CS 137 - Graph Theory - Lecture 1 February 11, 2012

(further reading Rosen K. H.: Discrete Mathematics and its Applications, 5th ed., chapters 8.1, 8.2, 8.3)

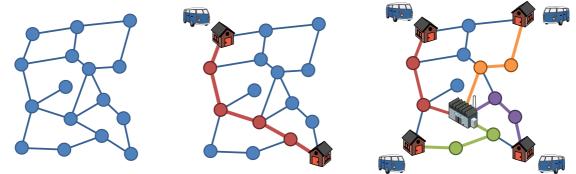
1.1. Summary

- Intuition (What?/Why?)
- Basic terminology/notation
- Basic Counting
- Graph isomorphism

1.2. Intuition

A graph is a collection of points and lines between the points.

For instance, think of a road network - points are cities and lines are roads connecting the cities.



Questions we can ask:

- is there a road connecting two cities?
- how many cities must we go through when we want to travel from x to y?
- can we continuously travel through all cities without going through the same city twice?

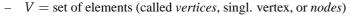
Note: the answers to these questions do not depend on the shape of the roads or positions of the cities – all we need to know is which cities are connected by roads.

A graph is a mathematical abstraction/model of connections/relations.

- simple model (yet powerful)
- practical applications (Computing, Management Science, Engineering, and much more)
- fun (solving problems by doodling ;-))

1.3. Definition

A graph G is a pair (V, E) where



- $E = \text{set of 2-element subsets of } V \text{ (called$ *edges* $)}$

Example:
$$G = (V, E)$$

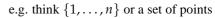
 $V = \{1, 2, 3, 4\}$
 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$

(Intuitively) A *drawing* of a graph G consists of

- points corresponding to vertices V
- lines/curves between points corresponding to edges in E

Notes:

- a drawing of *G* is not *G* itself
- V(G) vertices of G
- E(G) edges of G
- we can write $uv \in E(G)$ instead of $\{u, v\} \in E(G)$



1.4. Basic Terminology

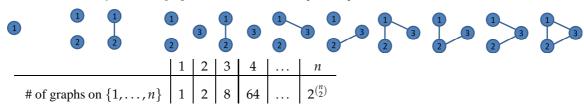
Let *G* be a graph. If $e = \{u, v\}$ is a pair (edge) in E(G), then

- *u* and *v* are *adjacent*
- *u* and *v* are *neighbours*
- u(v) is an *endpoint* of *e*
- u(v) is *incident* to e
- N(v) = the set of all neighbours of v (the *neighbourhood*)
- $deg(v) = degree \ of \ v$ is the number of neighbours of v, i.e. the size of N(v)

1.5. Isomorphism

Question: How many different graphs with the vertex set $\{1, ..., n\}$?

- *empty graph* = has no edges
- complete graph = has all possible edges (relative to its vertex set)

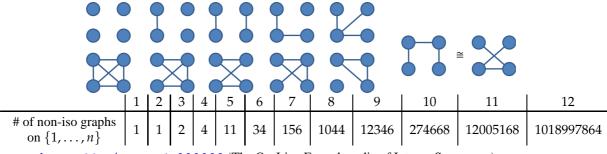


Note: the answer is the same as long as the vertex set has *n* elements

Two graphs G_1 and G_2 are *isomorphic* if there exists a bijective mapping $f : V(G_1) \to V(G_2)$ such that $\{u, v\} \in E(G_1)$ if and only if $\{f(u), f(v)\} \in E(G_2)$

We write $G_1 \simeq G_2$. The mapping f is called an *isomorphism* of the graphs G_1 and G_2 .

Question: How many different non-isomorphic graphs with n vertices ?



see http://oeis.org/A000088 (The On-Line Encyclopedia of Integer Sequences)

Note: often the properties we discuss are the same for isomorphic graphs – we say that the graphs we consider are *unlabelled* (i.e. when drawing the graphs we do not need to specify the labels of points which is often convenient)

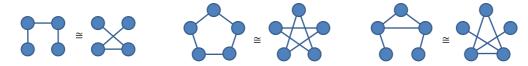
The *complement* of a graph G is the graph \overline{G} where

$$V(\overline{G}) = V(G)$$
 and $E(\overline{G}) = \left\{ \{u, v\} \mid u \neq v \text{ and } \{u, v\} \notin E(G) \right\}$

Notes:

- the complement of \overline{G} is G itself, i.e. $(\overline{G}) = G$
- the complement of an empty graph is a complete graph

A graph G is *self-complementary* if G is isomorphic to \overline{G} .



Question: How many self-complementary graphs on *n* vertices ?

... for n = 6? if *G* is a self-complementary graph on *n* vertices, then *G* and \overline{G} are isomorphic and thus have the same number of edges. Note that $|E(G)| + |E(\overline{G})| = {n \choose 2}$ by definition. Therefore $2|E(G)| = {n \choose 2}$ which is odd for n = 6, for n = 7, and generally whenever $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 17	18	19
	#	1	0	0	1	2	0	0	10	36	0	0	720	5600	0	0	703760	11220000	0
see http://oeis.org/A000171														-					