
David Matthews · Greg Wilson · Steve Easterbrook

Configuration Management for Large-Scale Scientific
Computing at the UK Met Office

Received: date / Accepted: date

Abstract Computational models used in scientific re-
search can become large and complex, and may evolve
over many years. Keeping the codes up-to-date to reflect
the latest science requires considerable effort, and yet sci-
entific programmers tend to be slow to adopt best prac-
tice software development tools. In this paper we report
on the experiences of the UK Met Office in adopting a
new system for software configuration management. The
system, FCM, is based on existing open source tools,
such as Subversion and Trac, but has been tailored for
the specific needs of the modeling teams at the Met Of-
fice. The new system is widely regarded as a success. It
replaced a plethora of different code management tools,
and has allowed development teams to dramatically re-
duce their release cycles, introduce parallel development,
and to improve the organisation of their codes. We iden-
tify a number of factors that led to this success.

Keywords Configuration Management · Software
Development Tools · Scientific Programming · Climate
Modeling

1 Introduction

Scientists using computational models face a dilemma:
each new generation of commercial software development
tools and techniques promises to increase productivity,
but those tools and techniques take significant time to
set up, master, and maintain. As commercial software de-
velopment tools and techniques are tailored to the needs

D. Matthews
UK Met Office
FitzRoy Road
Exeter, Devon, UK
EX1 3PB

S. Easterbrook and G. Wilson
Department of Computer Science
University of Toronto
Toronto, ON, CANADA
M5S 3G4

of commercial developers, rather than those of compu-
tational scientists, it is difficult to know which ones are
worth adopting. So difficult, in fact, that most scientists
choose to play it safe and not adopt any.

This paper describes how one group—the UK Met
Office—escaped from this trap. By combining open source
tools with some home-grown “glue”, the Met Office cre-
ated a system to manage millions of lines of source code
for Numerical Weather Prediction (NWP) and climate
simulation. The system allows scientific end users to as-
semble the modules they need for particular simulations
with much less effort than was previously required. Just
as importantly, it gives users confidence that the code
they are running is the code they asked for and that it
has been assembled correctly. The Met Office’s experi-
ence in building, customizing, and deploying these tools
offers interesting lessons for other groups faced with the
same challenges.

2 Tool Support for Developing Scientific
Software

The large computational models used in NWP and cli-
mate research have evolved continuously over decades.
The current generation used at the UK Met Office add
up to more than a million lines of Fortran, of which up to
one third change each year. Coordinating these changes
while maintaining correctness is hard enough in any soft-
ware system of this scale [11], but scientific programmers
must also face additional challenges, including the need
to keep track of exactly which version of the program
code was used in particular experiments, the need to re-
run experiments with precisely repeatable results, and
the need to build alternative versions of the software
from a common code base for different kinds of experi-
ments.

Software productivity is now a major bottleneck in
scientific computation [17]. Moore’s Law may have dra-
matically reduced the time it takes to run a scientific sim-
ulation, but has had absolutely no impact on the time it

takes to write and debug the necessary software. Further-
more, as codes grow ever more complex, scientists are
having to devote more of their time to the messy details
of software configuration management—managing differ-
ent versions, releases and configurations of source code,
tracking defects, coordinating changes, and extracting
and building the source code to create executables.

Scientific programmers appear to have been slow to
adopt best practice tools to support these activities. Carver
et. al. [10] identify a number of reasons for this. The
people who develop the code are trained primarily in
their scientific discipline (rather than software engineer-
ing) and have learned programming skills along the way.
Their experience of tools developed by the software com-
munity is usually disappointing—for example, these tools
don’t cater for their need to develop high performance
code for parallel architectures. The use of legacy code
(the models are built over many years) and the need for
optimization means that teams tend to use older pro-
gramming languages, for which the latest software de-
velopment environments are not available. In addition,
scientific teams prefer to develop everything in-house,
rather than take the risk of relying on external sources
for tools that might not be supported over the many
years they will be needed.

