
CS 137 - Graph Theory - Lectures 4-5
February 21, 2012

(further reading Rosen K. H.:Discrete Mathematics and its Applications, 5th ed., chapters 8.7, 8.8)

1.1. Summary

– Bipartite graphs
– Colouring vertices and edges
– Planar graphs

1.2. Graph substructures

subgraph = G′ is asubgraph of G if V(G′) ⊆ V(G) andE(G′) ⊆ E(G)

independent set of G = set of pairwise non-adjacent vertices inG

clique of G = set of pairwise adjacent vertices inG
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2. Bipartite graphs

bipartite graph = vertex set can be partitioned into two independent sets

K3,3

K2,3complete bipartite graph Kn,m = vertices{a1, . . . , an, b1, . . . , bm}

edges
{

{ai, bj}
∣

∣ i ∈ {1, . . . , n}, j ∈ {1, . . . , m}
}

Theorem 1. A graph G is a bipartite graph if and only if it does not contain a cycle of odd length.

Proof. We may assume thatG is connected (why?). Pick a vertexa and put it inA. Then
repeatedly pick a vertexv in A and put its neighbours inB, or pick a vertex inB and put
its neighbours inA. If a vertex is put both inA and inB (for the first time), we find an odd
cycle. If this never happens, then the setsA, B form a partition of the vertices ofG into two
independent sets; i.e.G is a bipartite graph. �

The proof suggests a notion of “colouring”... we used two colours for vertices in such
a way that no two vertices of the same colour are adjacent... (the two colours represent the
two independent sets we seek)

This can be generalized as follows.
v

a

v in A�B

in A

in B

3. Colouring

A colouring or avertex-colouring of a graphG assigns colours to vertices so that no two adjacent verticeshave
the same colour. Smallest number of colours needed to colourG is thechromatic number of G, denoted byχ(G).
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Example: If G is bipartite, assign 1 to each vertex in one independent set and 2 to each vertex in the other
independent set. This constitutes a colouring using 2 colours.

Let G be a graph onn vertices. What isχ(G) if G is

– the complete graph
– the empty graph
– bipartite graph
– a cycle
– a tree

The largest degree of a vertex inG is denoted by∆(G) and is called themaximum degree in G.

Theorem 2. χ(G) ≤ ∆(G) + 1

“Greedy colouring”: fix colours{1, . . . , ∆(G) + 1} and iteratively colour every vertex using a colour that is
not used by its neighbours⇒ always succeeds – there is always at least one available colour.

Notes:

– this bound is tight (why? considerKn for anyn andCn for oddn)
– χ(G) can be arbitrarily far from∆(G).

It turns out that complete graphs and odd cycles are the only graphs withχ(G) = ∆(G) + 1.

Theorem 3 (Brooks). χ(G) ≤ ∆(G) unless G is the complete graph or an odd cycle.

Applications of colouring: schedulling, wireless communication, job assignment, and many more. . .

3.1. Edge-colouring

We can similarly colour edges of a graph.

An edge-colouring of G assigns colours to edges ofG so that no edges that share an endpoint have the same
colour. Smallest number of colours needed to edge-colourG is called thechromatic index of G, denoted byχ′(G).
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Notes:

– observe thatχ′(G) ≥ ∆(G)
– “greedy” colouring givesχ′(G) ≤ 2∆(G)− 1.

Even better: the chromatic index can only be one of two values.

Theorem 4 (Vizing). ∆(G) ≤ χ
′(G) ≤ ∆(G) + 1

In case of bipartite graphs, the chromatic index is always∆(G).

Theorem 5 (König). If G is bipartite, then χ
′(G) = ∆(G).

Proof. Fix colours{1, . . . , ∆(G)} and greedily colour edges as long as possible. Suppose that at some point this
process halts before colouring all edges. Letuv be an uncoloured edge.

Let colu andcolv denote the sets of colours used by edges incident tou andv, respectively. Note that|colu| ≤
∆(G)− 1 and|colv| ≤ ∆(G)− 1 sinceuv is not coloured and bothu andv are incident to at most∆(G) edges.
Moreover,|colu ∪ colv| = ∆(G) since we do not have a colour available to colouruv. Thuscolu \ colv 6= ∅ and
colv \ colu 6= ∅. In other words, some colour, say1, is used on edges incident tou, but not on edges incident to
v, and some other colour, say2, is used on edges incident tov but not on edges incident tou. Consider the longest
walk W in G starting fromu that uses only edges coloured1 and2. Observe thatW is a path (thus is finite), and
W is unique. IfW containsv, then it terminates inv becausev is incident to no edge of colour1. Adding the edge
{u, v} to W yields a cycle of odd length, which is impossible, sinceG is bipartite. SoW does not containv and
we can exchange colours1 and2 on the edges of the walkW. This allows us to colouruv with colour1.

We continue this way and eventually all edges ofG are coloured. �
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4. Planar graphs

A graphG is said to beplanar if it can be drawn in the plane in such a way that no two edges cross one another.
(We will not define this precisely as this is beyond the scope of this lecture.)

