# CS 137-Graph Theory - Lecture 1 <br> February 11, 2012 

(further reading Rosen K. H.: Discrete Mathematics and its Applications, 5th ed., chapters 8.1, 8.2, 8.3)

### 1.1. Summary

- Intuition (What?/Why?)
- Basic terminology/notation
- Basic Counting
- Graph isomorphism


### 1.2. Intuition

A graph is a collection of points and lines between the points.
For instance, think of a road network - points are cities and lines are roads connecting the cities.


Questions we can ask:

- is there a road connecting two cities?
- how many cities must we go through when we want to travel from $x$ to $y$ ?
- can we continuously travel through all cities without going through the same city twice?

Note: the answers to these questions do not depend on the shape of the roads or positions of the cities - all we need to know is which cities are connected by roads.
A graph is a mathematical abstraction/model of connections/relations.

- simple model (yet powerful)
- practical applications (Computing, Management Science, Engineering, and much more)
- fun (solving problems by doodling ;-))


### 1.3. Definition

A graph $G$ is a pair $(V, E)$ where

- $V=$ set of elements (called vertices, singl. vertex, or nodes) e.g. think $\{1, \ldots, n\}$ or a set of points
- $\quad E=$ set of 2-element subsets of $V$ (called edges)

$$
\begin{aligned}
& \text { Example: } G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$


(Intuitively) A drawing of a graph $G$ consists of

- points corresponding to vertices $V$
- lines/curves between points corresponding to edges in $E$


## Notes:

- a drawing of $G$ is not $G$ itself
- $\quad V(G)$ vertices of $G$
- $E(G)$ edges of $G$
- we can write $u v \in E(G)$ instead of $\{u, v\} \in E(G)$


### 1.4. Basic Terminology

Let $G$ be a graph. If $e=\{u, v\}$ is a pair (edge) in $E(G)$, then

- $u$ and $v$ are adjacent
- empty graph $=$ has no edges
- $u$ and $v$ are neighbours
- complete graph $=$ has all possible
- u(v) is an endpoint of $e$ edges (relative to its vertex set)
- $u(v)$ is incident to $e$
- $N(v)=$ the set of all neighbours of $v$ (the neighbourhood)
- $\operatorname{deg}(v)=$ degree of $v$ is the number of neighbours of $v$, i.e. the size of $N(v)$


### 1.5. Isomorphism

Question: How many different graphs with the vertex set $\{1, \ldots, n\}$ ?


Note: the answer is the same as long as the vertex set has $n$ elements
Two graphs $G_{1}$ and $G_{2}$ are isomorphic if there exists a bijective mapping $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that

$$
\{u, v\} \in E\left(G_{1}\right) \text { if and only if }\{f(u), f(v)\} \in E\left(G_{2}\right)
$$

We write $G_{1} \simeq G_{2}$. The mapping $f$ is called an isomorphism of the graphs $G_{1}$ and $G_{2}$.
Question: How many different non-isomorphic graphs with $n$ vertices ?

see http://oeis.org/A000088 (The On-Line Encyclopedia of Integer Sequences)
Note: often the properties we discuss are the same for isomorphic graphs - we say that the graphs we consider are unlabelled (i.e. when drawing the graphs we do not need to specify the labels of points which is often convenient)

The complement of a graph $G$ is the graph $\bar{G}$ where

$$
V(\bar{G})=V(G) \quad \text { and } \quad E(\bar{G})=\{\{u, v\} \mid u \neq v \text { and }\{u, v\} \notin E(G)\}
$$

## Notes:

$-\quad$ the complement of $\bar{G}$ is $G$ itself, i.e. $\overline{(\bar{G})}=G$

- the complement of an empty graph is a complete graph

A graph $G$ is self-complementary if $G$ is isomorphic to $\bar{G}$.


Question: How many self-complementary graphs on $n$ vertices?
$\ldots$ for $n=6$ ? if $G$ is a self-complementary graph on $n$ vertices, then $G$ and $\bar{G}$ are isomorphic and thus have the same number of edges. Note that $|E(G)|+|E(\bar{G})|=\binom{n}{2}$ by definition. Therefore $2|E(G)|=\binom{n}{2}$ which is odd for $n=6$, for $n=7$, and generally whenever $n \equiv 2(\bmod 4)$ or $n \equiv 3(\bmod 4)$.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 1617 | 18 | 19 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 10 | 36 | 0 | 0 | 720 | 5600 | 0 | 0 | 703760 | 11220000 | 0 |

see http://oeis.org/A000171