Open source tools address this problem to some ex-
tent, as they can be maintained and adapted in-house.
However, open source tools tend to come with higher
adoption costs [16], because the effort needed to install
and configure them to local needs can be too high, espe-
cially for small teams.

Furthermore, new tools must match the scientists’
working practices. In software engineering, the term pro-
cess improvement is used to describe a concern with iden-
tifying and correcting weaknesses in how the activities of
software developers are coordinated and managed. Good
software development processes increase software qual-
ity and reduce development effort, largely by prevent-
ing mistakes, and hence reducing the amount of rework
needed when mistakes are detected. But introducing pro-
cess improvements without good supporting tools can be
counter-productive, because the new processes typically
increase the burden on the programmers. Conversely, the
best tools in the world are of little use unless they are
used properly - i.e. within the context of a good process.
Hence, tool adoption and process improvement usually
need to go hand-in-hand.

We believe that good tools can speed the adoption of
good processes by making them more concrete and un-
derstandable, but the tools alone will not effect a process
change. Successful process change depends on the impact
of the new process on individual developers’ productiv-
ity (as opposed to team productivity), how compatible
the process is with existing working practices, and devel-
oper’s perceptions of whether their co-workers are also
adopting the new process [15]. This circularity makes it
hard to know which route to take to improve software

tools and processes used in the development of scientific
software.

3 Background: The Need For a New System

The UK Met Office has been developing scientific soft-
ware for almost as long as electronic computers have ex-
isted. Simulation and data analysis are now critically im-
portant to hundreds of scientists working at the Met Of-
fice, and indirectly to the millions of people who depend
on this software for everything from weather forecasts to
advice on climate change policy.

Researchers at the Met Office have had relatively
good configuration management processes in place for
many years: for example, all key software systems were
under version control with well defined change review
procedures. However, different teams used different pro-
cesses and tools, which led to difficulties for staff who
needed to move code (or themselves) from one group to
another. For example, although there was limited use of
standard tools such as CVS [7], most projects used tools
specific to the Met Office. This meant that new staff or
collaborators had to climb a steep learning curve before
being able to contribute to Met Office efforts. Similarly,
the Met Office had several build systems in place to sup-
port its large Fortran code base. Each of these build sys-
tems had some powerful features, but also some serious
deficiencies, which made none of them suitable for gen-
eral use.

The Met Office had recognised for many years that
a new system was needed to support a common work-
ing practice for all applications and ease the learning
curve for new staff. In 2004, a team of three IT specialists
within the Met Office was assembled to tackle this issue
(including one of the authors of this article). Working
closely with the scientists and systems administrators,
they produced the Flexible Configuration Management
(FCM) system described below.

A key to the success of this effort was the combi-
nation of grass roots effort and management initiative.
The team tasked with designing and implementing the
system had gotten to know each other and the scien-
tists who would be the primary uses of the system over
the course of many years. This gave their work credi-
bility that would be lacking for solutions offered by ex-
ternal vendors or imposed by senior management. Even
so, because of the amount of work involved, and because
two very different systems and teams had to be brought
together, support from management was crucial to the
project’s success.

From the outset, the FCM team understood how im-
portant it was to convince all the stakeholders that the
new system would be a significant improvement. While
the team had suitable representation on the project board
to help with this, they also maintained close contact with
key individuals, including system managers and other in-
fluential managers, to listen to their requirements and

keep them onboard with the project. In the end, success
came down to producing a system which was clearly bet-
ter than any of the existing systems and ensuring that it
had the support of the key decision makers.

4 Open Source Building Blocks

2004 turned out to be an excellent time to start work
on FCM. The core of any CM system is version control;
many groups had been using CVS, but it was clearly
showing its age. Fortuitously, February 2004 marked the
first major release of Subversion [14,6], a new open source
version control system that was explicitly designed to be
“a better CVS”.

The fact that Subversion was free was not essential to
the Met Office. However, a number of Met Office systems
are used externally by universities and other meteorolog-
ical centres, and there were clear advantages to everyone
being able to use the same version control tool. An ini-
tial evaluation showed that Subversion had the features
and reliability required, so there was no need to evaluate
commercial tools in detail.

