CS 137 - Graph Theory - Lectures 4-5 February 21, 2012

(further reading Rosen K. H.: Discrete Mathematics and its Applications, 5th ed., chapters 8.7, 8.8)

1.1. Summary

- Bipartite graphs
- Colouring vertices and edges
- Planar graphs

1.2. Graph substructures

subgraph $=G^{\prime}$ is a subgraph of G if $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$ independent set of $G=$ set of pairwise non-adjacent vertices in G
 clique of $G=$ set of pairwise adjacent vertices in G complete graph K_{n} cycle C_{n}

2. Bipartite graphs

bipartite graph $=$ vertex set can be partitioned into two independent sets

complete bipartite graph $K_{n, m}=$ vertices $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$

$$
\text { edges }\left\{\left\{a_{i}, b_{j}\right\} \mid i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}\right\}
$$

Theorem 1. A graph G is a bipartite graph if and only if it does not contain a cycle of odd length.
Proof. We may assume that G is connected (why?). Pick a vertex a and put it in A. Then repeatedly pick a vertex v in A and put its neighbours in B, or pick a vertex in B and put its neighbours in A. If a vertex is put both in A and in B (for the first time), we find an odd cycle. If this never happens, then the sets A, B form a partition of the vertices of G into two independent sets; i.e. G is a bipartite graph.

The proof suggests a notion of "colouring"... we used two colours for vertices in such a way that no two vertices of the same colour are adjacent... (the two colours represent the two independent sets we seek)

This can be generalized as follows.

3. Colouring

A colouring or a vertex-colouring of a graph G assigns colours to vertices so that no two adjacent vertices have the same colour. Smallest number of colours needed to colour G is the chromatic number of G, denoted by $\chi(G)$.

Example: If G is bipartite, assign 1 to each vertex in one independent set and 2 to each vertex in the other independent set. This constitutes a colouring using 2 colours.

Let G be a graph on n vertices. What is $\chi(G)$ if G is

- the complete graph
- the empty graph
- bipartite graph
- a cycle
- a tree

The largest degree of a vertex in G is denoted by $\Delta(G)$ and is called the maximum degree in G.
Theorem 2. $\chi(G) \leq \Delta(G)+1$
"Greedy colouring": fix colours $\{1, \ldots, \Delta(G)+1\}$ and iteratively colour every vertex using a colour that is not used by its neighbours \Rightarrow always succeeds - there is always at least one available colour.

Notes:

- this bound is tight (why? consider K_{n} for any n and C_{n} for odd n)
- $\quad \chi(G)$ can be arbitrarily far from $\Delta(G)$.

It turns out that complete graphs and odd cycles are the only graphs with $\chi(G)=\Delta(G)+1$.
Theorem 3 (Brooks). $\chi(G) \leq \Delta(G)$ unless G is the complete graph or an odd cycle.
Applications of colouring: schedulling, wireless communication, job assignment, and many more...

3.1. Edge-colouring

We can similarly colour edges of a graph.
An edge-colouring of G assigns colours to edges of G so that no edges that share an endpoint have the same colour. Smallest number of colours needed to edge-colour G is called the chromatic index of G, denoted by $\chi^{\prime}(G)$.

Notes:

- observe that $\chi^{\prime}(G) \geq \Delta(G)$
- "greedy" colouring gives $\chi^{\prime}(G) \leq 2 \Delta(G)-1$.

Even better: the chromatic index can only be one of two values.
Theorem 4 (Vizing). $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$
In case of bipartite graphs, the chromatic index is always $\Delta(G)$.
Theorem 5 (König). If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
Proof. Fix colours $\{1, \ldots, \Delta(G)\}$ and greedily colour edges as long as possible. Suppose that at some point this process halts before colouring all edges. Let $u v$ be an uncoloured edge.

Let col_{u} and col_{v} denote the sets of colours used by edges incident to u and v, respectively. Note that $\left|\operatorname{col}_{u}\right| \leq$ $\Delta(G)-1$ and $\left|\operatorname{col}_{v}\right| \leq \Delta(G)-1$ since $u v$ is not coloured and both u and v are incident to at most $\Delta(G)$ edges. Moreover, $\left|\operatorname{col}_{u} \cup \operatorname{col}_{v}\right|=\Delta(G)$ since we do not have a colour available to colour $u v$. Thus $\operatorname{col}_{u} \backslash \operatorname{col}_{v} \neq \varnothing$ and $\operatorname{col}_{v} \backslash \operatorname{col}_{u} \neq \varnothing$. In other words, some colour, say 1 , is used on edges incident to u, but not on edges incident to v, and some other colour, say 2 , is used on edges incident to v but not on edges incident to u. Consider the longest walk W in G starting from u that uses only edges coloured 1 and 2 . Observe that W is a path (thus is finite), and W is unique. If W contains v, then it terminates in v because v is incident to no edge of colour 1 . Adding the edge $\{u, v\}$ to W yields a cycle of odd length, which is impossible, since G is bipartite. So W does not contain v and we can exchange colours 1 and 2 on the edges of the walk W. This allows us to colour $u v$ with colour 1.

We continue this way and eventually all edges of G are coloured.

4. Planar graphs

A graph G is said to be planar if it can be drawn in the plane in such a way that no two edges cross one another. (We will not define this precisely as this is beyond the scope of this lecture.)

