planar, then x(G) < 5.
To show that 6 colours are enough is actually quite easy.
Theorem 13 (6-colour Theorem)If G isplanar, then x (G) < 6.

Proof. As usual letn andm denote the number of vertices and edge&in By Theorem8, m < 3n — 6
while 2m =} ¢y (c)deg(v) by Handshaking Theorem. This implies thafcy () deg(v) < 6n —12 < én.
Therefore G must have a vertex; of degree at mosi. Remove this vertex and repeat; there will again be vertex
uy of degree at most and we remove it and continue until there are no more vertitles produces an ordering
ui, ..., uy of all vertices ofG in which eachu; has at mosb neighbours among;. 1, ..., u,. To colourG with
colours{1,2,...,6}, we simply process the vertices fram to u, each time assigning tg; a colour not used by

its neighbours among; .4, .. ., u,. Since there are at most 5 such neighbours, there is alwaglear@vailable

for u;, since we use 6 colours altogether. Consequently, this veasugsceed to colout using6 colours. ]

4.2. Doodling

Finally, what about colouring a planar graph with 2 colours?

Consider the following: put your pen down on the paper anadvdraurve
by moving your pen without lifting it so that you return to tharting point
of the curve; colour each region with colours black and whdéehat no two
neighbouring regions use the same colour — is this alwaysilpes?

Answer: Yes ...why it works?

Hint: the dual of a drawing of an Eulerian planar graph is always bipartite

1 dual is a graph whose vertices are the regions of the drawing wihereegions are adjacent if and only if they
share a boundary — it is also a planar graph (can you see why?)
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