There was, inevitably, some concern that Subversion
had only just had its first major release. However, after
spending time monitoring the Subversion mailing lists,
the FCM team was able to gain confidence from the
highly active developer community and the already large
user base (confidence which they would have had diffi-
culty gaining in the first release of any commercial prod-
uct). It was clear that the Subversion team had not made
this first major release until they were convinced it was
ready. Subversion also had the backing of a commercial
company (CollabNet). Overall the FCM team felt that
they could trust Subversion with their mission critical
source code and that help would be available should they
run into problems. Subversion has since become very suc-
cessful, with an ever-expanding user base and a strong
development team, which gives confidence that it will
not become an “orphan”.

The second key tool needed was an issue tracker, and
again the timing was good, as February 2004 marked
the first public release of a lightweight software project
management portal called Trac [8]. Like SourceForge [5]
and other software project portals, Trac combines a wiki
with an issue tracker and Subversion repository browser.
While it was (and is) not as mature or widely used as
Subversion, even in 2004 it had the key features the FCM
team felt were needed to coordinate work on their appli-
cations.

Just as importantly, Trac’s interface was very simple—
much simpler, for example, than those of SourceForge or
the widely-used open source issue tracker Bugzilla [1].
This was an important factor in gaining acceptance of
the new system: not only did it lower the learning curve,

Open Trac ticket describing
the problem / requirement

Create a branch
Use FCM to ensure standard naming

convention is followed

Prepare code changes
Commit to the branch at regular

intervals and prior to testing

Test changes
Use FCM Extract and Build systems

to simplify the build process

Review changes
Use the Trac ticket to manage

the review process

Commit changes to the “trunk”
and close the Trac ticket

Fig. 1 The FCM Change Process.

it also meant that users saw the purpose and value of
every single field1 of every form they filled in2.

Clearly, the relative immaturity of Trac was a con-
cern. However, the availability of the issue tracker is not
essential for developers to do most of their work so the
FCM team felt happier accepting more of a risk. In any
case, if serious problems were discovered with Trac they
knew that they could extract all the data from the under-
lying database and migrate to a different solution (albeit
with some pain).

Community support for these tools has been excel-
lent. In the case of Subversion, the few minor problems
encountered were issues already known to the develop-
ers. With Trac, the FCM team submitted a number of
minor new bug reports and enhancement requests, to
which they received quick responses. The team also fed
back a minor bug fix of its own, allowing it to contribute
in a small way to the community.

5 Configuration Management

The key software systems at the Met Office all follow a
similar CM process:

– All changes to the system have to be associated with
a ticket (this is what an issue is called within Trac).

– All changes have to be prepared in a version control
branch.

– A reviewer has to sign off the changes made in that
branch before it can be merged back into the main
system, at which point the associated ticket is closed.

1 Well, most of the fields. . .
2 Well, most of the forms. . .

Subversion and Trac have proven to be very effective
at supporting this CM process (See figure 1). Subversion
provides support for branching, which allows parallel de-
velopment and encourages developers to store intermedi-
ate versions of code in the repository (rather than on per-
sonal machines). Trac allows all bug fixes and enhance-
ments to be recorded in tickets on the web, which hyper-
link to associated code changesets and to wiki pages for
changes that need to be documented in more detail. If
all code changes are associated with a ticket then Trac
makes it easy for anyone examining the code to trace
each change back to its associated ticket, and thence to
the documentation and discussion that led to the change.

It is important to note, though, that this process is
not mandatory: Subversion allows users to make changes
directly in the main code line, and unlike some commer-
cial tools, does not require an open ticket to be closed (or
at least updated) as part of that process. This flexibility
means that smaller projects, with less strict requirements
are also able to make effective use of the same tools. In
particular, users who are required to use FCM on big-
ger, more stable codes do not then abandon FCM when
working on smaller, informal projects.