K3,3
K
5

Example with 3 houses/3 utilities

Question: which of these graphs are planar ?
– the complete graphKn

– the complete bipartite graphKn,m

– trees

edges of a planar drawing divide the plane intofaces

face

outer face

face

face

4 faces, 12 edges,  10 vertices

Theorem 6 (Jordan Curve Theorem).
Any simple closed curve C divides the plane into two regions each having C as boundary

(simple means that the curve does not cross itself; such curve is also known asJordan curve)

Theorem 7 (Euler’s formula). Let G be a connected planar graph with n vertices and m edges and consider a
planar drawing G having f faces. Then

n − m + f = 2

Proof. By induction on the number of edges. Ifm ≤ n − 1, thenm = n − 1 andG is a tree; the drawing has
exactly one face (becauseG has no cycles). Sof = 1 and thusn − m + f = n − (n − 1) + 1 = 2 as required.

So we may assumem ≥ n and thusG has a cycleC. We see that the edges ofC form a closed curve of the
plane. Pick any edgee of C and observe thate lies on the boundary of exactly two faces (the other possibility –
thate lies on the boundary of only one face – is exluded by the JordanCurve Theorem). ConstructG′ from G by
removinge. Removing the edgee from the drawing yields a planar drawing ofG′ with f − 1 faces. SinceG′ has
m− 1 edges (less thanG), the inductive hypothesis can be applied toG′ which yieldsn− (m− 1) + ( f − 1) = 2.
Thusn − m + f = 2 as required. �

Theorem 8. A connected planar graph G with n ≥ 4 vertices and m ≥ 4 edges has at most 3n − 6 edges.
Moreover, if G has no triangles (cycles of length 3), then it has at most 2n − 4 edges.

Proof. Consider a planar drawing ofG and let f denote the number of faces in the drawing. Observe that every
edge appears in at most two faces and every face is bounded by at least 3 edges (sincem ≥ 3). Thus3 f ≤ 2m.
By Euler’s formula, we havem = n + f − 2 ≤ n + 2m/3 − 2. Som/3 ≤ n − 2 and hencen ≤ 3m − 6.

If G contains no triangles, then every face is bounded by at least4 edges (sincem ≥ 4), and we have4 f ≤ 2m.
This yieldsm = n + f − 2 ≤ n + m/2 − 2 and thusm/2 ≤ n − 2 which ism ≤ 2n − 4 as required. �

Notes: we can now show thatK5 andK3,3 are not planar:

– K5 has 10 edges but10 > 3 ∗ 5 − 6 = 9

– K3,3 has 9 edges and no triangle while9 > 2 ∗ 6 − 4 = 8
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– subdividing an edge = replace by a 2-edge path

– asubdivision of G = repeatedly subdivide edges ofG

observe that:G is planar if and only if every subdivision ofG is also planar

– moreover, if we remove an edge from a planar graph, the resulting graph is also planar

in other words:G is planar if and only if every subgraph ofG is also planar

– put together: every graph that contains a subdivition ofK5 or K3,3 as a subgraph is not planar

v

u

v

u new
vertex

subdividing
edge

In fact, the reverse statement is also true as famously proved by Kuratowski in 1930’s.

Theorem 9 (Kuratowski’s theorem).
A graph G is planar if and only if it does not contain a subdivision of K5 or K3,3 as a subgraph.

4.1. Colouring planar graphs (optional)

The famous “4-colour Theorem” proved by Appel and Haken (after almost 100 years of unsuccessful attempts)
states that every planar graphG has a vertex colouring using 4 colours. IfG has no triangles, then actually
3 colours are enough as proved by Grötzsch.

Theorem 10 (4-colour Theorem, Appel-Haken 1976). If G is planar, then χ(G) ≤ 4.

Theorem 11 (Grötzsch’s Theorem). If G is planar and has no triangles, then χ(G) ≤ 3.

The proof of the 4-colour theorem is quite complicated and needs a computer to verify its correctness. A much
simpler proof (though still non-trivial) is required to prove that every planar graph has a colouring with 5 colours.

Theorem 12 (5-colour Theorem, Heawood 1890). If G is planar, then χ(G) ≤ 5.

To show that 6 colours are enough is actually quite easy.

Theorem 13 (6-colour Theorem). If G is planar, then χ(G) ≤ 6.

Proof. As usual letn and m denote the number of vertices and edges inG. By Theorem8, m ≤ 3n − 6

while 2m = ∑v∈V(G) deg(v) by Handshaking Theorem. This implies that∑v∈V(G) deg(v) ≤ 6n − 12 < 6n.
Therefore,G must have a vertexu1 of degree at most5. Remove this vertex and repeat; there will again be vertex
u2 of degree at most5 and we remove it and continue until there are no more vertices. This produces an ordering
u1, . . . , un of all vertices ofG in which eachui has at most5 neighbours amongui+1, . . . , un. To colourG with
colours{1, 2, . . . , 6}, we simply process the vertices fromun to u1, each time assigning toui a colour not used by
its neighbours amongui+1, . . . , un. Since there are at most 5 such neighbours, there is always a colour available
for ui, since we use 6 colours altogether. Consequently, this way we succeed to colourG using6 colours. �

4.2. Doodling

Finally, what about colouring a planar graph with 2 colours?

Consider the following: put your pen down on the paper and draw a curve
by moving your pen without lifting it so that you return to thestarting point
of the curve; colour each region with colours black and whiteso that no two
neighbouring regions use the same colour – is this always possible ?

Answer: Yes . . . why it works?

Hint: the dual1 of a drawing of an Eulerian planar graph is always bipartite

1 dual is a graph whose vertices are the regions of the drawing wheretwo regions are adjacent if and only if they
share a boundary – it is also a planar graph (can you see why?)
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