4 faces, 12 edges, 10 vertices

Theorem 6 (Jordan Curve Theorem).
Any simple closed curve C divides the plane into two regions each having C as boundary
(simple means that the curve does not cross itself; such curve is also known as Jordan curve)
Theorem 7 (Euler's formula). Let G be a connected planar graph with n vertices and m edges and consider a planar drawing G having f faces. Then

$$
n-m+f=2
$$

Proof. By induction on the number of edges. If $m \leq n-1$, then $m=n-1$ and G is a tree; the drawing has exactly one face (because G has no cycles). So $f=1$ and thus $n-m+f=n-(n-1)+1=2$ as required.

So we may assume $m \geq n$ and thus G has a cycle C. We see that the edges of C form a closed curve of the plane. Pick any edge e of C and observe that e lies on the boundary of exactly two faces (the other possibility that e lies on the boundary of only one face - is exluded by the Jordan Curve Theorem). Construct G^{\prime} from G by removing e. Removing the edge e from the drawing yields a planar drawing of G^{\prime} with $f-1$ faces. Since G^{\prime} has $m-1$ edges (less than G), the inductive hypothesis can be applied to G^{\prime} which yields $n-(m-1)+(f-1)=2$. Thus $n-m+f=2$ as required.

Theorem 8. A connected planar graph G with $n \geq 4$ vertices and $m \geq 4$ edges has at most $3 n-6$ edges. Moreover, if G has no triangles (cycles of length 3), then it has at most $2 n-4$ edges.

Proof. Consider a planar drawing of G and let f denote the number of faces in the drawing. Observe that every edge appears in at most two faces and every face is bounded by at least 3 edges (since $m \geq 3$). Thus $3 f \leq 2 m$. By Euler's formula, we have $m=n+f-2 \leq n+2 m / 3-2$. So $m / 3 \leq n-2$ and hence $n \leq 3 m-6$.

If G contains no triangles, then every face is bounded by at least 4 edges (since $m \geq 4$), and we have $4 f \leq 2 m$. This yields $m=n+f-2 \leq n+m / 2-2$ and thus $m / 2 \leq n-2$ which is $m \leq 2 n-4$ as required.

Notes: we can now show that K_{5} and $K_{3,3}$ are not planar:

- K_{5} has 10 edges but $10>3 * 5-6=9$
- $K_{3,3}$ has 9 edges and no triangle while $9>2 * 6-4=8$
- subdividing an edge $=$ replace by a 2 -edge path
- a subdivision of $G=$ repeatedly subdivide edges of G observe that: G is planar if and only if every subdivision of G is also planar

subdividing
- moreover, if we remove an edge from a planar graph, the resulting graph is also planar in other words: G is planar if and only if every subgraph of G is also planar
- put together: every graph that contains a subdivition of K_{5} or $K_{3,3}$ as a subgraph is not planar

In fact, the reverse statement is also true as famously proved by Kuratowski in 1930's.
Theorem 9 (Kuratowski's theorem).
A graph G is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$ as a subgraph.

4.1. Colouring planar graphs (optional)

The famous "4-colour Theorem" proved by Appel and Haken (after almost 100 years of unsuccessful attempts) states that every planar graph G has a vertex colouring using 4 colours. If G has no triangles, then actually 3 colours are enough as proved by Grötzsch.

Theorem 10 (4-colour Theorem, Appel-Haken 1976). If G is planar, then $\chi(G) \leq 4$.
Theorem 11 (Grötzsch's Theorem). If G is planar and has no triangles, then $\chi(G) \leq 3$.
The proof of the 4-colour theorem is quite complicated and needs a computer to verify its correctness. A much simpler proof (though still non-trivial) is required to prove that every planar graph has a colouring with 5 colours.

Theorem 12 (5-colour Theorem, Heawood 1890). If G is planar, then $\chi(G) \leq 5$.
To show that 6 colours are enough is actually quite easy.
Theorem 13 (6-colour Theorem). If G is planar, then $\chi(G) \leq 6$.
Proof. As usual let n and m denote the number of vertices and edges in G. By Theorem $8, m \leq 3 n-6$ while $2 m=\sum_{v \in V(G)} \operatorname{deg}(v)$ by Handshaking Theorem. This implies that $\sum_{v \in V(G)} \operatorname{deg}(v) \leq 6 n-12<6 n$. Therefore, G must have a vertex u_{1} of degree at most 5 . Remove this vertex and repeat; there will again be vertex u_{2} of degree at most 5 and we remove it and continue until there are no more vertices. This produces an ordering u_{1}, \ldots, u_{n} of all vertices of G in which each u_{i} has at most 5 neighbours among u_{i+1}, \ldots, u_{n}. To colour G with colours $\{1,2, \ldots, 6\}$, we simply process the vertices from u_{n} to u_{1}, each time assigning to u_{i} a colour not used by its neighbours among u_{i+1}, \ldots, u_{n}. Since there are at most 5 such neighbours, there is always a colour available for u_{i}, since we use 6 colours altogether. Consequently, this way we succeed to colour G using 6 colours.

4.2. Doodling

Finally, what about colouring a planar graph with 2 colours?
Consider the following: put your pen down on the paper and draw a curve by moving your pen without lifting it so that you return to the starting point of the curve; colour each region with colours black and white so that no two neighbouring regions use the same colour - is this always possible ?

Answer: Yes . . . why it works?
Hint: the dual ${ }^{1}$ of a drawing of an Eulerian planar graph is always bipartite

${ }^{1}$ dual is a graph whose vertices are the regions of the drawing where two regions are adjacent if and only if they share a boundary - it is also a planar graph (can you see why?)