This flexibility is important, but often overlooked by
tool developers, who tend to build process enforcement
into their tools. Many systems and teams start small,
with little experience of industrial-strength software de-
velopment; it is important that they be able to “ease
into” more formal procedures. FCM (which was self-
hosting from an early stage) is an example of this. Dur-
ing initial development the team used informal working
practices with little reviewing and most changes happen-
ing on the main code line. As the system grew closer to
going live, the team began to shift development work to
branches and to review all changes. This shift was rela-
tively pain free since they could continue to use the same
tools, just in a slightly different way.

6 The FCM Tool Itself

Subversion’s flexibility has been a key to its general suc-
cess. However, with this flexibility comes additional com-
plexity in that some common commands can be quite
tricky to master. In order to achieve widespread accep-
tance at the Met Office, the FCM team felt a somewhat
simpler interface was required. The first step was to de-
fine working practices to limit the ways in which Subver-
sion could be used. For those familiar with Subversion,
the key restrictions are:

1. FCM enforces a particular repository structure and
branch naming convention.

2. Working copies are assumed to contain a single re-
vision and repository location (no “mixed working
copies”).

3. Partial commits are not supported.

1. Create a branch
Subversion command:
svn copy -r 123 svn://server/my repos/my proj/trunk \

svn://server/my repos/my proj/branches/dev/userid/r123 mybranch
Equivalent FCM command:
fcm branch -c -r 123 -n mybranch fcm:my proj

2. Switch your working copy to a branch
Subversion command:
svn switch svn://server/my repos/my proj/branches/dev/userid/r123 mybranch
Equivalent FCM command:
fcm switch dev/userid/r123 mybranch

3. Show the changes in your working copy relative to
the base of your branch using a graphical viewer
Subversion command:
svn diff –diff-cmd graphic diff \

–old svn://server/my repos/my proj/trunk@123 –new .
Equivalent FCM command:
fcm diff -b -g

4. Merge in the changes from the trunk since you
created your branch
Subversion command:
svn merge -r123:HEAD svn://server/my repos/my proj/trunk
Equivalent FCM command:
fcm merge trunk

Fig. 2 Example FCM commands

The team then built into FCM a lightweight rule-
conformant layer on top of Subversion with a simpler
interface designed to support the working practices and
conventions they had defined.

The most important differences between the FCM
interface and “pure” Subversion interface concern the
processes of branching and merging, plus the use of a
graphical difference and merge tool called xxdiff [9].
These are all key areas for the development process where
it was essential to simplify the interface in order to make
it accessible to the scientific user base. However, it is
worth noting that the FCM interface was designed to
match the underlying Subversion interface as closely as
possible so that anyone who was already familiar with
Subversion could easily switch to FCM and back.

Some examples of common FCM commands, together
with the equivalent Subversion commands, are given in
figure 2. In each case, FCM simplifies the command by
relying on a standard organisation for the repository
structure and standard naming conventions. For exam-
ple, in figure 2a, a branch is normally created in Subver-
sion by a complete server-side copy, requiring the user to
specify the full URL for both the source and destination.
in FCM, it is only necessary to specify the project, and a
name for the branch. These examples illustrate why the
FCM team felt that a simpler interface was essential in
order to achieve acceptance of the new system.

7 A Build System for Fortran 9X Code

Most of the scientific code at the Met Office is written in
Fortran 9X. Some of the systems are very large and can
take a considerable time to compile so an efficient build
system is essential.

FCM’s build system is based upon GNU Make [4],
a widely-used tool that keeps track of dependencies be-
tween files and recompiles, relinks, copies, or otherwise
updates files that have fallen out of date. Since its ap-
pearance in the 1970s, Make has been one of the most
widely used build tool—possibly the most widely used—
in industry. Many commercial and open source applica-
tions rely on complex Makefiles which often use only a
limited subset of Make’s functionality. Some applications
also rely on recursive Makefiles which can cause numer-
ous problems, e.g. causing Make to be overly sensitive to
changes in the source code, and hence greatly increase
compilation time [13].

The FCM build system avoids these problems by re-
lying on a single top-level configuration file written in
a much simpler syntax than Make’s. FCM then auto-
matically generates the complex Makefile required to do
what the user wants done. This makes life simpler for
users, and makes it much easier for any defects to be
fixed and new features added. As with the FCM wrap-
per around Subversion, this tool relies on users following
naming conventions and other process mechanisms; put
another way, it gives them a tangible reason to stick to
those conventions, and feedback when they don’t.

One of the challenges for Fortran 9X build systems
is handling inter-module dependencies. Code needs to be
compiled in the correct order and, for incremental builds,
changes to a source file need to trigger re-compilation
of any dependent files. Where possible, FCM analyses
the dependencies of each source file automatically. To do
this, it requires:

1. One program unit (e.g., module, subroutine, or func-
tion) per file.

2. All used routines defined within the Fortran module
or in included interface files.

3. Source code comments to identify other dependencies
(e.g., on Fortran 77 or C code).

The first two requirements are good practice that
most developers follow anyway, so insisting on them was
unproblematic. For most applications, the final require-
ment only applies to a small number of components, so it
has not been difficult for developers to modify the source
code to comply.

But saying that most developers do something isn’t
the same as saying that they all do it. When deploy-
ing FCM, the team was faced with several applications
whose code did not follow these rules. This was certain
to be an ongoing issue, since the Met Office needs to
be able to integrate code from other organisations into
its models with minimal effort (and preferably without

modifying their original source). FCM supports this by
providing “escape mechanisms” so that users can de-
fine dependency information manually. While this could
potentially be so time consuming as to make FCM too
costly to use, experience so far is that most Fortran 9X
codes can be compiled using FCM with very little effort.
Here and elsewhere, the lesson learned is knowing when
to stop: a tool only has to handle enough common or
expensive cases to be adopted, not all conceivable cases.

An innovative feature of the FCM build system is
that it allows a build to inherit source code and object
code from another build. This saves disk space and com-
pilation time, both of which are important when dealing
with applications as large as those at the Met Office.
Typically an inherited build would be from a stable re-
lease of a system. Developers who have prepared code
changes relative to this stable release can then inherit
from the build and will only need to compile what is
necessary as a result of their code changes rather than
the entire model.

FCM’s build system is also “smart” with regard to
compilation and preprocessor flags. Changes to these can
have as much impact on the compiled code as changes to
the contents of source files, because the flags can change
the behavior of the code, altering subroutine interfaces
and code dependencies. However, most build systems do
not include them in dependency calculations. As a result,
users often waste time doing full recompilations just to
ensure that they have the correct compile options in use,
or lose valuable time chasing down bugs that are actu-
ally “just” mis-matches between memory layout, loop
optimization, or synchronization directives. FCM deals
with this by allowing users to specify flags for the en-
tire system, at the directory level, or for individual files.
It triggers a build of the appropriate scale when these
flags change. It also has an optional pre-processing step
prior to the dependency analysis in which changes to pre-
processor flags trigger the appropriate re-compilation.
These features are particularly useful when inheriting
from another build.

One final build-related problem was related to For-
tran 9X’s type checking of arguments using subroutine
interfaces. If subroutines are declared in modules then
the interfaces get used automatically. However, working
in this way can lead to cascading compilation issues for
incremental builds where modifications to a commonly
used routine can result in recompilation of almost the en-
tire code, even though the subroutine interface has not
changed. One way around this is to use standalone sub-
routines and then define the interface for a routine in the
calling routine, typically by using an include file. Man-
ually maintaining these include files can be error prone,
so FCM avoids this issue by generating them automat-
ically at build time. Further, the interface files only get
updated if the subroutine interface is changed, so that
no unnecessary compilation is triggered.

8 The Extract System

The FCM extract system provides the interface between
the configuration management and build systems. This
sounds a relatively simple task: just extract some code
and then run the build system. The reality, though, is
much more complex.

Firstly, users may need to pull in code from a number
of different repositories. This is especially true if a num-
ber of systems share some common code, a practice we
obviously want to encourage. By making it very easy to
pull in such code at build time, the FCM extract system
helps to encourage it.

Scientists at the Met Office often want to be able to
pull together changes from a number of different branches
containing proposed scientific changes which are still un-
der development, so that they can evaluate new models
or algorithms. If the changes overlap, the only way to do
this is to create a new branch and merge the different
changes into the branch. However, in many cases, the
changes do not overlap; in these cases, the extract sys-
tem will merge the selected branches automatically. This
initially only worked if the changes never modified the
same file, but FCM has now been enhanced to enable it
to combine changes to the same file so long as there are
no line clashes. This assumes that if the changes are to
different parts of the file then they are probably safe to
combine. This is the same assumption Subversion itself
makes when performing a merge, so doing it as part of
extraction doesn’t introduce any additional risk.

The extract system generates the configuration file
required by the build system. This means that users only
ever need to deal with a single configuration file. Once
this single file is set up appropriately then they can get
their code extracted and built with a couple of simple
commands.

Code can also be mirrored to a remote build system
if required. This is particularly important at the Met Of-
fice, where scientists need to be able to run the extraction
on desktop systems in order to include locally modified
code before mirroring it to their supercomputer where it
can be compiled and executed.

Finally, like the build system, the extract system is
able to inherit from a previous extraction, hence saving
disk space and reducing extraction time. This means that
when scientists are testing a code change which only af-
fects a handful of files the extract system only needs to
extract those files rather than the thousands which may
make up the entire system.

An example of a very simple extract configuration file
for some Fortran code is given in figure 3. Running the
command “fcm extract” against this file would result in
the code tree being extracted from the Subversion repos-
itory and a build configuration file would be generated.
Running the command “fcm build” would then result in
any program units found in the source code being com-
piled into executables. Some points to note:

Tell FCM this is an extract configuration file
cfg::type ext

Extract and build the code in the same directory
as this file
dest $HERE

Recursively extract all the code from a branch
in the repository
repos::my proj::base fcm:my proj-br/dev/userid/r123 mybranch
expsrc::my proj::base

Compilation options
bld::tool::fc ifort
bld::tool::fflags -g -check bounds -traceback -w95

Fig. 3 Example Extract Configuration File

1. If the Fortran code follows the FCM guidelines, FCM
will automatically work out all the dependencies and
compile the necessary code in the correct order. If
the code does not follow the standard then FCM will
need further information defined in the configuration
file to help it do the right thing.

2. Remember that there are no other Makefiles or any-
thing like that cluttering up the source tree - every-
thing needed is defined in this file.

Real life cases would typically need more build op-
tions, and the more advanced extract features such as
combining branches, mirroring, etc. would require fur-
ther entries in this file. However, the example illustrates
the point that a single file can be used to configure the
entire extract and build process and that the FCM sys-
tem does a lot of the hard work for you.

9 Migrating to FCM

Building a better mousetrap is one thing; getting people
to use it is often quite another. Prior to FCM, most Met
Office groups had reasonable CM tools and processes in
place, which meant that they were trying to evolve exist-
ing practices rather than introducing entirely new con-
cepts. In some ways, though, this made the task harder:
they weren’t just saying, “This is going to make your life
so much easier,” but, “Please throw away the tools which
you’ve been using happily for the last ten years or more
and start using these new unfamiliar ones instead.” As
Glass has observed [12], any new tool or process initially
makes its adopter less productive; persuading potential
users to work their way through that period was there-
fore crucial to FCM’s success.

The FCM team therefore put a lot of effort into sup-
porting the migration process—almost as much, in fact,
as was put into building FCM in the first place. For ex-
ample, the team wrote an import script which allowed all
of the code stored in the most common existing version
control systems to be put into Subversion with history

intact. Another script imported tickets from a locally-
written issue tracker into Trac. A lot of time was also
spent documenting the system. Finally, the team pre-
pared an extensive tutorial that became the basis of
training workshops which were run for all the developers
as the systems were migrated.

But FCM’s developers didn’t just import code: in
some cases, as they were bringing code into FCM, they
took the opportunity to refactor it, sometimes exten-
sively. Fixed-format Fortran was converted to free for-
mat, code headers were updated and standardised, and
directory structures were redesigned. These kind of changes
are typically so disruptive as to be impractical while any
development effort is going on, so the migration was a
one-off opportunity to do some of these things without
(much) additional aggravation.

Finally, most system managers could see the advan-
tages provided by FCM and were keen to migrate. In
the remaining cases, though, migration to FCM was ef-
fectively forced since it was the members of the new FCM
team who had been supporting the old tools. Judicious
use of both carrot and stick allowed FCM to reach criti-
cal mass within the research areas of the Met Office very
quickly: the first official deployment was November 2005,
most systems were migrated by March 2006, and migra-
tion of the main NWP and climate model was completed
in November 2006.

10 FCM as a Service

The last thing which helped to ensure the wide adoption
of FCM at the Met Office was that its developers did
much more than simply provide it as a tool. Anyone with
a requirement for a new system could (and can) ask the
FCM team to set up Subversion, Trac, and associated
tools for them. They then look after the system, making
sure that it is regularly verified and backed up. They
also keep it up to date with the latest developments to
all the tools FCM is built upon and manage upgrades
when appropriate.

One of the reasons this is manageable is that many
maintenance procedures have been automated: it is not
really any harder to manage fifty systems than it would
be to manage five. The maintenance side of the service
requires much less than one full time staff member.

11 Evaluation

All of the Met Office’s key modeling systems have now
been using FCM for at least a year. It is clearly a success,
in part because most users are fairly indifferent to it: they
are able to focus on science rather than software infras-
tructure (although some have been kind enough to say
how much they like working with FCM and how much
easier they find it to work with than its predecessors).

A few, however, really don’t like FCM. This isn’t sur-
prising, considering the scale of the changes that have
been made to working practices which have been in place
for many years. The FCM team has tried to listen to
these users and to get to the root causes of their prob-
lems. Some changes have been made (or are in the works)
to deal with specific concerns, but in other cases users
have just had to accept that there is some pain in adopt-
ing new working practices.

We have not yet attempted to assess the impact FCM
in quantitative terms such as “X% improvement in pro-
ductivity”. However there is plenty of anecdotal evidence
of its success:

1. Staff no longer have to get to grips with lots of dif-
ferent tools - all key systems use the same tools and
follow very similar processes.

2. Lots of smaller systems, some of which previously
had little or no version control, have chosen to adopt
FCM.

3. Several systems with tens of developers now have the
tools to support parallel development - this was very
painful with their previous tools.

4. The Met Office Unified Model (MetUM), used for
climate and weather prediction, has been able to in-
troduce a new, much improved, directory structure
and to make use of more Fortran 9X features - the
previous tools had prevented this.

5. The MetUM has been able to introduce a 3 month
release cycle since it adopted FCM - the previous code
management and build tools made it much harder
to create releases resulting in them taking up to 18
months.

6. The use of Trac means that code changes are now
much better documented and, just as importantly,
the documentation is much more accessible.

7. FCM now supports 50 different systems with over 230
total users, and the number is steadily increasing, so
it must be doing something right.

One unexpected development is that many people
have started to use Trac for other purposes, without ei-
ther Subversion or FCM. As they have grown accustomed
to its simple interface, they have started relying on it to
manage activities and projects that are not code-based.
Seeing people repurpose tools of their own volition is per-
haps the most powerful proof that they find those tools
worthwhile.

The Met Office has a number of collaborators 3 who
are now adopting FCM so that they can use and develop
the MetUM. FCM is also being used within the Met Of-
fice to manage several external models 4 and it is possible
that FCM will be adopted more widely in the future by
other users of these models.

3 Including the Australian Bureau of Meteorology, the
Commonwealth Scientific and Industrial Research Organisa-
tion, the South African Weather Service, and the Natural
Environment Research Council.

4 Such as the NEMO ocean model.

12 Conclusions

We regard FCM as a major success story at the UK Met
Office. We attribute its success to a number of factors:

– Support for FCM came from both the grassroots and
from management; we believe it would have been
much less likely to succeed if either had been missing.

– The open source tools adopted have strong and grow-
ing development communities, reducing the risk of
lack of support in years to come.

– The tools, especially Trac, have simple intuitive user
interfaces. This reduces the learning curve and helps
users to see immediate benefits.

– FCM encourages processes without enforcing them,
which allows projects (rather than users) to migrate
to new processes at their own pace. It also allows
users to apply the tools to a much wider range of
systems.

– FCM has concentrated on handling the common cases
well, rather than trying to handle all possible cases.
This simplifies the user interfaces, and encourages use
of standard practices.

– The FCM team put a lot of effort up front into sup-
porting the migration process, writing scripts to ease
the transition, and developing extensive tutorial sup-
port.

– FCM is run as a service rather than a tool; ongoing
support and expertise are available to all teams that
adopt it.

FCM’s developers are planning a number of improve-
ments based on lessons learned, and expect that increased
uptake by collaborators outside of the Met Office will
lead to further changes beyond that. There are also some
exciting new developments in the pipeline for Subversion
and Trac which should benefit FCM users; as always, the
team will have to be careful to balance the power of new
features against the burden of learning how to use them,
or find ways to wrap new features so that users get the
functionality they care about most without being dis-
tracted by possibilities they don’t need.

Finally, FCM is available for general use [3] under
the Flexible Configuration Management License [2]. Al-
though the Met Office is not able to provide support
to outside users, the team is always happy to receive
feedback, bug fixes, and enhancements from anyone who
finds the system of use.

13 Acknowledgments

Our thanks to all the developers who have contributed
to all the open source tools upon which FCM relies. The
quality of some of the free tools available is simply amaz-
ing. Thanks also to the software system managers at the
Met Office for their enthusiasm and patience whilst mi-
grating to FCM which helped to ensure the success of

the project, and to the other members of the FCM team
at the Met Office: Matt Shin, who was responsible for
writing most of the FCM code (currently approximately
15000 lines of Perl) and Jim Bolton, who managed the
project and dealt with a lot of the migration issues.

References

1. Bugzilla. http://www.bugzilla.org.
2. Flexible configuration management license.

http://www.metoffice.gov.uk/research/nwp/external/fcm/LICENSE.html.
3. Flexible configuration management web site.

http://www.metoffice.gov.uk/research/nwp/external/fcm.
4. Gnu make. http://www.gnu.org/software/make.
5. Sourceforge. http://www.sourceforge.net.
6. Subversion. http://subversion.tigris.org.
7. CVS. http://www.nongnu.org/cvs.
8. Trac. http://trac.edgewall.org.
9. xxdiff. http://furius.ca/xxdiff.

10. Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post. Software development environ-
ments for scientific and engineering software: A series
of case studies. In Proceedings of the 29th ACM/IEEE
International Conference on Software Engineering, May
2007.

11. Paul F. Dubois. Maintaining correctness in scientific pro-
grams. Computing in Science & Engineering, 7(3):80–85,
May 2005.

12. Robert L. Glass. Facts and Fallacies of Software Engi-
neering. Addison-Wesley, 2002.

13. P. A. Miller. Recursive make considered harmful. AU-
UGN Journal of AUUG Inc., 19(1):14–25, 1998.

14. C. Michael Pilato, Ben Collins-Sussman, and Brian W.
Fitzpatrick. Version Control with Subversion. O’Reilly
Media, 2004.

15. Cynthia K. Riemenschneider, Bill C. Hardgrave, and
Fred D. Davis. Explaining software developer accep-
tance of methodologies: A comparison of five theoreti-
cal models. IEEE Transactions on Software Engineering,
28(12):1135–1145, December 2002.

16. C. Spinellis, D.; Szyperski. How is open source affect-
ing software development? Software, IEEE, 21(1):28–33,
Jan-Feb 2004.

17. Greg V. Wilson. Where’s the real bottleneck in scientific
computing? American Scientist, 94(1), Jan-Feb 2006.

